Esteban Menares, Hugo Saíz, Noëlle Schenk, Enrique G. de la Riva, Jochen Krauss, Klaus Birkhofer
Biotic interactions are crucial for determining the structure and dynamics of communities; however, direct measurement of these interactions can be challenging in terms of time and resources, especially when numerous species are involved. Inferring species interactions from species co-occurrence patterns is increasingly being used; however, recent studies have highlighted some limitations. To our knowledge, no attempt has been made to test the accuracy of the existing methods for detecting mutualistic interactions in terrestrial ecosystems. In this study, we compiled two literature-based, long-term datasets of interactions between butterflies and herbaceous plant species in two regions of Germany and compared them with observational abundance and presence/absence data collected within a year in the same regions. We tested how well the species associations generated by three different co-occurrence analysis methods matched those of empirically measured mutualistic associations using sensitivity and specificity analyses and compared the strength of associations. We also checked whether flower abundance data (instead of plant abundance data) increased the accuracy of the co-occurrence models and validated our results using empirical flower visitation data. The results revealed that, although all methods exhibited low sensitivity, our implementation of the Relative Interaction Intensity index with pairwise null models performed the best, followed by the probabilistic method and Spearman's rank correlation method. However, empirical data showed a significant number of interactions that were not detected using co-occurrence methods. Incorporating flower abundance data did not improve sensitivity but enhanced specificity in one region. Further analysis demonstrated incongruence between the predicted co-occurrence associations and actual interaction strengths, with many pairs exhibiting high interaction strength but low co-occurrence or vice versa. These findings underscore the complexity of ecological dynamics and highlight the limitations of current co-occurrence methods for accurately capturing species interactions.
{"title":"Co-Occurrence Patterns Do Not Predict Mutualistic Interactions Between Plant and Butterfly Species","authors":"Esteban Menares, Hugo Saíz, Noëlle Schenk, Enrique G. de la Riva, Jochen Krauss, Klaus Birkhofer","doi":"10.1002/ece3.70498","DOIUrl":"https://doi.org/10.1002/ece3.70498","url":null,"abstract":"<p>Biotic interactions are crucial for determining the structure and dynamics of communities; however, direct measurement of these interactions can be challenging in terms of time and resources, especially when numerous species are involved. Inferring species interactions from species co-occurrence patterns is increasingly being used; however, recent studies have highlighted some limitations. To our knowledge, no attempt has been made to test the accuracy of the existing methods for detecting mutualistic interactions in terrestrial ecosystems. In this study, we compiled two literature-based, long-term datasets of interactions between butterflies and herbaceous plant species in two regions of Germany and compared them with observational abundance and presence/absence data collected within a year in the same regions. We tested how well the species associations generated by three different co-occurrence analysis methods matched those of empirically measured mutualistic associations using sensitivity and specificity analyses and compared the strength of associations. We also checked whether flower abundance data (instead of plant abundance data) increased the accuracy of the co-occurrence models and validated our results using empirical flower visitation data. The results revealed that, although all methods exhibited low sensitivity, our implementation of the Relative Interaction Intensity index with pairwise null models performed the best, followed by the probabilistic method and Spearman's rank correlation method. However, empirical data showed a significant number of interactions that were not detected using co-occurrence methods. Incorporating flower abundance data did not improve sensitivity but enhanced specificity in one region. Further analysis demonstrated incongruence between the predicted co-occurrence associations and actual interaction strengths, with many pairs exhibiting high interaction strength but low co-occurrence or vice versa. These findings underscore the complexity of ecological dynamics and highlight the limitations of current co-occurrence methods for accurately capturing species interactions.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding patterns of biodiversity change is essential as coral reefs experience recurrent cycles of disturbance and recovery. Shifts in the total cover and species composition of habitat-forming corals can have far-reaching consequences, including shifts in coral functional traits and impacts on local fish assemblages. We surveyed coral and fish assemblages along the southern coast of Hainan Island near Sanya, China, in 2006, 2010, and 2018, during a period with repeated mass bleaching events. We showed that coral biodiversity in this region is in a state of flux, with losses and gains in coral cover and an increase in species richness over time. Despite increasing species diversity, the region suffered a loss of coral trait diversity by 2010, with an incomplete recovery by 2018, owing to declines in species with key habitat-forming traits (e.g., high surface areas and fractal structure) such as corymbose corals. Concurrently, there was an increase in functional redundancy due to the proliferation of the dominant encrusting and massive corals. Coral cover was positively associated with the abundance of reef fish, indicating that the changes observed in coral abundance can impact reef-associated species. These results demonstrate that the slow recovery of coral biodiversity in southern Hainan Island has been hampered by the loss of specific coral traits and highlight the importance of protecting vulnerable coral traits in conservation and management strategies.
{"title":"Loss of Coral Trait Diversity and Impacts on Reef Fish Assemblages on Recovering Reefs","authors":"Lintao Huang, Mike McWilliam, Chengyue Liu, Xiaolei Yu, Lei Jiang, Chen Zhang, Yong Luo, Jianhui Yang, Xiangcheng Yuan, Jiansheng Lian, Hui Huang","doi":"10.1002/ece3.70510","DOIUrl":"https://doi.org/10.1002/ece3.70510","url":null,"abstract":"<p>Understanding patterns of biodiversity change is essential as coral reefs experience recurrent cycles of disturbance and recovery. Shifts in the total cover and species composition of habitat-forming corals can have far-reaching consequences, including shifts in coral functional traits and impacts on local fish assemblages. We surveyed coral and fish assemblages along the southern coast of Hainan Island near Sanya, China, in 2006, 2010, and 2018, during a period with repeated mass bleaching events. We showed that coral biodiversity in this region is in a state of flux, with losses and gains in coral cover and an increase in species richness over time. Despite increasing species diversity, the region suffered a loss of coral trait diversity by 2010, with an incomplete recovery by 2018, owing to declines in species with key habitat-forming traits (e.g., high surface areas and fractal structure) such as corymbose corals. Concurrently, there was an increase in functional redundancy due to the proliferation of the dominant encrusting and massive corals. Coral cover was positively associated with the abundance of reef fish, indicating that the changes observed in coral abundance can impact reef-associated species. These results demonstrate that the slow recovery of coral biodiversity in southern Hainan Island has been hampered by the loss of specific coral traits and highlight the importance of protecting vulnerable coral traits in conservation and management strategies.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica J. Williams, Tim Newbold, Joseph Millard, Vivienne P. Groner, Richard G. Pearson
Animal-mediated pollination is a key ecosystem service required to some extent by almost three-quarters of the leading human food crops in global food production. Anthropogenic pressures such as habitat loss and land-use intensification are causing shifts in ecological community composition, potentially resulting in declines in pollination services and impacting crop production. Previous research has often overlooked interspecific differences in pollination contribution, yet such differences mean that biodiversity declines will not necessarily negatively impact pollination. Here, we use a novel species-level ecosystem service contribution matrix along with mixed-effects models to explore how groups of terrestrial species who contribute differently to crop pollination respond globally to land-use type, land-use intensity, and availability of natural habitats in the surrounding landscape. We find that the species whose contribution to crop pollination is higher generally respond less negatively (and in some cases positively) to human disturbance of land, compared to species that contribute less or not at all to pollination. This result may be due to these high-contribution species being less sensitive to anthropogenic land conversions, which has led humans to being more reliant on them for crop pollination. However, it also suggests that there is potential for crop pollination to be resilient in the face of anthropogenic land conversions. With such a high proportion of food crops requiring animal-mediated pollination to some extent, understanding how anthropogenic landscapes impact ecological communities and the consequences for pollination is critical for ensuring food security.
{"title":"Important Crop Pollinators Respond Less Negatively to Anthropogenic Land Use Than Other Animals","authors":"Jessica J. Williams, Tim Newbold, Joseph Millard, Vivienne P. Groner, Richard G. Pearson","doi":"10.1002/ece3.70486","DOIUrl":"https://doi.org/10.1002/ece3.70486","url":null,"abstract":"<p>Animal-mediated pollination is a key ecosystem service required to some extent by almost three-quarters of the leading human food crops in global food production. Anthropogenic pressures such as habitat loss and land-use intensification are causing shifts in ecological community composition, potentially resulting in declines in pollination services and impacting crop production. Previous research has often overlooked interspecific differences in pollination contribution, yet such differences mean that biodiversity declines will not necessarily negatively impact pollination. Here, we use a novel species-level ecosystem service contribution matrix along with mixed-effects models to explore how groups of terrestrial species who contribute differently to crop pollination respond globally to land-use type, land-use intensity, and availability of natural habitats in the surrounding landscape. We find that the species whose contribution to crop pollination is higher generally respond less negatively (and in some cases positively) to human disturbance of land, compared to species that contribute less or not at all to pollination. This result may be due to these high-contribution species being less sensitive to anthropogenic land conversions, which has led humans to being more reliant on them for crop pollination. However, it also suggests that there is potential for crop pollination to be resilient in the face of anthropogenic land conversions. With such a high proportion of food crops requiring animal-mediated pollination to some extent, understanding how anthropogenic landscapes impact ecological communities and the consequences for pollination is critical for ensuring food security.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica E. Rettig, Elizabeth P. Tristano, Anthony C. Burger, Geoffrey R. Smith
Aquatic ecosystems are often negatively affected by invasive species. However, biotic resistance by native species, either by competition or predation, can reduce the impacts of invasions by non-native species. The Western Mosquitofish (Gambusia affinis) is one of the most impactful invasive species of freshwater fish and cause declines in native fish populations. Using two mesocosm experiments conducted in different years, we examined the ecological interactions between juveniles of the native fish, Bluegill Sunfish (Lepomis macrochirus), and adults of the invasive fish, G. affinis. We found evidence for interactions between L. macrochirus and G. affinis. However, interactions did not appear symmetric, with L. macrochirus generally more affected by intraspecific interactions than interspecific interactions whereas G. affinis was more affected by interspecific interactions than intraspecific interactions. The presence of either species of fish led to a decrease in the number of large zooplankton and a tendency for a decrease in the total number of zooplankton. Based on these results, native L. macrochirus appear to be able to reduce the ability of non-native G. affinis to establish or maintain populations through both competition and predation (i.e., acting as an intraguild predator). The consistency of our results across both experiments, with their different designs and their occurring in different years, gives weight to these conclusions. The reduction of or prevention of establishment of populations of invasive G. affinis would likely benefit the aquatic communities of ponds with fish, especially small-bodied native fish.
水生生态系统经常受到入侵物种的负面影响。然而,本地物种通过竞争或捕食产生的生物抵抗力可以减少非本地物种入侵的影响。西方蚊子鱼(Gambusia affinis)是影响最大的淡水鱼类入侵物种之一,会导致本地鱼类数量减少。我们利用在不同年份进行的两个中层宇宙实验,研究了本地鱼类蓝鳃太阳鱼(Lepomis macrochirus)的幼鱼与入侵鱼类 G. affinis 的成鱼之间的生态相互作用。我们发现了蓝鳃太阳鱼和 G. affinis 之间相互作用的证据。然而,相互作用似乎并不对称,一般来说,L. macrochirus 受种内相互作用的影响大于种间相互作用,而 G. affinis 受种间相互作用的影响大于种内相互作用。任何一种鱼类的出现都会导致大型浮游动物数量的减少,浮游动物总数也有减少的趋势。根据这些结果,原生的大口鲈似乎能够通过竞争和捕食(即作为同类间的捕食者)来降低非原生大口鲈建立或维持种群的能力。这两项实验的设计不同,而且发生在不同年份,但我们的实验结果却一致,这说明我们的结论是正确的。减少或防止外来 G. affinis 种群的建立可能会有利于有鱼(尤其是小体型本地鱼类)的池塘的水生生物群落。
{"title":"Interactions Between Non-Native Western Mosquitofish and Native Bluegill Sunfish: Mesocosm Experiments","authors":"Jessica E. Rettig, Elizabeth P. Tristano, Anthony C. Burger, Geoffrey R. Smith","doi":"10.1002/ece3.70508","DOIUrl":"https://doi.org/10.1002/ece3.70508","url":null,"abstract":"<p>Aquatic ecosystems are often negatively affected by invasive species. However, biotic resistance by native species, either by competition or predation, can reduce the impacts of invasions by non-native species. The Western Mosquitofish (<i>Gambusia affinis</i>) is one of the most impactful invasive species of freshwater fish and cause declines in native fish populations. Using two mesocosm experiments conducted in different years, we examined the ecological interactions between juveniles of the native fish, Bluegill Sunfish (<i>Lepomis macrochirus</i>), and adults of the invasive fish, <i>G. affinis</i>. We found evidence for interactions between <i>L. macrochirus</i> and <i>G. affinis</i>. However, interactions did not appear symmetric, with <i>L. macrochirus</i> generally more affected by intraspecific interactions than interspecific interactions whereas <i>G. affinis</i> was more affected by interspecific interactions than intraspecific interactions. The presence of either species of fish led to a decrease in the number of large zooplankton and a tendency for a decrease in the total number of zooplankton. Based on these results, native <i>L. macrochirus</i> appear to be able to reduce the ability of non-native <i>G. affinis</i> to establish or maintain populations through both competition and predation (i.e., acting as an intraguild predator). The consistency of our results across both experiments, with their different designs and their occurring in different years, gives weight to these conclusions. The reduction of or prevention of establishment of populations of invasive <i>G. affinis</i> would likely benefit the aquatic communities of ponds with fish, especially small-bodied native fish.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aldo Compagnoni, Dylan Childs, Tiffany M. Knight, Roberto Salguero-Gómez
Understanding mechanisms and predicting natural population responses to climate is a key goal of Ecology. However, studies explicitly linking climate to population dynamics remain limited. Antecedent effect models are a set of statistical tools that capitalize on the evidence provided by climate and population data to select time windows correlated with a response (e.g., survival, reproduction). Thus, these models can serve as both a predictive and exploratory tool. We compare the predictive performance of antecedent effect models against simpler models and showcase their exploratory analysis potential by selecting a case study with high predictive power. We fit three antecedent effect models: (1) weighted mean models (WMM), which weigh the importance of monthly anomalies based on a Gaussian curve, (2) stochastic antecedent models (SAM), which weigh the importance of monthly anomalies using a Dirichlet process, and (3) regularized regressions using the Finnish horseshoe model (FHM), which estimate a separate effect size for each monthly anomaly. We compare these approaches to a linear model using a yearly climatic predictor and a null model with no predictors. We use demographic data from 77 natural populations of 34 plant species ranging between seven and 36 years in length. We then fit models to the asymptotic population growth rate (λ) and its underlying vital rates: survival, development, and reproduction. We find that models including climate do not consistently outperform null models. We hypothesize that the effect of yearly climate is too complex, weak, and confounded by other factors to be easily predicted using monthly precipitation and temperature data. On the other hand, in our case study, antecedent effect models show biologically sensible correlations between two precipitation anomalies and multiple vital rates. We conclude that, in temporal datasets with limited sample sizes, antecedent effect models are better suited as exploratory tools for hypothesis generation.
{"title":"Antecedent Effect Models as an Exploratory Tool to Link Climate Drivers to Herbaceous Perennial Population Dynamics Data","authors":"Aldo Compagnoni, Dylan Childs, Tiffany M. Knight, Roberto Salguero-Gómez","doi":"10.1002/ece3.70484","DOIUrl":"https://doi.org/10.1002/ece3.70484","url":null,"abstract":"<p>Understanding mechanisms and predicting natural population responses to climate is a key goal of Ecology. However, studies explicitly linking climate to population dynamics remain limited. Antecedent effect models are a set of statistical tools that capitalize on the evidence provided by climate and population data to select time windows correlated with a response (e.g., survival, reproduction). Thus, these models can serve as both a predictive and exploratory tool. We compare the predictive performance of antecedent effect models against simpler models and showcase their exploratory analysis potential by selecting a case study with high predictive power. We fit three antecedent effect models: (1) weighted mean models (WMM), which weigh the importance of monthly anomalies based on a Gaussian curve, (2) stochastic antecedent models (SAM), which weigh the importance of monthly anomalies using a Dirichlet process, and (3) regularized regressions using the Finnish horseshoe model (FHM), which estimate a separate effect size for each monthly anomaly. We compare these approaches to a linear model using a yearly climatic predictor and a null model with no predictors. We use demographic data from 77 natural populations of 34 plant species ranging between seven and 36 years in length. We then fit models to the asymptotic population growth rate (<i>λ</i>) and its underlying vital rates: survival, development, and reproduction. We find that models including climate do not consistently outperform null models. We hypothesize that the effect of yearly climate is too complex, weak, and confounded by other factors to be easily predicted using monthly precipitation and temperature data. On the other hand, in our case study, antecedent effect models show biologically sensible correlations between two precipitation anomalies and multiple vital rates. We conclude that, in temporal datasets with limited sample sizes, antecedent effect models are better suited as exploratory tools for hypothesis generation.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low levels of essential mineral elements such as cobalt, copper, and iron, in organisms reduce immune function, increasing the chances of parasitic infection. This phenomenon has been demonstrated widely in domestic animals but rarely in wildlife. In this study, we used data from 7- to 9-month-old roe deer (Capreolus capreolus), living in two different populations facing contrasting environmental conditions (Trois-Fontaines and Chizé), to investigate whether the parasitic and immunological statuses could be related to essential element status. Between 2016 and 2019, we collected feces to measure parasite burdens (gastrointestinal and pulmonary nematodes), blood to measure immunological parameters (globulins and white blood cells), and hair to assess the concentration of 11 essential elements (calcium [Ca], chromium [Cr], cobalt [Co], copper [Cu], iron [Fe], magnesium [Mg], manganese [Mn], potassium [K], molybdenum [Mo], selenium [Se], and zinc [Zn]). The results showed first heterogeneity in the individual phenotypes of the two populations. Roe deer with low body mass had high concentrations of all the essential elements (in particular, Ca, Fe, Cu, K, and Mn), a high parasitic burden, and high concentrations of globulins. An association between high concentrations of essential elements and a high parasite burden was found at the two study sites despite markedly different environmental conditions. A relationship between essential element concentrations and immune parameters was also detected, with more basophils and globulins being associated with high concentrations of essential trace elements (i.e., Ca, Fe, Cu, and, to a lesser extent, Se, Cr, and Zn). These results suggest that young individuals with low body mass and high parasitism may select feeding resources rich in mineral elements, which may improve their ability to control the infestation and/or mitigate the negative consequences of parasites by maintaining immune system functions.
{"title":"Essential mineral elements in roe deer: Associations with parasites and immune phenotypes in two contrasting populations","authors":"Léa Bariod, Sonia Saïd, Clément Calenge, Renaud Scheifler, Clémentine Fritsch, Carole Peroz, Slimania Benabed, Hervé Bidault, Stéphane Chabot, François Débias, Jeanne Duhayer, Sylvia Pardonnet, Marie-Thérèse Poirel, Paul Revelli, Pauline Vuarin, Gilles Bourgoin","doi":"10.1002/ece3.11613","DOIUrl":"https://doi.org/10.1002/ece3.11613","url":null,"abstract":"<p>Low levels of essential mineral elements such as cobalt, copper, and iron, in organisms reduce immune function, increasing the chances of parasitic infection. This phenomenon has been demonstrated widely in domestic animals but rarely in wildlife. In this study, we used data from 7- to 9-month-old roe deer (<i>Capreolus capreolus</i>), living in two different populations facing contrasting environmental conditions (Trois-Fontaines and Chizé), to investigate whether the parasitic and immunological statuses could be related to essential element status. Between 2016 and 2019, we collected feces to measure parasite burdens (gastrointestinal and pulmonary nematodes), blood to measure immunological parameters (globulins and white blood cells), and hair to assess the concentration of 11 essential elements (calcium [Ca], chromium [Cr], cobalt [Co], copper [Cu], iron [Fe], magnesium [Mg], manganese [Mn], potassium [K], molybdenum [Mo], selenium [Se], and zinc [Zn]). The results showed first heterogeneity in the individual phenotypes of the two populations. Roe deer with low body mass had high concentrations of all the essential elements (in particular, Ca, Fe, Cu, K, and Mn), a high parasitic burden, and high concentrations of globulins. An association between high concentrations of essential elements and a high parasite burden was found at the two study sites despite markedly different environmental conditions. A relationship between essential element concentrations and immune parameters was also detected, with more basophils and globulins being associated with high concentrations of essential trace elements (i.e., Ca, Fe, Cu, and, to a lesser extent, Se, Cr, and Zn). These results suggest that young individuals with low body mass and high parasitism may select feeding resources rich in mineral elements, which may improve their ability to control the infestation and/or mitigate the negative consequences of parasites by maintaining immune system functions.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.11613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sohyun Woo, Tae-Min Kim, Yousuk Kim, Seorin Jeong, Eunsuk Kim
While invasive success of alien plant species is often attributed to their superior competitive abilities, it is also suggested that competitive ability depends on the target species of competition and resource availability. In addition, it remains unclear whether invaders and co-occurring plants in the introduced area exhibit distinctive inter- and intraspecific competitive intensities. This study aimed to evaluate the competitive ability of a successful invader, Lactuca serriola, through a combination of field surveys and a growth chamber experiment. First, we assessed biodiversity and the biomass of co-occurring plants in both L. serriola-invaded and uninvaded plots across nine sites in South Korea. Subsequently, a pairwise competition experiment was conducted between L. serriola and three weedy plant species commonly found in the invaded plots, Chenopodium album, Erigeron canadensis, and Oenothera biennis, under differential nutrient levels. Diversity indices of plant communities and the biomass of most co-occurring plants showed no significant difference between invaded and uninvaded plots. L. serriola and testing weedy plants exhibited mutually negative effects on biomass when grown together in the same pot, with the intensity of interspecific competition being comparable across nutrient treatments. Notably, intraspecific competition of L. serriola was weaker than testing weedy plants, particularly manifest in the high-nutrient treatment. The results of both field and growth-chamber studies demonstrated that L. serriola was not a particularly strong competitor compared to its neighboring weedy plants. Its successful invasion can be partially attributed to its weak intraspecific competition intensity, which potentially facilitate successful establishment with high density.
{"title":"Inter- and Intraspecific Competition in Invasive Lactuca serriola and Co-Occurring Weedy Plant Species","authors":"Sohyun Woo, Tae-Min Kim, Yousuk Kim, Seorin Jeong, Eunsuk Kim","doi":"10.1002/ece3.70496","DOIUrl":"10.1002/ece3.70496","url":null,"abstract":"<p>While invasive success of alien plant species is often attributed to their superior competitive abilities, it is also suggested that competitive ability depends on the target species of competition and resource availability. In addition, it remains unclear whether invaders and co-occurring plants in the introduced area exhibit distinctive inter- and intraspecific competitive intensities. This study aimed to evaluate the competitive ability of a successful invader, <i>Lactuca serriola</i>, through a combination of field surveys and a growth chamber experiment. First, we assessed biodiversity and the biomass of co-occurring plants in both <i>L. serriola</i>-invaded and uninvaded plots across nine sites in South Korea. Subsequently, a pairwise competition experiment was conducted between <i>L. serriola</i> and three weedy plant species commonly found in the invaded plots, <i>Chenopodium album</i>, <i>Erigeron canadensis</i>, and <i>Oenothera biennis,</i> under differential nutrient levels. Diversity indices of plant communities and the biomass of most co-occurring plants showed no significant difference between invaded and uninvaded plots. <i>L. serriola</i> and testing weedy plants exhibited mutually negative effects on biomass when grown together in the same pot, with the intensity of interspecific competition being comparable across nutrient treatments. Notably, intraspecific competition of <i>L. serriola</i> was weaker than testing weedy plants, particularly manifest in the high-nutrient treatment. The results of both field and growth-chamber studies demonstrated that <i>L. serriola</i> was not a particularly strong competitor compared to its neighboring weedy plants. Its successful invasion can be partially attributed to its weak intraspecific competition intensity, which potentially facilitate successful establishment with high density.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom Vorstenbosch, Franz Essl, Bernd Lenzner, Johannes Wessely, Stefan Dullinger
Species distribution models (SDMs) are widely used to address species' responses to bioclimatic conditions in the fields of ecology, biogeography and conservation. Among studies that have addressed reasons for model prediction variability, the impact of climatic variable selection has received limited attention and is rarely assessed in sensitivity analyses. Here, we tested the assumption that this aspect of model design is a major source of uncertainty, especially when projections are made to non-analogue climates. As a study system, we used 142 alien plant species introduced to the sub-Antarctic islands. Based on global occurrence data, we fitted SDMs as functions of seven bioclimatic variable sets that only differed in the identity of two temperature variables. Moreover, we calculated the overlap between the island's climatic conditions and the niches the species have realised outside of the islands. Despite comparable internal evaluation metrics, projections of these models were in sharp contrast with each other, with some models predicting the sub-Antarctic islands' climate to be almost ubiquitously suitable to most species and others unsuitable to almost all species. In particular, the mean temperature of the warmest month led to strong underpredictions of the SDMs, while its replacement by the mean temperature of the coldest month led to massive overpredictions. Partitioning the variance in projections demonstrated that predictor identity was its most important source, followed by island and species identity. The size of area projected to be suitable was also related to the overlap in predictor values realised in the global range of species (outside of the islands) and on the islands. Our findings emphasise the importance of bioclimatic variable selection in SDMs, especially when making projections to non-analogue climates. Such extrapolations are often required, especially when using SDMs to assess invasion risk under both current and future climates.
{"title":"Venturing Into the Unknown: The Importance of Variable Selection When Modelling Alien Species Under Non-Analogue Climatic Conditions","authors":"Tom Vorstenbosch, Franz Essl, Bernd Lenzner, Johannes Wessely, Stefan Dullinger","doi":"10.1002/ece3.70490","DOIUrl":"https://doi.org/10.1002/ece3.70490","url":null,"abstract":"<p>Species distribution models (SDMs) are widely used to address species' responses to bioclimatic conditions in the fields of ecology, biogeography and conservation. Among studies that have addressed reasons for model prediction variability, the impact of climatic variable selection has received limited attention and is rarely assessed in sensitivity analyses. Here, we tested the assumption that this aspect of model design is a major source of uncertainty, especially when projections are made to non-analogue climates. As a study system, we used 142 alien plant species introduced to the sub-Antarctic islands. Based on global occurrence data, we fitted SDMs as functions of seven bioclimatic variable sets that only differed in the identity of two temperature variables. Moreover, we calculated the overlap between the island's climatic conditions and the niches the species have realised outside of the islands. Despite comparable internal evaluation metrics, projections of these models were in sharp contrast with each other, with some models predicting the sub-Antarctic islands' climate to be almost ubiquitously suitable to most species and others unsuitable to almost all species. In particular, the mean temperature of the warmest month led to strong underpredictions of the SDMs, while its replacement by the mean temperature of the coldest month led to massive overpredictions. Partitioning the variance in projections demonstrated that predictor identity was its most important source, followed by island and species identity. The size of area projected to be suitable was also related to the overlap in predictor values realised in the global range of species (outside of the islands) and on the islands. Our findings emphasise the importance of bioclimatic variable selection in SDMs, especially when making projections to non-analogue climates. Such extrapolations are often required, especially when using SDMs to assess invasion risk under both current and future climates.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nolan A. Helmstetter, Courtney J. Conway, Shane Roberts, Jennifer R. Adams, Paul D. Makela, Lisette P. Waits
<p>Greater sage-grouse (hereafter sage-grouse; <i>Centrocercus urophasianus</i>) populations have declined across their range. Increased nest predation as a result of anthropogenic land use is one mechanism proposed to explain these declines. However, sage-grouse contend with a diverse suite of nest predators that vary in functional traits (e.g., search tactics or hunting mode) and abundance. Consequently, generalizing about factors influencing nest fate is challenging. Identifying the explicit predator species responsible for nest predation events is, therefore, critical to understanding causal mechanisms linking land use to patterns of sage-grouse nest success. Cattle grazing is often assumed to adversely affect sage-grouse recruitment by reducing grass height (and hence cover), thereby facilitating nest detection by predators. However, recent evidence found little support for the hypothesized effect of grazing on nest fate at the pasture scale. Rather, nest success appears to be similar on pastures grazed at varying intensities. One possible explanation for the lack of observed effect involves a localized response by one or more nest predators. The presence of cattle may cause a temporary reduction in predator density and/or use within a pasture (the cattle avoidance hypothesis). The cattle avoidance hypothesis predicts a decreased probability of at least one sage-grouse nest predator predating sage-grouse nests in pastures with livestock relative to pastures without livestock present during the nesting season. To test the cattle avoidance hypothesis, we collected predator DNA from eggshells from predated nests and used genetic methods to identify the sage-grouse nest predator(s) responsible for the predation event. We evaluated the influence of habitat and grazing on predator-specific nest predation. We evaluated the efficacy of our genetic method by deploying artificial nests with trail cameras and compared the results of our genetic method to the species captured via trail camera. Our molecular methods identified at least one nest predator captured predating artificial nests via trail camera for 33 of 35 (94%) artificial nests. We detected nest predators via our molecular analysis at 76 of 114 (67%) predated sage-grouse nests. The primary predators detected at sage-grouse nests were coyotes (<i>Canis latrans</i>) and corvids (<i>Corvidea</i>). Grazing did not influence the probability of nest predation by either coyotes or corvids. Sagebrush canopy cover was negatively associated with the probability a coyote predated a nest, distance to water was positively associated with the probability a corvid predated a nest, and average minimum temperature was negatively associated with the probability that either a coyote or a corvid predated a nest. Our study provides a framework for implementing an effective, non-invasive method for identifying sage-grouse nest predators that can be used to better understand how management actions at local and reg
{"title":"Predator-specific mortality of sage-grouse nests based on predator DNA on eggshells","authors":"Nolan A. Helmstetter, Courtney J. Conway, Shane Roberts, Jennifer R. Adams, Paul D. Makela, Lisette P. Waits","doi":"10.1002/ece3.70213","DOIUrl":"https://doi.org/10.1002/ece3.70213","url":null,"abstract":"<p>Greater sage-grouse (hereafter sage-grouse; <i>Centrocercus urophasianus</i>) populations have declined across their range. Increased nest predation as a result of anthropogenic land use is one mechanism proposed to explain these declines. However, sage-grouse contend with a diverse suite of nest predators that vary in functional traits (e.g., search tactics or hunting mode) and abundance. Consequently, generalizing about factors influencing nest fate is challenging. Identifying the explicit predator species responsible for nest predation events is, therefore, critical to understanding causal mechanisms linking land use to patterns of sage-grouse nest success. Cattle grazing is often assumed to adversely affect sage-grouse recruitment by reducing grass height (and hence cover), thereby facilitating nest detection by predators. However, recent evidence found little support for the hypothesized effect of grazing on nest fate at the pasture scale. Rather, nest success appears to be similar on pastures grazed at varying intensities. One possible explanation for the lack of observed effect involves a localized response by one or more nest predators. The presence of cattle may cause a temporary reduction in predator density and/or use within a pasture (the cattle avoidance hypothesis). The cattle avoidance hypothesis predicts a decreased probability of at least one sage-grouse nest predator predating sage-grouse nests in pastures with livestock relative to pastures without livestock present during the nesting season. To test the cattle avoidance hypothesis, we collected predator DNA from eggshells from predated nests and used genetic methods to identify the sage-grouse nest predator(s) responsible for the predation event. We evaluated the influence of habitat and grazing on predator-specific nest predation. We evaluated the efficacy of our genetic method by deploying artificial nests with trail cameras and compared the results of our genetic method to the species captured via trail camera. Our molecular methods identified at least one nest predator captured predating artificial nests via trail camera for 33 of 35 (94%) artificial nests. We detected nest predators via our molecular analysis at 76 of 114 (67%) predated sage-grouse nests. The primary predators detected at sage-grouse nests were coyotes (<i>Canis latrans</i>) and corvids (<i>Corvidea</i>). Grazing did not influence the probability of nest predation by either coyotes or corvids. Sagebrush canopy cover was negatively associated with the probability a coyote predated a nest, distance to water was positively associated with the probability a corvid predated a nest, and average minimum temperature was negatively associated with the probability that either a coyote or a corvid predated a nest. Our study provides a framework for implementing an effective, non-invasive method for identifying sage-grouse nest predators that can be used to better understand how management actions at local and reg","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given that terrestrial ecosystems globally are facing the loss of biodiversity from land use conversion, invasive species, and climate change, effective management requires a better understanding of the drivers and correlates of biodiversity. Increasingly, biodiversity is co-managed with aboveground carbon storage because high biodiversity in animal species is observed to correlate with high aboveground carbon storage. Most previous investigations into the relationship of biodiversity and carbon co-management do not focus on the biodiversity of the species rich plant kingdom, which may have tradeoffs with carbon storage. To examine the relationships of plant species richness with aboveground tree biomass carbon storage, we used a series of generalized linear models with understory plant species richness and diversity data from the USDA Forest Service Forest Inventory and Analysis dataset and high-resolution modeled carbon maps for the Tongass National Forest. Functional trait data from the TRY database was used to understand the potential mechanisms that drive the response of understory plants. Understory species richness and community weighted mean leaf dry matter content decreased along an increasing gradient of tree biomass carbon storage, but understory diversity, community weighted mean specific leaf area, and plant height at maturity did not. Leaf dry matter content had little variance at the community level. The decline of understory plant species richness but not diversity to increases in aboveground biomass carbon storage suggests that rare species are excluded in aboveground biomass carbon dense areas. These decreases in understory species richness reflect a tradeoff between the understory plant community and aboveground carbon storage. The mechanisms that are associated with observed plant communities along a gradient of biomass carbon storage in this forest suggest that slower-growing plant strategies are less effective in the presence of high biomass carbon dense trees in the overstory.
{"title":"Understory plant biodiversity is inversely related to carbon storage in a high carbon ecosystem","authors":"Trevor A. Carter, Brian Buma","doi":"10.1002/ece3.70095","DOIUrl":"10.1002/ece3.70095","url":null,"abstract":"<p>Given that terrestrial ecosystems globally are facing the loss of biodiversity from land use conversion, invasive species, and climate change, effective management requires a better understanding of the drivers and correlates of biodiversity. Increasingly, biodiversity is co-managed with aboveground carbon storage because high biodiversity in animal species is observed to correlate with high aboveground carbon storage. Most previous investigations into the relationship of biodiversity and carbon co-management do not focus on the biodiversity of the species rich plant kingdom, which may have tradeoffs with carbon storage. To examine the relationships of plant species richness with aboveground tree biomass carbon storage, we used a series of generalized linear models with understory plant species richness and diversity data from the USDA Forest Service Forest Inventory and Analysis dataset and high-resolution modeled carbon maps for the Tongass National Forest. Functional trait data from the TRY database was used to understand the potential mechanisms that drive the response of understory plants. Understory species richness and community weighted mean leaf dry matter content decreased along an increasing gradient of tree biomass carbon storage, but understory diversity, community weighted mean specific leaf area, and plant height at maturity did not. Leaf dry matter content had little variance at the community level. The decline of understory plant species richness but not diversity to increases in aboveground biomass carbon storage suggests that rare species are excluded in aboveground biomass carbon dense areas. These decreases in understory species richness reflect a tradeoff between the understory plant community and aboveground carbon storage. The mechanisms that are associated with observed plant communities along a gradient of biomass carbon storage in this forest suggest that slower-growing plant strategies are less effective in the presence of high biomass carbon dense trees in the overstory.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}