The piston connecting rod is an indispensable in the internal structure of the automobile. As one of the important components in the internal combustion engine system, the piston connecting rod needs to meet the requirements of high fatigue and impact load resistance. Forged piston connecting rod can obtain high strength and fatigue resistance. In this study, the parting line, draft angle, forging tolerance, die fillet radius, shrinkage and scrap are considered in the design of forging die. The process parameters and die dimensions of the forging process of aluminum alloy piston rod are simulated by finite element analysis. The aluminum alloy piston rod with high dimensional accuracy is then forged according to the finite element simulation results.
{"title":"Die Design and Forging Analysis of Piston Connecting Rod of Aluminum Alloy","authors":"Tung Sheng Yang, Guan Yu Li, Zhe Yu Li, Jun Wei Li, Zhong Zhen Chen","doi":"10.4028/p-ay8g5t","DOIUrl":"https://doi.org/10.4028/p-ay8g5t","url":null,"abstract":"The piston connecting rod is an indispensable in the internal structure of the automobile. As one of the important components in the internal combustion engine system, the piston connecting rod needs to meet the requirements of high fatigue and impact load resistance. Forged piston connecting rod can obtain high strength and fatigue resistance. In this study, the parting line, draft angle, forging tolerance, die fillet radius, shrinkage and scrap are considered in the design of forging die. The process parameters and die dimensions of the forging process of aluminum alloy piston rod are simulated by finite element analysis. The aluminum alloy piston rod with high dimensional accuracy is then forged according to the finite element simulation results.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"51 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering Tribology, Processing and Modeling","authors":"Yunn Lin Hwang, Thangaprakash Sengodan","doi":"10.4028/b-jw3nji","DOIUrl":"https://doi.org/10.4028/b-jw3nji","url":null,"abstract":"","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"25 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Djamila Derbal, M. Bouzit, Abderrahim Mokhefi, Fayçal Bouzit
The numerical work presented in this paper focuses on the influence of the magnetic field and the nanoparticles metallic nature on the hydrodynamic and thermal behavior of a nanofluid flowing in an extended curved duct. It deals with a semi-toroidal curved duct with an expanded circular section. The narrowed part of this duct from which the nanofluid enters with a cold temperature, is considered to be thermally insulated. However, the extended part is kept at a constant hot temperature. The nanoparticles used in the present study respectively are Alumina (Al2O3), copper oxide (CuO) and iron trioxide (Fe3O4). In this study, the effects of inertia, buoyancy and Lorentz forces as well as the metallic nature of the nanoparticles suspended in the pure water have been highlighted on the thermal, hydrodynamic and economic levels. The study is based on the resolution of the classical monophasic equations governing the non-isothermal flow of nanofluids by the use of finite element method, namely: the mass, momentum and energy equations. The obtained results have shown that the buoyancy and inertia forces strongly favor the global heat exchange rate. Moreover, the magnetic force acts negatively on these thermal exchanges. Furthermore, the CuO nanoparticles have demonstrated a better heat transfer rate, approximately 7% higher than that of pure water. Nevertheless, according to the economic needs, we suggest we suggest using alumina nanoparticles, as their transfer rate is comparable to that of CuO nanoparticles. It should be noted, that this study provides important insights for many industrial applications where the curved ducts are strongly presented.
{"title":"Numerical Investigation of the Magnetohydrodynamic Mixed Convection inside an Extended Curved Duct in the Presence of a Nanofluid of Different Metallic Oxides Nanoparticles","authors":"Djamila Derbal, M. Bouzit, Abderrahim Mokhefi, Fayçal Bouzit","doi":"10.4028/p-f3jucr","DOIUrl":"https://doi.org/10.4028/p-f3jucr","url":null,"abstract":"The numerical work presented in this paper focuses on the influence of the magnetic field and the nanoparticles metallic nature on the hydrodynamic and thermal behavior of a nanofluid flowing in an extended curved duct. It deals with a semi-toroidal curved duct with an expanded circular section. The narrowed part of this duct from which the nanofluid enters with a cold temperature, is considered to be thermally insulated. However, the extended part is kept at a constant hot temperature. The nanoparticles used in the present study respectively are Alumina (Al2O3), copper oxide (CuO) and iron trioxide (Fe3O4). In this study, the effects of inertia, buoyancy and Lorentz forces as well as the metallic nature of the nanoparticles suspended in the pure water have been highlighted on the thermal, hydrodynamic and economic levels. The study is based on the resolution of the classical monophasic equations governing the non-isothermal flow of nanofluids by the use of finite element method, namely: the mass, momentum and energy equations. The obtained results have shown that the buoyancy and inertia forces strongly favor the global heat exchange rate. Moreover, the magnetic force acts negatively on these thermal exchanges. Furthermore, the CuO nanoparticles have demonstrated a better heat transfer rate, approximately 7% higher than that of pure water. Nevertheless, according to the economic needs, we suggest we suggest using alumina nanoparticles, as their transfer rate is comparable to that of CuO nanoparticles. It should be noted, that this study provides important insights for many industrial applications where the curved ducts are strongly presented.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"14 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In mechanical equipment interacting with impingement particles, worn surface morphology of parts and components is formed by an accumulative action of a large number of single-particle erosions. To exhibit the mechanism of multi-particle erosion of target, three physical experiments and Discrete Element Method (DEM) simulations of erosion of iron target by the two vertical impingements of Al2O3 particle are carried out under three different landing errors x of the two impingements. The experimental results showed that each of two overlapping worn morphologies by the two impingements has an spherical cap shape. When x is larger than radius R1 of worn morphology of target by the first erosion, two morphologies with an spherical cap shape are very close in size; while the size of worn morphology by the second erosion increases with the decrease of x, when x is smaller than R1. The predicting worn morphologies by DEM are almost consistent with the experimental results, where the maximum relative deviation in size of worn morphology is 2.98% in the direction along x, and is 3.93% in the direction perpendicular to x. All these proved the effectiveness of the DEM model in predicting erosion of target by two impingements of particle.
在与撞击颗粒相互作用的机械设备中,零部件的磨损表面形态是由大量单颗粒侵蚀的累积作用形成的。为了展示靶材的多粒子侵蚀机理,我们在两个 Al2O3 粒子的三个不同着陆误差 x 下,对铁靶材受到两个垂直撞击的侵蚀情况进行了三次物理实验和离散元法(DEM)模拟。实验结果表明,两次撞击产生的两种重叠磨损形态均为球形帽状。当 x 大于第一次侵蚀对靶件磨损形貌的半径 R1 时,两个球帽形貌的大小非常接近;而当 x 小于 R1 时,第二次侵蚀对靶件磨损形貌的大小随 x 的减小而增大。用 DEM 预测的磨损形态与实验结果基本一致,在沿 x 的方向上,磨损形态尺寸的最大相对偏差为 2.98%,而在垂直于 x 的方向上,磨损形态尺寸的最大相对偏差为 3.93%。
{"title":"Physical Experiments and DEM Simulations for Erosion of Iron Target by Two Impingements of Al2O3 Particle with Impingement Angles of Double 90º","authors":"Zi Qiang Fang, Song Lin Peng","doi":"10.4028/p-4grgiz","DOIUrl":"https://doi.org/10.4028/p-4grgiz","url":null,"abstract":"In mechanical equipment interacting with impingement particles, worn surface morphology of parts and components is formed by an accumulative action of a large number of single-particle erosions. To exhibit the mechanism of multi-particle erosion of target, three physical experiments and Discrete Element Method (DEM) simulations of erosion of iron target by the two vertical impingements of Al2O3 particle are carried out under three different landing errors x of the two impingements. The experimental results showed that each of two overlapping worn morphologies by the two impingements has an spherical cap shape. When x is larger than radius R1 of worn morphology of target by the first erosion, two morphologies with an spherical cap shape are very close in size; while the size of worn morphology by the second erosion increases with the decrease of x, when x is smaller than R1. The predicting worn morphologies by DEM are almost consistent with the experimental results, where the maximum relative deviation in size of worn morphology is 2.98% in the direction along x, and is 3.93% in the direction perpendicular to x. All these proved the effectiveness of the DEM model in predicting erosion of target by two impingements of particle.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"10 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volodymyr V. Kukhar, Oleg Vasylevskyi, Khrystyna Malii, Vadim Zurnadzhy, Bohdan Efremenko, Ivan Sili
Due to the operating conditions of weld and calibrating rolls used in the production processes of large electric-welded pipes, their material is subject to stringent wear and abrasion resistance requirements at high temperatures. The limited capabilities of conventional Cr-Mn-Ni tool steels and open die forging technologies with heat treatment processes do not provide the required performance properties for large welded rolls. Therefore, the material of the product was replaced with Cr12MoV high-chromium steel. This required identifying the formation patterns of the fine grain structure of high-chromium steel in order to adjust the production technology with adaptation to the unique conditions and equipment (12.5 MN hydraulic forging press, heating and thermal furnaces) of the forging shop. The technology was offered, which included the development of modes from heating to heat treatment with intermediate two-stage forging from Cr12MoV steel ingots in two sets of combined dies. At the first stage, deformation with a low reduction ratio ε = 5% and a relative feed rate of 0.4 per pass was provided to break and refine the carbide mesh, and at the second stage, intense deformation with a reduction ratio ε = 15% was performed. Further practical application has shown that the durability of weld rolls made from the new material increases by 20–30%.
{"title":"Development of Manufacturing Process for High-Chromium Steel Large Welding Roll","authors":"Volodymyr V. Kukhar, Oleg Vasylevskyi, Khrystyna Malii, Vadim Zurnadzhy, Bohdan Efremenko, Ivan Sili","doi":"10.4028/p-s55ows","DOIUrl":"https://doi.org/10.4028/p-s55ows","url":null,"abstract":"Due to the operating conditions of weld and calibrating rolls used in the production processes of large electric-welded pipes, their material is subject to stringent wear and abrasion resistance requirements at high temperatures. The limited capabilities of conventional Cr-Mn-Ni tool steels and open die forging technologies with heat treatment processes do not provide the required performance properties for large welded rolls. Therefore, the material of the product was replaced with Cr12MoV high-chromium steel. This required identifying the formation patterns of the fine grain structure of high-chromium steel in order to adjust the production technology with adaptation to the unique conditions and equipment (12.5 MN hydraulic forging press, heating and thermal furnaces) of the forging shop. The technology was offered, which included the development of modes from heating to heat treatment with intermediate two-stage forging from Cr12MoV steel ingots in two sets of combined dies. At the first stage, deformation with a low reduction ratio ε = 5% and a relative feed rate of 0.4 per pass was provided to break and refine the carbide mesh, and at the second stage, intense deformation with a reduction ratio ε = 15% was performed. Further practical application has shown that the durability of weld rolls made from the new material increases by 20–30%.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"44 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research aims to investigate the properties of elastohydrodynamic rotational lubrication analysis on journal-bearing systems. To simulate elastohydrodynamic lubrication on journal-bearing systems, the Elasto-Hydro-Dynamic (EHD) solver is combined with the Multi-Body Dynamic (MBD) solver to create MBD virtual environment with lubricant. The hydrodynamic lubricant is governed by using the Reynolds equation, whereas the elastic contact is governed using Greenwood and Tripp theories. The simulation is performed by changing the operating conditions such as the speed, load, and clearance between two surfaces. One can find these parameters’ effects such as film thickness, hydrodynamic pressure, and friction. The result shows that the friction induced by shaft speed is similar to the Stribeck curve on mixed lubrication regime. Consequently, the clearance, speed, and load will not only affect the friction but also affect the hydrodynamic pressure and film thickness.
{"title":"Elastohydrodynamic Rotational Lubrication Analysis on the Multi-Body Dynamic Properties of Journal-Bearing Systems","authors":"Yunn Lin Hwang, Adhitya Adhitya","doi":"10.4028/p-ptk9sd","DOIUrl":"https://doi.org/10.4028/p-ptk9sd","url":null,"abstract":"This research aims to investigate the properties of elastohydrodynamic rotational lubrication analysis on journal-bearing systems. To simulate elastohydrodynamic lubrication on journal-bearing systems, the Elasto-Hydro-Dynamic (EHD) solver is combined with the Multi-Body Dynamic (MBD) solver to create MBD virtual environment with lubricant. The hydrodynamic lubricant is governed by using the Reynolds equation, whereas the elastic contact is governed using Greenwood and Tripp theories. The simulation is performed by changing the operating conditions such as the speed, load, and clearance between two surfaces. One can find these parameters’ effects such as film thickness, hydrodynamic pressure, and friction. The result shows that the friction induced by shaft speed is similar to the Stribeck curve on mixed lubrication regime. Consequently, the clearance, speed, and load will not only affect the friction but also affect the hydrodynamic pressure and film thickness.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aluminum 5754 alloy is one of the widely used engineering materials in shipping, rivet making, tread plates and automotive industries. These engineering structures envisage variable loading conditions during their service. In addition to it, it is also experiencing seismic vibrations. Hence, the engineering components made from such aluminum alloy are susceptible to fatigue fracture. In the current study, the prediction of fatigue crack growth (FCG) in 5754 aluminum alloy was made using the exponential function. The beam specimen comes up with a cross-section of 25X25 mm2, a span length of 300 mm with a mechanical notch length of 2.70 mm at the centre was subjected to four-point bending (FPB) employing hydraulic INSTRON 8800 tensile testing apparatus. The periodic loading condition deformed the material up to large plastic deformation. The applied load was further down the elasticity of the material. The experimental data provided the relation between crack length (a) to the number of cycles (N) to failure. The response surface methodology (RSM) and modified exponential equation were used to predict the FCG. In RSM, when “stress intensity factor (K)” and “number of the cycle (N)" were considered independent variables, the response (a) was optimum (maximum) as compared to when “stress intensity factor range (del K)” and “fatigue crack growth rate (da/dN)” were considered independent variables. Hence, for designing the aluminum 5754 alloys as engineering structures, it was the number of cycles which provides a safe design as compared to da/dN. The modified exponential equation using an exponential function predicted the FCG for aluminum 5754 alloy in the form of a beam specimen. The anticipated results agreed with experimental data as the prediction ratio was 1.20 and the % deviation was 3.7.
{"title":"Fatigue Crack Propagation in 5754 Aluminum Alloy under Four-Point Bending","authors":"M. Makhatha, Pawan Kumar, D.A. Baruwa","doi":"10.4028/p-bzqd89","DOIUrl":"https://doi.org/10.4028/p-bzqd89","url":null,"abstract":"The aluminum 5754 alloy is one of the widely used engineering materials in shipping, rivet making, tread plates and automotive industries. These engineering structures envisage variable loading conditions during their service. In addition to it, it is also experiencing seismic vibrations. Hence, the engineering components made from such aluminum alloy are susceptible to fatigue fracture. In the current study, the prediction of fatigue crack growth (FCG) in 5754 aluminum alloy was made using the exponential function. The beam specimen comes up with a cross-section of 25X25 mm2, a span length of 300 mm with a mechanical notch length of 2.70 mm at the centre was subjected to four-point bending (FPB) employing hydraulic INSTRON 8800 tensile testing apparatus. The periodic loading condition deformed the material up to large plastic deformation. The applied load was further down the elasticity of the material. The experimental data provided the relation between crack length (a) to the number of cycles (N) to failure. The response surface methodology (RSM) and modified exponential equation were used to predict the FCG. In RSM, when “stress intensity factor (K)” and “number of the cycle (N)\" were considered independent variables, the response (a) was optimum (maximum) as compared to when “stress intensity factor range (del K)” and “fatigue crack growth rate (da/dN)” were considered independent variables. Hence, for designing the aluminum 5754 alloys as engineering structures, it was the number of cycles which provides a safe design as compared to da/dN. The modified exponential equation using an exponential function predicted the FCG for aluminum 5754 alloy in the form of a beam specimen. The anticipated results agreed with experimental data as the prediction ratio was 1.20 and the % deviation was 3.7.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"80 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, NaBi(MoO4)2 (NBM) phosphor has been successfully synthesized by doping 1.0 mol% of Eu3+ via the conventional solid state reaction technique. The undoped synthesized NBM sample and 1.0 mol% Eu3+ doped phosphor were characterized to explore crystal structure, morphology, photoluminescence (PL) and colorimetric properties using various characterization techniques. The structural properties were analysed via x-ray diffraction and diffraction peaks were compared with the standard JCPDS (card no. 79-2240) pattern. The morphological studies of the sample have been done through FE-SEM micrograph. From the photoluminescence emission spectra, it has been observed that an intense peak was obtained in the at 615 nm under blue excitation. Colorimetric property of 1.0 mol% of Eu3+ doped NBM phosphor has been investigated and traced in the red region with high color purity of 92.79%. The aforementioned characteristics demonstrate that the NaBi(MoO4)2: 1.0Eu3+ phosphor has great potential in the field of w-LED applications.
{"title":"Investigation of Structural, Morphological and Luminescent Features of Eu3+ Activated Molybdate Based Phosphor for W-LED Applications","authors":"Pranjali Sharma, Muskan Kaushik, M. Jayasimhadri","doi":"10.4028/p-bpqeg3","DOIUrl":"https://doi.org/10.4028/p-bpqeg3","url":null,"abstract":"In the present work, NaBi(MoO4)2 (NBM) phosphor has been successfully synthesized by doping 1.0 mol% of Eu3+ via the conventional solid state reaction technique. The undoped synthesized NBM sample and 1.0 mol% Eu3+ doped phosphor were characterized to explore crystal structure, morphology, photoluminescence (PL) and colorimetric properties using various characterization techniques. The structural properties were analysed via x-ray diffraction and diffraction peaks were compared with the standard JCPDS (card no. 79-2240) pattern. The morphological studies of the sample have been done through FE-SEM micrograph. From the photoluminescence emission spectra, it has been observed that an intense peak was obtained in the at 615 nm under blue excitation. Colorimetric property of 1.0 mol% of Eu3+ doped NBM phosphor has been investigated and traced in the red region with high color purity of 92.79%. The aforementioned characteristics demonstrate that the NaBi(MoO4)2: 1.0Eu3+ phosphor has great potential in the field of w-LED applications.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuh-Ping Chang, H. Wang, Li-Ming Chu, C. Liu, Cheng Chieh Yang
In view of the fact that the load on the transmission element under extreme pressure conditions is much greater than that used in traditional machine tools, the contact surface between the ball and the track must bear great stress. Furthermore, it will heat up due to friction after starting and running. These effects are prone to material deformation and fatigue damage, and may even lead to the disappearance of the lubricating oil film. They are prone to surface damage due to metal fatigue, and then a serious situation of large pieces of peeling occurs for the linear guides. In order to prolong the fatigue life of the machine tools, this study investigates the effects of the lubricants on the tribology properties under the extreme pressure for the induction-treated linear guides.
{"title":"Effects of the Lubricants on the Tribology Properties under the Extreme Pressure for the Induction-Treated Linear Guides","authors":"Yuh-Ping Chang, H. Wang, Li-Ming Chu, C. Liu, Cheng Chieh Yang","doi":"10.4028/p-euwym0","DOIUrl":"https://doi.org/10.4028/p-euwym0","url":null,"abstract":"In view of the fact that the load on the transmission element under extreme pressure conditions is much greater than that used in traditional machine tools, the contact surface between the ball and the track must bear great stress. Furthermore, it will heat up due to friction after starting and running. These effects are prone to material deformation and fatigue damage, and may even lead to the disappearance of the lubricating oil film. They are prone to surface damage due to metal fatigue, and then a serious situation of large pieces of peeling occurs for the linear guides. In order to prolong the fatigue life of the machine tools, this study investigates the effects of the lubricants on the tribology properties under the extreme pressure for the induction-treated linear guides.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"58 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To understand the nano phase formation, cooling experiments of a hypereutectic Zn-Al alloy containing 6 wt% of Al are carried out under two different cooling rates of 0.04 and 10.00 °C/s. The applied cooling rates significantly influence the phase change behavior of the investigated alloy. The liquidus temperature (TN) for the nucleation of the primary phase decreases from 390.3 to 382.9 °C, and the undercooling increases from 0.7 to 8.1 °C, as the cooling rate rises from 0.04 to 10 °C/s. The eutectic and eutectoid temperatures decrease from 381.5, 277.7 to 375.6 and 267.6 °C, respectively, when the cooling rate increases from 0.04 to 10.00 °C/s. The SEM and EDS analyses reveal that the solidified alloy contains the primary γ-ZnAl phase, the eutectic β-Zn phase, and the eutectoid α-Al and eutectoid β-Zn phases. The fast phase change and transformation caused by rapid cooling results in the formation of nano eutectoid phases and fine microstructure.
{"title":"Cooling Effect on Nano Eutectoid Phase Formation of Hypereutectic Zn-Al Alloy","authors":"A. Hu, Henry Hu, Xingyuan Wei, X. Nie","doi":"10.4028/p-Nse4Xi","DOIUrl":"https://doi.org/10.4028/p-Nse4Xi","url":null,"abstract":"To understand the nano phase formation, cooling experiments of a hypereutectic Zn-Al alloy containing 6 wt% of Al are carried out under two different cooling rates of 0.04 and 10.00 °C/s. The applied cooling rates significantly influence the phase change behavior of the investigated alloy. The liquidus temperature (TN) for the nucleation of the primary phase decreases from 390.3 to 382.9 °C, and the undercooling increases from 0.7 to 8.1 °C, as the cooling rate rises from 0.04 to 10 °C/s. The eutectic and eutectoid temperatures decrease from 381.5, 277.7 to 375.6 and 267.6 °C, respectively, when the cooling rate increases from 0.04 to 10.00 °C/s. The SEM and EDS analyses reveal that the solidified alloy contains the primary γ-ZnAl phase, the eutectic β-Zn phase, and the eutectoid α-Al and eutectoid β-Zn phases. The fast phase change and transformation caused by rapid cooling results in the formation of nano eutectoid phases and fine microstructure.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"8 22","pages":"209 - 218"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138977152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}