T. Thoř, K. Rubešová, V. Jakeš, D. Mikolášová, F. Průša, L. Nádherný, R. Kučerková, M. Nikl
Lutetium oxide (Lu2O3) is an interesting host material for scintillating applications due to its properties, including high density (9.4 g/cm3), high effective atomic number (Zeff = 67), chemical and mechanical stability. Although it exhibits some intrinsic luminescent properties, its emission can be tuned to better suit the specific needs of individual applications by doping with lanthanide elements. However, the extremely high melting point of Lu2O3 (~2490 °C) makes the fabrication of a single crystal both difficult and costly. Lu2O3 is therefore commonly studied in the form of polycrystalline powder and thin films, or highly transparent dense ceramics. In this work, the fabrication of europium-doped Lu2O3 transparent ceramics is presented. First, a powder precursor was prepared using a reverse co-precipitation and characterized utilizing X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Powder was then compacted into dense transparent ceramics by spark-plasmasintering. Photoluminescence, radioluminescence and transmittance spectra, as well as scanning electron microscopy pictures, of sintered Eu:Lu2O3 samples are presented.
{"title":"Eu:Lu2O3 transparent ceramics prepared by spark-plasma-sintering","authors":"T. Thoř, K. Rubešová, V. Jakeš, D. Mikolášová, F. Průša, L. Nádherný, R. Kučerková, M. Nikl","doi":"10.1117/12.2544573","DOIUrl":"https://doi.org/10.1117/12.2544573","url":null,"abstract":"Lutetium oxide (Lu2O3) is an interesting host material for scintillating applications due to its properties, including high density (9.4 g/cm3), high effective atomic number (Zeff = 67), chemical and mechanical stability. Although it exhibits some intrinsic luminescent properties, its emission can be tuned to better suit the specific needs of individual applications by doping with lanthanide elements. However, the extremely high melting point of Lu2O3 (~2490 °C) makes the fabrication of a single crystal both difficult and costly. Lu2O3 is therefore commonly studied in the form of polycrystalline powder and thin films, or highly transparent dense ceramics. In this work, the fabrication of europium-doped Lu2O3 transparent ceramics is presented. First, a powder precursor was prepared using a reverse co-precipitation and characterized utilizing X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Powder was then compacted into dense transparent ceramics by spark-plasmasintering. Photoluminescence, radioluminescence and transmittance spectra, as well as scanning electron microscopy pictures, of sintered Eu:Lu2O3 samples are presented.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115739201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Demonstrator of remote sensing system based on an uncooled LWIR hyperspectral imager was designed. This paper describes design of its optical part which is a hyperspectral imager in a spectral range of 7.5-12 um with a 40°×20° field of view. The hyperspectral imaging system is push-broom type based on an imaging spectrometer with transmission grating. Emphasis during design of optical subsystem was placed on future commercial production and usability in the field, thus focused on manufacturability, robustness and reduction of complexity. The optical subsystem was reduced down to 6 aspherical elements, of which one caries the spherical diffraction grating. The use of spherical grating improved manufacturability but introduced aberrations, which were not fully compensated by limited amount of optical elements. The final optomechanical design has an envelope of a 230×80×80 mm. A length of the optical subsystem is 160 mm.
{"title":"Optical design of the RODES hyperspectral LWIR imager","authors":"J. Václavík, M. Veselý, R. Dolecek","doi":"10.1117/12.2547353","DOIUrl":"https://doi.org/10.1117/12.2547353","url":null,"abstract":"Demonstrator of remote sensing system based on an uncooled LWIR hyperspectral imager was designed. This paper describes design of its optical part which is a hyperspectral imager in a spectral range of 7.5-12 um with a 40°×20° field of view. The hyperspectral imaging system is push-broom type based on an imaging spectrometer with transmission grating. Emphasis during design of optical subsystem was placed on future commercial production and usability in the field, thus focused on manufacturability, robustness and reduction of complexity. The optical subsystem was reduced down to 6 aspherical elements, of which one caries the spherical diffraction grating. The use of spherical grating improved manufacturability but introduced aberrations, which were not fully compensated by limited amount of optical elements. The final optomechanical design has an envelope of a 230×80×80 mm. A length of the optical subsystem is 160 mm.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121017717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Measurement of large or aspheric optical surfaces shape as single aperture using interferometry is problematic due multiple reasons. Typical problem is numerical aperture limitation of the interferometer transmission element. Aspheric surfaces are also problematic due a significant shape deviation from the illumination wavefront. This deviation typically causes vignetting and spatial aliasing on the camera. A solution is sub-aperture measurement and subsequent subaperture stitching. A stitching algorithm in principle uses overlaps between sub-apertures to eliminate aberrations of each sub-aperture to obtain a full-aperture for further analysis. This process is computation time demanding and an optimization has to be implemented in order to obtain result in reasonable time. In this paper, descriptions of considered aberrations using Zernike polynomials are presented and the stitching method based on linear equation system is proposed and it is mathematically described. The method was practically tested with real data measured on spherical surfaces using QED ASI and the results are presented. Stitching quality was quantified for results and compared to other stitching methods.
{"title":"Sub-aperture stitching computation time optimization using linear equations system","authors":"M. Stašík","doi":"10.1117/12.2542000","DOIUrl":"https://doi.org/10.1117/12.2542000","url":null,"abstract":"Measurement of large or aspheric optical surfaces shape as single aperture using interferometry is problematic due multiple reasons. Typical problem is numerical aperture limitation of the interferometer transmission element. Aspheric surfaces are also problematic due a significant shape deviation from the illumination wavefront. This deviation typically causes vignetting and spatial aliasing on the camera. A solution is sub-aperture measurement and subsequent subaperture stitching. A stitching algorithm in principle uses overlaps between sub-apertures to eliminate aberrations of each sub-aperture to obtain a full-aperture for further analysis. This process is computation time demanding and an optimization has to be implemented in order to obtain result in reasonable time. In this paper, descriptions of considered aberrations using Zernike polynomials are presented and the stitching method based on linear equation system is proposed and it is mathematically described. The method was practically tested with real data measured on spherical surfaces using QED ASI and the results are presented. Stitching quality was quantified for results and compared to other stitching methods.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129914397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Macúchová, J. Brajer, Emil Černý, Jan Heřmánek, J. Kaufman, M. Mureșan, Martina Řeháková, T. Mocek
Laser beam distribution system is a complex system allowing safe and precise delivery of laser beams. The new generation of HiLASE high energy diode-pumped solid state laser systems with high repetition rates requires advanced approach, which makes design of the distribution system a state-of-the-art challenge. The distribution system delivers four different laser beams multiway from laboratories to several experimental stations. We report results in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. We use modular framing that allows gradual modification and flexible change of the distribution according to current laboratory needs. The system is extendable and has already proven performance.
{"title":"Modular laser beam distribution system for the HiLASE Center","authors":"K. Macúchová, J. Brajer, Emil Černý, Jan Heřmánek, J. Kaufman, M. Mureșan, Martina Řeháková, T. Mocek","doi":"10.1117/12.2542519","DOIUrl":"https://doi.org/10.1117/12.2542519","url":null,"abstract":"Laser beam distribution system is a complex system allowing safe and precise delivery of laser beams. The new generation of HiLASE high energy diode-pumped solid state laser systems with high repetition rates requires advanced approach, which makes design of the distribution system a state-of-the-art challenge. The distribution system delivers four different laser beams multiway from laboratories to several experimental stations. We report results in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. We use modular framing that allows gradual modification and flexible change of the distribution according to current laboratory needs. The system is extendable and has already proven performance.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125671670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gheorghe Huţiu, Virgil-Florin Duma, D. Demian, Alexandru-Lucian Dimb, Ralph-Alexandru Erdelyi, A. Bradu, A. Podoleanu
Metals can break either in a ductile or brittle manner if a static or dynamic load is applied to the same material. This depends on a variety of factors, such as the manner in which the load is applied, the shape of the mechanical part, the operating conditions, the nature and structure of the metallic material, and the working temperature. If subjected to variable loads, metallic materials break due to what is called fatigue. The microscopic analysis of fracture surfaces is currently carried out by using scanning electron microscopy (SEM). We have proposed, for the first time to our knowledge, a new method to analyze fracture surfaces, using a low coherence interferometry technique, Optical Coherence Tomography (OCT) [Gh. Hutiu, V.-F. Duma, et al., Surface imaging of metallic material fractures using optical coherence tomography, Appl. Opt. 53, 5912-5916 (2014); Gh. Hutiu, V.-F. Duma, et al., Assessment of ductile, brittle, and fatigue fractures of metals using optical coherence tomography, Metals 8, 117 (2018)]. The present paper presents the way we have demonstrated that OCT can replace the gold standard in such assessments, i.e. SEM, despite the fact that OCT has a resolution of 20 to 4 μm (in our investigations), while the SEM we employed has a 4 to 2 nm resolution. A few examples are given in this respect–for different types of fractures. The advantages of OCT versus SEM are discussed. This development opens the way for in situ investigations, for example in forensic sciences, where OCT can be applied (including with handheld scanning probes. as we have developed). In contrast, SEM, TEM, and AFM are lab-based techniques, more expensive, and they require trained operators.
{"title":"Metallic fractures assessments: OCT versus SEM","authors":"Gheorghe Huţiu, Virgil-Florin Duma, D. Demian, Alexandru-Lucian Dimb, Ralph-Alexandru Erdelyi, A. Bradu, A. Podoleanu","doi":"10.1117/12.2542917","DOIUrl":"https://doi.org/10.1117/12.2542917","url":null,"abstract":"Metals can break either in a ductile or brittle manner if a static or dynamic load is applied to the same material. This depends on a variety of factors, such as the manner in which the load is applied, the shape of the mechanical part, the operating conditions, the nature and structure of the metallic material, and the working temperature. If subjected to variable loads, metallic materials break due to what is called fatigue. The microscopic analysis of fracture surfaces is currently carried out by using scanning electron microscopy (SEM). We have proposed, for the first time to our knowledge, a new method to analyze fracture surfaces, using a low coherence interferometry technique, Optical Coherence Tomography (OCT) [Gh. Hutiu, V.-F. Duma, et al., Surface imaging of metallic material fractures using optical coherence tomography, Appl. Opt. 53, 5912-5916 (2014); Gh. Hutiu, V.-F. Duma, et al., Assessment of ductile, brittle, and fatigue fractures of metals using optical coherence tomography, Metals 8, 117 (2018)]. The present paper presents the way we have demonstrated that OCT can replace the gold standard in such assessments, i.e. SEM, despite the fact that OCT has a resolution of 20 to 4 μm (in our investigations), while the SEM we employed has a 4 to 2 nm resolution. A few examples are given in this respect–for different types of fractures. The advantages of OCT versus SEM are discussed. This development opens the way for in situ investigations, for example in forensic sciences, where OCT can be applied (including with handheld scanning probes. as we have developed). In contrast, SEM, TEM, and AFM are lab-based techniques, more expensive, and they require trained operators.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131580064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coherence scanning interferometry (CSI) is a precise and versatile method to measure the shape of objects with rough and smooth surface. However, this method requires a large amount of raw data. The demands on increasing measurement speed and camera resolution require to reduce the number of camera frames. We present an evaluation technique that allows a direct reconstruction of the interferograms envelope. An octadical wave plate is inserted into the reference arm of the interferometer. Thus two signals arise, each for one polarization state, that are shifted by 90 degrees to each other. From the two signals, a direct reconstruction of the interferograms envelope is possible.
{"title":"Coherence scanning interferometry with two polarization states","authors":"Pavel Pavlíček, J. Kučera, N. Hagen, Y. Otani","doi":"10.1117/12.2542811","DOIUrl":"https://doi.org/10.1117/12.2542811","url":null,"abstract":"Coherence scanning interferometry (CSI) is a precise and versatile method to measure the shape of objects with rough and smooth surface. However, this method requires a large amount of raw data. The demands on increasing measurement speed and camera resolution require to reduce the number of camera frames. We present an evaluation technique that allows a direct reconstruction of the interferograms envelope. An octadical wave plate is inserted into the reference arm of the interferometer. Thus two signals arise, each for one polarization state, that are shifted by 90 degrees to each other. From the two signals, a direct reconstruction of the interferograms envelope is possible.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129854155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Rail, P. Pintr, T. Thoř, David Vápenka, Z. Melich
This paper informs about a construction of an all-spherical Cassegrain telescope with a two lens Volosov corrector. The entrance doublet of the Volosov corrector radically corrects the residual optical aberrations of the system and makes possible the attainment of high quality of images across the field of view of up to 2˚ within the whole visual spectral branch. One optical set of the system was manufactured in the IPP AV CR v.v.i – TOPTEC Center in Turnov in 2005. Its entrance diameter was 280 mm and focal length approximately 2450 mm.
本文介绍了一种带有双透镜伏罗索夫校正器的全球面卡塞格伦望远镜的构造。Volosov校正器的入口双透镜从根本上校正了系统的残余光学像差,使得在整个可视光谱分支内获得高达2˚的高质量图像成为可能。该系统的一套光学系统于2005年在托尔夫的IPP AV CR v.v.i - TOPTEC中心制造。其入口直径为280 mm,焦距约为2450 mm。
{"title":"All-spherical Cassegrain telescope with a Volosov corrector","authors":"Z. Rail, P. Pintr, T. Thoř, David Vápenka, Z. Melich","doi":"10.1117/12.2542703","DOIUrl":"https://doi.org/10.1117/12.2542703","url":null,"abstract":"This paper informs about a construction of an all-spherical Cassegrain telescope with a two lens Volosov corrector. The entrance doublet of the Volosov corrector radically corrects the residual optical aberrations of the system and makes possible the attainment of high quality of images across the field of view of up to 2˚ within the whole visual spectral branch. One optical set of the system was manufactured in the IPP AV CR v.v.i – TOPTEC Center in Turnov in 2005. Its entrance diameter was 280 mm and focal length approximately 2450 mm.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132144746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Psota, Haimi Tang, K. Pooladvand, V. Ledl, C. Furlong, J. Rosowski, J. Cheng
The shape of the tympanic membrane (TM) plays an important role in sound transmission through the ear for hearing. Previously we developed a high-speed holographic system employing tunable wavelength laser for rapid TM shape measurement. However, the tunable laser illumination is not sufficient to measure the shape of the unpainted TM due to semi-transparency of the TM and short exposure time of the camera. This paper presents a new multiple angle illumination technique that allows us to use a single wavelength higher power laser to perform the shape measurement on the unpainted TM. We successfully applied the new shape measurement method on a fresh postmortem human TM without any paint.
{"title":"Investigation of tympanic membrane shape using digital holography","authors":"P. Psota, Haimi Tang, K. Pooladvand, V. Ledl, C. Furlong, J. Rosowski, J. Cheng","doi":"10.1117/12.2547924","DOIUrl":"https://doi.org/10.1117/12.2547924","url":null,"abstract":"The shape of the tympanic membrane (TM) plays an important role in sound transmission through the ear for hearing. Previously we developed a high-speed holographic system employing tunable wavelength laser for rapid TM shape measurement. However, the tunable laser illumination is not sufficient to measure the shape of the unpainted TM due to semi-transparency of the TM and short exposure time of the camera. This paper presents a new multiple angle illumination technique that allows us to use a single wavelength higher power laser to perform the shape measurement on the unpainted TM. We successfully applied the new shape measurement method on a fresh postmortem human TM without any paint.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122399909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Risley prisms are utilized in a variety of applications, including precision pointing and scanning, interferometry, holography, polarimetry, and light attenuation. Laser scanning with such systems is fast, but the generated scan patterns are complicated. Analytical methods to determine them are rather difficult, while approximate methods do not provide exact patterns. While we point out these issues, the present study is built on a new, graphical method that, to our knowledge, we have introduced [V.-F. Duma, A. Schitea, Laser scanners with rotational Risley prisms: Exact scan patterns, Proc. of the Romanian Acad. Series A 19, 53-60, 2018] to obtain scan patterns produced by Risley prisms. A commercially available mechanical design program, CATIA V5R20 (Dassault Systèmes, Paris, France) has been used to perform the ray tracing, using the prisms equations, for all four possible configurations of laser scanners with a pair of rotational Risley prisms. One of these four configurations is considered in this study, to present the developed method. A deviation angle of 2° for the optical wedges is considered in this study. A brief comparison between the obtained exact scan patterns is made for different values of the parameter M (introduced by Marshall), which represents the ratio of the rotational speeds of the two prisms. The study also presents the cartesian coordinates of the points which define the trajectory of the laser spot on a scanned plane. Advantages of using the graphical method as well as its perspectives are pointed out.
{"title":"Graphical method to determine exact scan patterns generated with rotational Risley prisms","authors":"Alexandru-Lucian Dimb, Virgil-Florin Duma","doi":"10.1117/12.2542546","DOIUrl":"https://doi.org/10.1117/12.2542546","url":null,"abstract":"Risley prisms are utilized in a variety of applications, including precision pointing and scanning, interferometry, holography, polarimetry, and light attenuation. Laser scanning with such systems is fast, but the generated scan patterns are complicated. Analytical methods to determine them are rather difficult, while approximate methods do not provide exact patterns. While we point out these issues, the present study is built on a new, graphical method that, to our knowledge, we have introduced [V.-F. Duma, A. Schitea, Laser scanners with rotational Risley prisms: Exact scan patterns, Proc. of the Romanian Acad. Series A 19, 53-60, 2018] to obtain scan patterns produced by Risley prisms. A commercially available mechanical design program, CATIA V5R20 (Dassault Systèmes, Paris, France) has been used to perform the ray tracing, using the prisms equations, for all four possible configurations of laser scanners with a pair of rotational Risley prisms. One of these four configurations is considered in this study, to present the developed method. A deviation angle of 2° for the optical wedges is considered in this study. A brief comparison between the obtained exact scan patterns is made for different values of the parameter M (introduced by Marshall), which represents the ratio of the rotational speeds of the two prisms. The study also presents the cartesian coordinates of the points which define the trajectory of the laser spot on a scanned plane. Advantages of using the graphical method as well as its perspectives are pointed out.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"15 20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133040186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid-state lasers are broadly used in various applications. The most common gain medium is neodymium-doped yttrium aluminum garnet (Nd:YAG). Very important parameters are angle between polished face surfaces and result wave-front deformation. These parameters are usually measured with two different methods. The paper presents a procedure for measurements of the parameters in a single measurement sequence using Fourier transform phase-shifting interferometry. The results are figures of both optical surfaces, and their mutual position, wave-front deformation, and homogeneity of refractive index. Based on the knowledge of these parameters can be done precise correction of resulted wave-front and of the wedge by polishing of face surfaces. The presented method reduces manipulation with the elements is non-sensitive to the operator and allows more precise wavefront correction thanks to the knowledge of inhomogeneity of material.
{"title":"Laser rods characterization by Fourier transform phase-shifting interferometry","authors":"O. Matousek, F. Procháska, J. Kredba","doi":"10.1117/12.2547487","DOIUrl":"https://doi.org/10.1117/12.2547487","url":null,"abstract":"Solid-state lasers are broadly used in various applications. The most common gain medium is neodymium-doped yttrium aluminum garnet (Nd:YAG). Very important parameters are angle between polished face surfaces and result wave-front deformation. These parameters are usually measured with two different methods. The paper presents a procedure for measurements of the parameters in a single measurement sequence using Fourier transform phase-shifting interferometry. The results are figures of both optical surfaces, and their mutual position, wave-front deformation, and homogeneity of refractive index. Based on the knowledge of these parameters can be done precise correction of resulted wave-front and of the wedge by polishing of face surfaces. The presented method reduces manipulation with the elements is non-sensitive to the operator and allows more precise wavefront correction thanks to the knowledge of inhomogeneity of material.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127904436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}