Pub Date : 2024-10-20DOI: 10.1016/j.dci.2024.105282
Carolina Salazar , Nicolás Ojeda , Luis Mercado
Endocrine Disruptor Compounds (EDCs) in the aquatic environment have acquired pronounced relevance due to their toxic effect on the aquatic flora and fauna. Xenoestrogens are EDCs that possess estrogenic activity and, thus, disrupt normal estrogen signaling, affecting different functions, such as immune system processes. Two relevant xenoestrogens discarded into fresh and seawater are 4-nonylphenol (NP) and 17⍺-Ethynyl Estradiol (EE2). Considering that the piscicultures of Salmo salar can be located at sites of potential exposure to xenoestrogen-containing effluxes, it is crucial to understand the effect of xenoestrogens on the immune response and its possible molecular mechanism in this species. Our studies reveal an increase in the expression of the receptor era and erb at early times of exposure, a disrupted expression of pro-inflammatory cytokines (il1b and tnfa), an upregulation of ssa-miR-146a-5p, ssa-miR-125 b-5p, and downregulation of ssa-miR-145–5p in ASK cells exposed to estrogen and xenoestrogen, could potentially lead to new strategies for mitigating the effects of xenoestrogens on Salmo salar immune response.
{"title":"Dysregulated proinflammatory cytokines and immune-related miRNAs in ASK cells exposed to 17⍺-Ethynyl estradiol and 4-nonylphenol","authors":"Carolina Salazar , Nicolás Ojeda , Luis Mercado","doi":"10.1016/j.dci.2024.105282","DOIUrl":"10.1016/j.dci.2024.105282","url":null,"abstract":"<div><div>Endocrine Disruptor Compounds (EDCs) in the aquatic environment have acquired pronounced relevance due to their toxic effect on the aquatic flora and fauna. Xenoestrogens are EDCs that possess estrogenic activity and, thus, disrupt normal estrogen signaling, affecting different functions, such as immune system processes. Two relevant xenoestrogens discarded into fresh and seawater are 4-nonylphenol (NP) and 17⍺-Ethynyl Estradiol (EE2). Considering that the piscicultures of <em>Salmo salar</em> can be located at sites of potential exposure to xenoestrogen-containing effluxes, it is crucial to understand the effect of xenoestrogens on the immune response and its possible molecular mechanism in this species. Our studies reveal an increase in the expression of the receptor <em>era</em> and <em>erb</em> at early times of exposure, a disrupted expression of pro-inflammatory cytokines (<em>il1b</em> and <em>tnfa</em>), an upregulation of ssa-miR-146a-5p, ssa-miR-125 b-5p, and downregulation of ssa-miR-145–5p in ASK cells exposed to estrogen and xenoestrogen, could potentially lead to new strategies for mitigating the effects of xenoestrogens on <em>Salmo salar</em> immune response.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105282"},"PeriodicalIF":2.7,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.dci.2024.105281
Dong-li Li , Wen-lin Wu , Hai-peng Liu
White spot syndrome virus (WSSV) is a large nuclear-replicating DNA virus of crustaceans such as shrimp and crayfish; however, the molecular mechanisms facilitating its transport from the invasion site to the cell nucleus have not yet been well elucidated. In this study, a CqProfilin (CqPFN) with a conserved PROF domain was identified from the red claw crayfish Cherax quadricarinatus. CqPFN was ubiquitously expressed in all examined tissues and hemocyte, with the highest levels in the hemocyte, followed by hematopoietic tissue (Hpt) from which the hemocyte were derived in crayfish. The transcript of WSSV genes such as IE1 and VP28 was obviously decreased both in vivo in hemocyte and Hpt, as well as in vitro in cultured Hpt cells, after CqPFN gene silencing; in contrast, the expression of viral genes was significantly increased by the introduction of a recombinant CqPFN protein in Hpt cells in vitro. Moreover, CqPFN was clearly colocalized with the main viral nucleocapsid protein VP664 and F-actin cytoskeleton, respectively, during the early stage of WSSV infection in Hpt cells. In addition, CqPFN was confirmed to interact with a truncated VP6642,405-2,535 and another viral nucleocapsid protein VP15 of WSSV and Cqβ-Actin from Hpt by co-immunoprecipitation assays. Further studies found that VP664 also colocalized with F-actin in the Hpt cell cytoplasm after WSSV infection, suggesting that the actin cytoskeleton was involved in the intracellular transport of incoming viral nucleocapsid. Taken together, CqPFN might combine with the actin cytoskeleton to promote WSSV infection through binding with viral nucleocapsid proteins VP664 and VP15, promoting intracellular transport of viral incoming nucleocapsid for further releasing genome into the nucleus for transcription. Collectively, these results provided an understanding of the WSSV pathogenesis, which will contribute to the development of an antiviral strategy against WSSV disease.
{"title":"CqProfilin enhances WSSV infection by promoting viral intracellular transport through binding to both viral nucleocapsid and actin cytoskeleton","authors":"Dong-li Li , Wen-lin Wu , Hai-peng Liu","doi":"10.1016/j.dci.2024.105281","DOIUrl":"10.1016/j.dci.2024.105281","url":null,"abstract":"<div><div>White spot syndrome virus (WSSV) is a large nuclear-replicating DNA virus of crustaceans such as shrimp and crayfish; however, the molecular mechanisms facilitating its transport from the invasion site to the cell nucleus have not yet been well elucidated. In this study, a <em>Cq</em>Profilin (<em>Cq</em>PFN) with a conserved PROF domain was identified from the red claw crayfish <em>Cherax quadricarinatus</em>. <em>CqPFN</em> was ubiquitously expressed in all examined tissues and hemocyte, with the highest levels in the hemocyte, followed by hematopoietic tissue (Hpt) from which the hemocyte were derived in crayfish. The transcript of WSSV genes such as <em>IE1</em> and <em>VP28</em> was obviously decreased both <em>in vivo</em> in hemocyte and Hpt, as well as <em>in vitro</em> in cultured Hpt cells, after <em>CqPFN</em> gene silencing; in contrast, the expression of viral genes was significantly increased by the introduction of a recombinant <em>Cq</em>PFN protein in Hpt cells <em>in vitro</em>. Moreover, <em>Cq</em>PFN was clearly colocalized with the main viral nucleocapsid protein VP664 and F-actin cytoskeleton, respectively, during the early stage of WSSV infection in Hpt cells. In addition, <em>Cq</em>PFN was confirmed to interact with a truncated VP664<sup>2,405-2,535</sup> and another viral nucleocapsid protein VP15 of WSSV and <em>Cq</em>β-Actin from Hpt by co-immunoprecipitation assays. Further studies found that VP664 also colocalized with F-actin in the Hpt cell cytoplasm after WSSV infection, suggesting that the actin cytoskeleton was involved in the intracellular transport of incoming viral nucleocapsid. Taken together, <em>Cq</em>PFN might combine with the actin cytoskeleton to promote WSSV infection through binding with viral nucleocapsid proteins VP664 and VP15, promoting intracellular transport of viral incoming nucleocapsid for further releasing genome into the nucleus for transcription. Collectively, these results provided an understanding of the WSSV pathogenesis, which will contribute to the development of an antiviral strategy against WSSV disease.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105281"},"PeriodicalIF":2.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.dci.2024.105280
Sara Pedrazzoli, Giulia Graziosi, Roberta Salaroli, Elena Catelli, Caterina Lupini
Infectious bursal disease virus (IBDV) is a significant pathogen in poultry, causing acute immunosuppressive disease in young chickens. While B-lymphocyte involvement in IBDV pathogenesis is known, the role of T-cells is incompletely understood. This systematic review presents the alterations in chicken T-lymphocyte subsets after IBDV exposure, assessed by flow cytometry analysis. Four databases were queried for identifying eligible studies focused on experimental infections measuring T-lymphocyte changes in the bursa of Fabricius, spleen, thymus, and peripheral blood mononuclear cells. Of 488 studies found, 25 met the pre-established criteria and were included in the qualitative synthesis of results. Most studies analysed T-lymphocyte responses during the acute phase of IBDV infection, primarily focusing on CD4+ and CD8+ T-cells. Other subsets, such as γδ T-cells and double-positive CD4+CD8+ T-cells, were less frequently investigated. An increase in T-lymphocytes was noted in the bursa of Fabricius, suggesting their active role in viral clearance. In the spleen, CD4+ T-cells commonly increased, while CD8+ responses varied among studies. Increased levels in T-cells were also noted during the chronic infection in the bursa of Fabricius, possibly due to persistent viral antigens. Overall, variations in flow cytometry methods and T-cell output reporting were noted among studies.
Based on the data collected, further investigation into diverse T-cell subpopulations beyond CD4+ and CD8+ is needed, as well as the standardization of flow cytometry assays in chickens.
传染性法氏囊病病毒(IBDV)是家禽的一种重要病原体,可导致幼鸡急性免疫抑制性疾病。虽然已知 B 淋巴细胞参与了 IBDV 的发病过程,但对 T 细胞的作用还不完全了解。本系统综述通过流式细胞术分析评估了鸡暴露于 IBDV 后 T 淋巴细胞亚群的变化。我们查询了四个数据库,以确定符合条件的研究,这些研究侧重于测量法氏囊、脾脏、胸腺和外周血单核细胞中 T 淋巴细胞的变化。在找到的 488 项研究中,有 25 项符合预先设定的标准,并纳入了定性结果综述。大多数研究分析了 IBDV 感染急性期的 T 淋巴细胞反应,主要侧重于 CD4+ 和 CD8+ T 细胞。对其他亚群,如 γδ T 细胞和 CD4+CD8+ 双阳性 T 细胞的研究较少。法氏囊中的 T 淋巴细胞有所增加,表明它们在清除病毒方面发挥了积极作用。在脾脏,CD4+ T 细胞普遍增加,而 CD8+ 的反应则因研究而异。在法氏囊慢性感染期间,T 细胞水平也有所提高,这可能是由于病毒抗原的持续存在。总体而言,不同研究的流式细胞术方法和 T 细胞输出报告存在差异。根据收集到的数据,需要进一步研究 CD4+ 和 CD8+ 以外的各种 T 细胞亚群,并对鸡的流式细胞术检测方法进行标准化。
{"title":"Dynamic alterations in T-lymphocyte subsets assessed by flow cytometry in chickens following exposure to infectious bursal disease virus: A systematic review","authors":"Sara Pedrazzoli, Giulia Graziosi, Roberta Salaroli, Elena Catelli, Caterina Lupini","doi":"10.1016/j.dci.2024.105280","DOIUrl":"10.1016/j.dci.2024.105280","url":null,"abstract":"<div><div>Infectious bursal disease virus (IBDV) is a significant pathogen in poultry, causing acute immunosuppressive disease in young chickens. While B-lymphocyte involvement in IBDV pathogenesis is known, the role of T-cells is incompletely understood. This systematic review presents the alterations in chicken T-lymphocyte subsets after IBDV exposure, assessed by flow cytometry analysis. Four databases were queried for identifying eligible studies focused on experimental infections measuring T-lymphocyte changes in the bursa of Fabricius, spleen, thymus, and peripheral blood mononuclear cells. Of 488 studies found, 25 met the pre-established criteria and were included in the qualitative synthesis of results. Most studies analysed T-lymphocyte responses during the acute phase of IBDV infection, primarily focusing on CD4<sup>+</sup> and CD8<sup>+</sup> T-cells. Other subsets, such as γδ T-cells and double-positive CD4<sup>+</sup>CD8<sup>+</sup> T-cells, were less frequently investigated. An increase in T-lymphocytes was noted in the bursa of Fabricius, suggesting their active role in viral clearance. In the spleen, CD4<sup>+</sup> T-cells commonly increased, while CD8<sup>+</sup> responses varied among studies. Increased levels in T-cells were also noted during the chronic infection in the bursa of Fabricius, possibly due to persistent viral antigens. Overall, variations in flow cytometry methods and T-cell output reporting were noted among studies.</div><div>Based on the data collected, further investigation into diverse T-cell subpopulations beyond CD4<sup>+</sup> and CD8<sup>+</sup> is needed, as well as the standardization of flow cytometry assays in chickens.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105280"},"PeriodicalIF":2.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.dci.2024.105279
Thi Hao Vu , Chaeeun Kim , Anh Duc Truong , Hyun S. Lillehoj , Yeong Ho Hong
This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-β, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.
{"title":"Unveiling the immunomodulatory role of soluble chicken fractalkine: Insights from functional characterization and pathway activation analyses","authors":"Thi Hao Vu , Chaeeun Kim , Anh Duc Truong , Hyun S. Lillehoj , Yeong Ho Hong","doi":"10.1016/j.dci.2024.105279","DOIUrl":"10.1016/j.dci.2024.105279","url":null,"abstract":"<div><div>This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-β, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105279"},"PeriodicalIF":2.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.dci.2024.105278
Yuexuan Wang , Yewen Wang , Yunxiang Jiang , Qiwei Qin , Shina Wei
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1–19 aa), a pro-pre-peptide region (20–55 aa), and a mature cysteine protease region (56–302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
{"title":"The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection","authors":"Yuexuan Wang , Yewen Wang , Yunxiang Jiang , Qiwei Qin , Shina Wei","doi":"10.1016/j.dci.2024.105278","DOIUrl":"10.1016/j.dci.2024.105278","url":null,"abstract":"<div><div>Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, <em>Epinephelus coioides</em>. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1–19 aa), a pro-pre-peptide region (20–55 aa), and a mature cysteine protease region (56–302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105278"},"PeriodicalIF":2.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Copepods are small crustaceans that live in microorganism-rich aquatic environments and provide a key supply of live food for fish and shellfish larviculture. To better understand the host-pathogen interaction between the copepod and Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND), the comparative transcriptome and microbiome analyses were conducted in copepod Apocyclops royi-TH following VPAHPND infection. Transcriptome analysis identified a total of 836 differentially expressed genes, with 275 upregulated and 561 downregulated genes. Subsequent analysis showed that a total of 37 differentially expressed genes were associated with the innate immune system, including 16 upregulated genes related to Toll-like receptor signaling pathway, antimicrobial peptides, and stress response genes, and 21 downregulated genes associated with immunological modulators, signaling molecules, and apoptosis-related proteins. Analysis of the copepod microbiome following VPAHPND infection showed that the microbes changed significantly after bacterial infection, with a reduced alpha diversity accompanied by the increased level of Proteobacteria and decreased levels of Bdellovibrionota, Bacteroidota, and Verrucomicrobiota. The population of Vibrio genera were increased significantly, while several other genera, including Denitromonas, Nitrosomonas, Blastopirellula, Fusibacter, Alteromonas, KI89A_clade, and Ruegeria, were decreased significantly after infection. These findings suggest that VPAHPND infection has a significant impact on the immune defense and the composition of the copepod microbiota.
{"title":"Transcriptomic and microbiome analyses of copepod Apocyclops royi in response to an AHPND-causing strain of Vibrio parahaemolyticus","authors":"Natkanokporn Prayoonmaneerat , Walaiporn Charoensapsri , Piti Amparyup , Chanprapa Imjongjirak","doi":"10.1016/j.dci.2024.105277","DOIUrl":"10.1016/j.dci.2024.105277","url":null,"abstract":"<div><div>Copepods are small crustaceans that live in microorganism-rich aquatic environments and provide a key supply of live food for fish and shellfish larviculture. To better understand the host-pathogen interaction between the copepod and <em>Vibrio parahaemolyticus</em> causing acute hepatopancreatic necrosis disease (VP<sub>AHPND</sub>), the comparative transcriptome and microbiome analyses were conducted in copepod <em>Apocyclops royi</em>-TH following VP<sub>AHPND</sub> infection. Transcriptome analysis identified a total of 836 differentially expressed genes, with 275 upregulated and 561 downregulated genes. Subsequent analysis showed that a total of 37 differentially expressed genes were associated with the innate immune system, including 16 upregulated genes related to Toll-like receptor signaling pathway, antimicrobial peptides, and stress response genes, and 21 downregulated genes associated with immunological modulators, signaling molecules, and apoptosis-related proteins. Analysis of the copepod microbiome following VP<sub>AHPND</sub> infection showed that the microbes changed significantly after bacterial infection, with a reduced alpha diversity accompanied by the increased level of Proteobacteria and decreased levels of Bdellovibrionota, Bacteroidota, and Verrucomicrobiota. The population of <em>Vibrio</em> genera were increased significantly, while several other genera, including <em>Denitromonas</em>, <em>Nitrosomonas</em>, <em>Blastopirellula</em>, <em>Fusibacter</em>, <em>Alteromonas</em>, <em>KI89A_clade</em>, and <em>Ruegeria</em>, were decreased significantly after infection. These findings suggest that VP<sub>AHPND</sub> infection has a significant impact on the immune defense and the composition of the copepod microbiota.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105277"},"PeriodicalIF":2.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.dci.2024.105272
Hui Xu , Wenjuan Dai , Zhengyu Xiong , NaNa Huang , Yanrui Wang , Zhe Yang , Shanshan Luo , Jielian Wu
A cDNA encoding a phage-type lysozyme, designated as HcPLYZ, was successfully cloned from Hyriopsis cumingii. The full-length cDNA sequence of HcPLYZ was determined to be 896 base pairs in length. Analysis revealed the absence of a signal peptide at its N-terminus, and identified two highly conserved phage-type lysozyme activity sites, Glu20 and Asp29, within the deduced amino acid sequence of HcPLYZ. The results of the cloning and sequencing symbiotic bacteria in tissues were consistent with those obtained using tissue cDNA as the template, suggesting that HcPLYZ may originate a symbiotic bacterium. The expression levels of HcPLYZ mRNA exhibited significant variations across different tissues. Successful expression was induced using IPTG, and the native recombinant protein was subsequently purified through affinity chromatography employing Ni2+, and the optimal pH and temperature of which were determined to be 5.5 and 50 °C, respectively. Following exposure to Aeromonas hydrophila, there was a significant increase in the levels of HcPLYZ mRNA in the hemocytes, hepatopancreas, and gills. HcPLYZ was demonstrated the inhibition activity of 55% and 83% against Micrococcus lysodeikticus under pH 5.5 and 50 °C conditions, respectively. These results suggested that HcPLYZ possessed antibacterial activity against both A. hydrophila and M. lysodeikticus.
{"title":"Identification and antibacterial activity of a novel phage-type lysozyme from the freshwater mussel Hyriopsis cumingii","authors":"Hui Xu , Wenjuan Dai , Zhengyu Xiong , NaNa Huang , Yanrui Wang , Zhe Yang , Shanshan Luo , Jielian Wu","doi":"10.1016/j.dci.2024.105272","DOIUrl":"10.1016/j.dci.2024.105272","url":null,"abstract":"<div><div>A cDNA encoding a phage-type lysozyme, designated as HcPLYZ, was successfully cloned from <em>Hyriopsis cumingii</em>. The full-length cDNA sequence of HcPLYZ was determined to be 896 base pairs in length. Analysis revealed the absence of a signal peptide at its N-terminus, and identified two highly conserved phage-type lysozyme activity sites, Glu<sup>20</sup> and Asp<sup>29</sup>, within the deduced amino acid sequence of HcPLYZ. The results of the cloning and sequencing symbiotic bacteria in tissues were consistent with those obtained using tissue cDNA as the template, suggesting that HcPLYZ may originate a symbiotic bacterium. The expression levels of HcPLYZ mRNA exhibited significant variations across different tissues. Successful expression was induced using IPTG, and the native recombinant protein was subsequently purified through affinity chromatography employing Ni<sup>2+</sup>, and the optimal pH and temperature of which were determined to be 5.5 and 50 °C, respectively. Following exposure to <em>Aeromonas hydrophila</em>, there was a significant increase in the levels of HcPLYZ mRNA in the hemocytes, hepatopancreas, and gills. HcPLYZ was demonstrated the inhibition activity of 55% and 83% against <em>Micrococcus lysodeikticus</em> under pH 5.5 and 50 °C conditions, respectively. These results suggested that HcPLYZ possessed antibacterial activity against both <em>A. hydrophila</em> and <em>M. lysodeikticus</em>.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105272"},"PeriodicalIF":2.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.dci.2024.105275
Bernard Yi Zhe Thian , Mohd Nasir Nurul Fatimah , Chuan Loo Wong , Hui Kian Ong , Abdul Razak Mariatulqabtiah , Kok Lian Ho , Abdul Rahman Omar , Wen Siang Tan
Avian influenza A viruses (IAVs) pose a persistent threat to poultry industry worldwide, despite the presence of vaccines. Additionally, reverse-zoonosis transmission potentially introduces human-originated IAVs into poultry and complicates the efforts to control the spread of influenza. Current avian influenza vaccines are primarily based upon the rapidly mutating hemagglutinin (HA) and neuraminidase (NA) glycoproteins, which limit their efficacy against diverse strains of IAVs. Hence, the highly conserved ectodomains of matrix 2 protein (M2e) of IAVs are widely studied as alternatives to the HA and NA. However, the differences in the M2e amino acid sequences between avian and human IAVs generate antibodies that do not cross-react reciprocally with IAVs from other origins. To broaden and enhance the immunogenicity of M2e, we fused two copies each of the M2e derived from avian and human IAVs at the C-terminal end of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (NvC). Transmission electron microscopic and dynamic light scattering analyses revealed that the chimeric protein self-assembled into virus-like particles (VLPs). Immunization of chickens with the chimeric VLPs demonstrated a robust induction of broadly reactive immune responses against both the M2e of avian and human IAVs. Additionally, the chimeric VLPs elicited the production of cytotoxic T lymphocytes (CTL), macrophages, as well as a well-balanced Th1 and Th2 population, indicating their potential in activating cell-mediated immune responses in chickens. Furthermore, the chimeric VLPs triggered the production of both Th1- and Th2-cytokines, attesting their potential in mounting a robust and balanced immune response in avian species. This study demonstrated the potential of these chimeric VLPs in stimulating and broadening cross-reactive immune responses in chickens against both avian and human IAVs.
{"title":"Broadly cross-reactive immune responses in chickens immunized with chimeric virus-like particles of nodavirus displaying the M2e originated from avian and human influenza A viruses","authors":"Bernard Yi Zhe Thian , Mohd Nasir Nurul Fatimah , Chuan Loo Wong , Hui Kian Ong , Abdul Razak Mariatulqabtiah , Kok Lian Ho , Abdul Rahman Omar , Wen Siang Tan","doi":"10.1016/j.dci.2024.105275","DOIUrl":"10.1016/j.dci.2024.105275","url":null,"abstract":"<div><div>Avian influenza A viruses (IAVs) pose a persistent threat to poultry industry worldwide, despite the presence of vaccines. Additionally, reverse-zoonosis transmission potentially introduces human-originated IAVs into poultry and complicates the efforts to control the spread of influenza. Current avian influenza vaccines are primarily based upon the rapidly mutating hemagglutinin (HA) and neuraminidase (NA) glycoproteins, which limit their efficacy against diverse strains of IAVs. Hence, the highly conserved ectodomains of matrix 2 protein (M2e) of IAVs are widely studied as alternatives to the HA and NA. However, the differences in the M2e amino acid sequences between avian and human IAVs generate antibodies that do not cross-react reciprocally with IAVs from other origins. To broaden and enhance the immunogenicity of M2e, we fused two copies each of the M2e derived from avian and human IAVs at the C-terminal end of the <em>Macrobrachium rosenbergii</em> nodavirus (<em>Mr</em>NV) capsid protein (NvC). Transmission electron microscopic and dynamic light scattering analyses revealed that the chimeric protein self-assembled into virus-like particles (VLPs). Immunization of chickens with the chimeric VLPs demonstrated a robust induction of broadly reactive immune responses against both the M2e of avian and human IAVs. Additionally, the chimeric VLPs elicited the production of cytotoxic T lymphocytes (CTL), macrophages, as well as a well-balanced Th1 and Th2 population, indicating their potential in activating cell-mediated immune responses in chickens. Furthermore, the chimeric VLPs triggered the production of both Th1- and Th2-cytokines, attesting their potential in mounting a robust and balanced immune response in avian species. This study demonstrated the potential of these chimeric VLPs in stimulating and broadening cross-reactive immune responses in chickens against both avian and human IAVs.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105275"},"PeriodicalIF":2.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.dci.2024.105274
Jose Carlos Campos-Sánchez, José Meseguer, Francisco A. Guardiola
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
{"title":"Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics","authors":"Jose Carlos Campos-Sánchez, José Meseguer, Francisco A. Guardiola","doi":"10.1016/j.dci.2024.105274","DOIUrl":"10.1016/j.dci.2024.105274","url":null,"abstract":"<div><div>From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent <em>in vivo</em> imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (<em>Danio rerio</em>), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105274"},"PeriodicalIF":2.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.dci.2024.105276
Basant Gomaa, Hossam Abdelhamed, Michelle Banes, Saida Zinnurine, Lesya Pinchuk, Mark L. Lawrence
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS) in freshwater fish. In recent years, MAS outbreaks due to virulent Aeromonas hydrophila (vAh) have been responsible for large-scale losses within commercial catfish farms in Mississippi and Alabama. The aim of this study was to evaluate immune gene expression in catfish immune-competent tissues during infection with vAh strain ML09-119. Specific pathogen-free catfish fingerlings were intraperitoneally infected with vAh strain ML09-119, and relative expression of thirteen immune-related genes was evaluated from head kidney, spleen, and liver. Our results revealed that vAh was detected 2 h post-infection (hpi) in the head kidney, liver, and spleen. The highest concentration of vAh was detected at 12 hpi, from which point concentrations decreased until clearance at 5 days post-infection (dpi). Gene expression analysis revealed upregulation of pro-inflammatory cytokines and innate immune response (TLR 4 and 5) in the first 24 hpi. Adaptive immune-related genes were upregulated at 7 dpi in the spleen and 14 dpi in the head kidney. Furthermore, immunoglobulin M showed significant upregulation at 14 dpi in the head kidney and 21 dpi in the spleen. In summary, vAh ML09-119 infection induced a strong inflammatory response involving multiple innate immunity genes, proinflammatory cytokines, and chemokines. Surviving catfish were able to clear the infection and produce antibodies and memory cells. Assessment of the immunological response to vAh infection is critical for understanding the pathogen's mechanisms of pathogenesis and developing means for MAS control, including vaccine development and improved treatments.
{"title":"Innate and adaptive immunity gene expression profiles induced by virulent Aeromonas hydrophila infection in the immune-related organs of channel catfish","authors":"Basant Gomaa, Hossam Abdelhamed, Michelle Banes, Saida Zinnurine, Lesya Pinchuk, Mark L. Lawrence","doi":"10.1016/j.dci.2024.105276","DOIUrl":"10.1016/j.dci.2024.105276","url":null,"abstract":"<div><div><em>Aeromonas hydrophila</em> causes motile Aeromonas <em>s</em>epticemia (MAS) in freshwater fish. In recent years, MAS outbreaks due to virulent <em>Aeromonas hydrophila</em> (vAh<em>)</em> have been responsible for large-scale losses within commercial catfish farms in Mississippi and Alabama. The aim of this study was to evaluate immune gene expression in catfish immune-competent tissues during infection with vAh strain ML09-119. Specific pathogen-free catfish fingerlings were intraperitoneally infected with vAh strain ML09-119, and relative expression of thirteen immune-related genes was evaluated from head kidney, spleen, and liver. Our results revealed that vAh was detected 2 h post-infection (hpi) in the head kidney, liver, and spleen. The highest concentration of vAh was detected at 12 hpi, from which point concentrations decreased until clearance at 5 days post-infection (dpi). Gene expression analysis revealed upregulation of pro-inflammatory cytokines and innate immune response (TLR 4 and 5) in the first 24 hpi. Adaptive immune-related genes were upregulated at 7 dpi in the spleen and 14 dpi in the head kidney. Furthermore, immunoglobulin M showed significant upregulation at 14 dpi in the head kidney and 21 dpi in the spleen. In summary, vAh ML09-119 infection induced a strong inflammatory response involving multiple innate immunity genes, proinflammatory cytokines, and chemokines. Surviving catfish were able to clear the infection and produce antibodies and memory cells. Assessment of the immunological response to vAh infection is critical for understanding the pathogen's mechanisms of pathogenesis and developing means for MAS control, including vaccine development and improved treatments.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105276"},"PeriodicalIF":2.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}