Pub Date : 2026-01-01Epub Date: 2025-12-03DOI: 10.1038/s44319-025-00625-z
Rajitha-Udakara-Sampath Hemba-Waduge, Mengmeng Liu, Xiao Li, Jasmine L Sun, Elisabeth A Budslick, Sarah E Bondos, Jun-Yuan Ji
Adipocytes play essential roles in lipid metabolism and energy homeostasis, with regional differences affecting their functions and disease susceptibility. However, the mechanisms underlying this regional heterogeneity remain unclear. Here we demonstrate that the Bithorax Complex (BX-C) genes, specifically abdominal A (abd-A) and Abdominal B (Abd-B), define regional differences in Drosophila larval adipocytes. Abdominal adipocytes, expressing abd-A and Abd-B exhibit unique characteristics compared to thoracic adipocytes, with active Wnt/Wingless signaling further amplifying these regional differences. Depleting abd-A and Abd-B in adipocytes delays larval-pupal transition, causes pupal lethality, and attenuates the expression of Wnt/Wg target genes, thereby dampening Wnt signaling-induced lipid mobilization. Additionally, Wnt signaling enhances the transcription of abd-A and Abd-B, establishing a feedforward loop that reinforces the interplay between Wnt signaling and BX-C genes. These findings reveal how the cell-autonomous expression of BX-C genes defines adipocyte heterogeneity, a process further modulated by Wnt signaling in Drosophila larvae.
{"title":"Adipocyte heterogeneity regulated by the Bithorax Complex-Wnt signaling crosstalk in Drosophila.","authors":"Rajitha-Udakara-Sampath Hemba-Waduge, Mengmeng Liu, Xiao Li, Jasmine L Sun, Elisabeth A Budslick, Sarah E Bondos, Jun-Yuan Ji","doi":"10.1038/s44319-025-00625-z","DOIUrl":"10.1038/s44319-025-00625-z","url":null,"abstract":"<p><p>Adipocytes play essential roles in lipid metabolism and energy homeostasis, with regional differences affecting their functions and disease susceptibility. However, the mechanisms underlying this regional heterogeneity remain unclear. Here we demonstrate that the Bithorax Complex (BX-C) genes, specifically abdominal A (abd-A) and Abdominal B (Abd-B), define regional differences in Drosophila larval adipocytes. Abdominal adipocytes, expressing abd-A and Abd-B exhibit unique characteristics compared to thoracic adipocytes, with active Wnt/Wingless signaling further amplifying these regional differences. Depleting abd-A and Abd-B in adipocytes delays larval-pupal transition, causes pupal lethality, and attenuates the expression of Wnt/Wg target genes, thereby dampening Wnt signaling-induced lipid mobilization. Additionally, Wnt signaling enhances the transcription of abd-A and Abd-B, establishing a feedforward loop that reinforces the interplay between Wnt signaling and BX-C genes. These findings reveal how the cell-autonomous expression of BX-C genes defines adipocyte heterogeneity, a process further modulated by Wnt signaling in Drosophila larvae.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"367-386"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145667644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-11-20DOI: 10.1038/s44319-025-00604-4
Hannah Heininger, Xiao Feng, Alp Altunkaya, Fang Zheng, Florian Stockinger, Benedikt Wefers, Stephan A Müller, Pieter Giesbertz, Sarah K Tschirner, Dorina Shqau, Helmuth Adelsberger, Alexey Ponomarenko, Thomas Fenzl, Christian Alzheimer, Stefan F Lichtenthaler, Tobias Huth
The β-secretase BACE1 has become a prime target in Alzheimer's disease (AD) therapy, because it drives the production of pathogenic amyloid β peptides. However, clinical trials with BACE1-targeting drugs were halted due to adverse effects on cognitive performance. We propose here that cognitive impairment by BACE1 inhibitors may be a corollary of a higher function of BACE1 related to proper sleep regulation. To address non-enzymatic effects of BACE1 on ion channels likely involved in the sleep-wake cycle, we analyze sleep patterns in both BACE1-KO mice and a newly generated transgenic line expressing a proteolysis-deficient BACE1 variant (BACE1-KI). We find that BACE1-KI and BACE1-KO mice display common and distinct sleep-wake disturbances. Compared with their respective wild-type littermates, both mutant lines sleep less during the light phase (when they preferentially rest). Furthermore, transition rates between wake and sleep states are altered, as are sleep spindles and EEG power spectra mainly in the gamma range. Thus, a better understanding of how BACE1 interferes with sleep-modulated behaviors is needed if clinical trials with BACE1-targeted inhibitors are to resume.
{"title":"BACE1 regulates sleep-wake cycle through both enzymatic and non-enzymatic actions.","authors":"Hannah Heininger, Xiao Feng, Alp Altunkaya, Fang Zheng, Florian Stockinger, Benedikt Wefers, Stephan A Müller, Pieter Giesbertz, Sarah K Tschirner, Dorina Shqau, Helmuth Adelsberger, Alexey Ponomarenko, Thomas Fenzl, Christian Alzheimer, Stefan F Lichtenthaler, Tobias Huth","doi":"10.1038/s44319-025-00604-4","DOIUrl":"10.1038/s44319-025-00604-4","url":null,"abstract":"<p><p>The β-secretase BACE1 has become a prime target in Alzheimer's disease (AD) therapy, because it drives the production of pathogenic amyloid β peptides. However, clinical trials with BACE1-targeting drugs were halted due to adverse effects on cognitive performance. We propose here that cognitive impairment by BACE1 inhibitors may be a corollary of a higher function of BACE1 related to proper sleep regulation. To address non-enzymatic effects of BACE1 on ion channels likely involved in the sleep-wake cycle, we analyze sleep patterns in both BACE1-KO mice and a newly generated transgenic line expressing a proteolysis-deficient BACE1 variant (BACE1-KI). We find that BACE1-KI and BACE1-KO mice display common and distinct sleep-wake disturbances. Compared with their respective wild-type littermates, both mutant lines sleep less during the light phase (when they preferentially rest). Furthermore, transition rates between wake and sleep states are altered, as are sleep spindles and EEG power spectra mainly in the gamma range. Thus, a better understanding of how BACE1 interferes with sleep-modulated behaviors is needed if clinical trials with BACE1-targeted inhibitors are to resume.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"50-68"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12796456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145563079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-08DOI: 10.1038/s44319-025-00622-2
Elisa Barbieri, Ian Chambers
The choice between somatic and germline fates is essential for species survival. This choice occurs in embryonic epiblast cells, as these cells are competent for both somatic and germline differentiation. The transcription factor OTX2 regulates this process, as Otx2-null epiblast-like cells (EpiLCs) form primordial germ cell-like cells (PGCLCs) with enhanced efficiency. Yet, how OTX2 achieves this function is not fully characterised. Here we show that OTX2 controls chromatin accessibility at specific chromatin loci to enable somatic differentiation. CUT&RUN for OTX2 and ATAC-seq in wild-type and Otx2-null embryonic stem cells and EpiLCs identifies regions where OTX2 binds and opens chromatin. Enforced OTX2 expression maintains accessibility at these regions and also induces opening of ~4000 somatic-associated regions in cells differentiating in the presence of PGC-inducing cytokines. Once cells have acquired germline identity, these additional regions no longer respond to OTX2 and remain closed. Our results indicate that OTX2 works in cells with dual competence for somatic and germline differentiation to increase accessibility of somatic regulatory regions and induce the somatic fate at the expense of the germline.
{"title":"OTX2 controls chromatin accessibility to direct somatic versus germline differentiation.","authors":"Elisa Barbieri, Ian Chambers","doi":"10.1038/s44319-025-00622-2","DOIUrl":"10.1038/s44319-025-00622-2","url":null,"abstract":"<p><p>The choice between somatic and germline fates is essential for species survival. This choice occurs in embryonic epiblast cells, as these cells are competent for both somatic and germline differentiation. The transcription factor OTX2 regulates this process, as Otx2-null epiblast-like cells (EpiLCs) form primordial germ cell-like cells (PGCLCs) with enhanced efficiency. Yet, how OTX2 achieves this function is not fully characterised. Here we show that OTX2 controls chromatin accessibility at specific chromatin loci to enable somatic differentiation. CUT&RUN for OTX2 and ATAC-seq in wild-type and Otx2-null embryonic stem cells and EpiLCs identifies regions where OTX2 binds and opens chromatin. Enforced OTX2 expression maintains accessibility at these regions and also induces opening of ~4000 somatic-associated regions in cells differentiating in the presence of PGC-inducing cytokines. Once cells have acquired germline identity, these additional regions no longer respond to OTX2 and remain closed. Our results indicate that OTX2 works in cells with dual competence for somatic and germline differentiation to increase accessibility of somatic regulatory regions and induce the somatic fate at the expense of the germline.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"341-366"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-10DOI: 10.1038/s44319-025-00668-2
Aviad Raz, Aurélie Halsband, Robert Langner, Shiri Shkedi-Rafid
{"title":"The new frontier in assisted reproduction : Consumer Desire vs. Regulatory and Ethical Precaution in AI-assisted Polygenic Embryo Screening.","authors":"Aviad Raz, Aurélie Halsband, Robert Langner, Shiri Shkedi-Rafid","doi":"10.1038/s44319-025-00668-2","DOIUrl":"10.1038/s44319-025-00668-2","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"265-268"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145721726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-15DOI: 10.1038/s44319-025-00666-4
Melissa Vázquez-Carrada, Sainath Shanmugasundaram, Sander H J Smits, Lasse van Wijlick, Michael Feldbrügge
Eukaryotic cells are highly compartmentalized, enabling sophisticated division of labour. For example, genetic information is stored in the nucleus while energy is produced in mitochondria. Despite this clear specialisation, compartments depend on intensive communication, including the exchange of metabolites and macromolecules. This is achieved through intracellular trafficking with membranous carriers such as endosomes, which constitute versatile transport vehicles. Key cargos include mRNAs and ribosomes that hitchhike on endosomes, linking RNA and membrane biology. In this review, we summarize recent advances showing how mRNAs are mechanistically attached to membranes of endosomes and lysosomal vesicles and how cargos are identified for transport. The encoded proteins illuminate the biological processes that rely on such spatiotemporal control. This is particularly true for the regulation of subcellular mitochondrial homeostasis, disclosing intensive multi-organelle networking. As a general concept, the underlying protein/protein and protein/RNA interactions exhibit significant redundancy yet are organized in a strict hierarchy with distinct core and accessory functions. This ensures both the robustness and specificity of mRNA hitchhiking.
{"title":"Vesicle-coupled mRNA transport and translation govern intracellular organelle networking.","authors":"Melissa Vázquez-Carrada, Sainath Shanmugasundaram, Sander H J Smits, Lasse van Wijlick, Michael Feldbrügge","doi":"10.1038/s44319-025-00666-4","DOIUrl":"10.1038/s44319-025-00666-4","url":null,"abstract":"<p><p>Eukaryotic cells are highly compartmentalized, enabling sophisticated division of labour. For example, genetic information is stored in the nucleus while energy is produced in mitochondria. Despite this clear specialisation, compartments depend on intensive communication, including the exchange of metabolites and macromolecules. This is achieved through intracellular trafficking with membranous carriers such as endosomes, which constitute versatile transport vehicles. Key cargos include mRNAs and ribosomes that hitchhike on endosomes, linking RNA and membrane biology. In this review, we summarize recent advances showing how mRNAs are mechanistically attached to membranes of endosomes and lysosomal vesicles and how cargos are identified for transport. The encoded proteins illuminate the biological processes that rely on such spatiotemporal control. This is particularly true for the regulation of subcellular mitochondrial homeostasis, disclosing intensive multi-organelle networking. As a general concept, the underlying protein/protein and protein/RNA interactions exhibit significant redundancy yet are organized in a strict hierarchy with distinct core and accessory functions. This ensures both the robustness and specificity of mRNA hitchhiking.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"276-290"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145762661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-16DOI: 10.1038/s44319-025-00645-9
Victor A S Jones, Melanie Dörr, Isabelle Siemers, Sebastian Rupp, Sami El Hilali, Sara Brites, Joachim M Surm, Ira Maegele, Sebastian G Gornik, Meghan Ferguson, Annika Guse
Endosymbiosis between dinoflagellate algae and cnidaria is fundamental for coral reef health. Appropriate symbiont selection is required for sufficient host nutrient acquisition and could be tailored to increase cnidarian stress tolerance. Previous research suggested glycan-lectin interactions facilitate symbiont uptake; however, blockage of such interactions does not fully inhibit symbiosis establishment, suggesting other receptors are at play. Here, we use a combination of cnidarian model systems and human cell lines to determine if phagocytic integrins facilitate symbiont recognition and uptake. Integrins are highly expressed in the gastrodermal tissue of the host, where symbiosis takes place, and symbiont uptake alters the expression of integrins and downstream signaling molecules. Blockage of integrin binding sites with competitor peptides reduces symbiont uptake, while uptake of non-symbiotic algae, or uptake in a non-symbiotic cnidarian, is unaffected. Finally, overexpression of phagocytic integrins in human cells increases symbiont uptake, and mutation of the active binding site abolishes uptake. Our findings reveal integrins as important receptors for symbiosis establishment and shed light on the evolutionary functions of integrins during phagocytosis.
{"title":"Integrins mediate symbiont-specific uptake in cnidarian larvae.","authors":"Victor A S Jones, Melanie Dörr, Isabelle Siemers, Sebastian Rupp, Sami El Hilali, Sara Brites, Joachim M Surm, Ira Maegele, Sebastian G Gornik, Meghan Ferguson, Annika Guse","doi":"10.1038/s44319-025-00645-9","DOIUrl":"10.1038/s44319-025-00645-9","url":null,"abstract":"<p><p>Endosymbiosis between dinoflagellate algae and cnidaria is fundamental for coral reef health. Appropriate symbiont selection is required for sufficient host nutrient acquisition and could be tailored to increase cnidarian stress tolerance. Previous research suggested glycan-lectin interactions facilitate symbiont uptake; however, blockage of such interactions does not fully inhibit symbiosis establishment, suggesting other receptors are at play. Here, we use a combination of cnidarian model systems and human cell lines to determine if phagocytic integrins facilitate symbiont recognition and uptake. Integrins are highly expressed in the gastrodermal tissue of the host, where symbiosis takes place, and symbiont uptake alters the expression of integrins and downstream signaling molecules. Blockage of integrin binding sites with competitor peptides reduces symbiont uptake, while uptake of non-symbiotic algae, or uptake in a non-symbiotic cnidarian, is unaffected. Finally, overexpression of phagocytic integrins in human cells increases symbiont uptake, and mutation of the active binding site abolishes uptake. Our findings reveal integrins as important receptors for symbiosis establishment and shed light on the evolutionary functions of integrins during phagocytosis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"291-310"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145767428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-08DOI: 10.1038/s44319-025-00665-5
Katja Wassmann
{"title":"Oocyte selection: a tale of individualism, dominance and sacrifice.","authors":"Katja Wassmann","doi":"10.1038/s44319-025-00665-5","DOIUrl":"10.1038/s44319-025-00665-5","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"15-17"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12796393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During ovariogenesis, more than two-thirds of germ cells are sacrificed to improve the quality of the remaining oocytes. However, the detailed mechanisms behind this selection process are not fully understood in mammals. Here, we developed a high-resolution, four-dimensional ovariogenesis imaging system to track the progression of oocyte fate determination in live mouse ovaries. Through this, we identified a cyst-independent oocyte phagocytosis mechanism that plays a key role in determining oocyte survival. We found that oocytes act as individual cells, rather than connected cyst structures, during ovarian reserve construction. In this process, dominant oocytes capture and absorb cell debris from sacrificed oocytes to enrich their cytoplasm and support their survival. Single-cell sequencing indicated that the sacrificed oocytes are regulated by autophagy. When oocyte sacrifice was inhibited using autophagy inhibitors, the pool of surviving oocytes expanded, but they failed to fully develop and contribute to fertility. Our study suggests that mammals have evolved a cyst-independent selection system to improve oocyte quality, which is essential for sustaining a long reproductive lifespan.
{"title":"Cyst-independent oocyte phagocytosis builds the female reproductive reserve in mice.","authors":"Yan Zhang, Yingnan Bo, Kaixin Cheng, Ge Wang, Lu Mu, Jing Liang, Lingyu Li, Kaiying Geng, Xuebing Yang, Xindi Hu, Wenji Wang, Longzhong Jia, Xueqiang Xu, Jingmei Hu, Chao Wang, Fengchao Wang, Yuwen Ke, Guoliang Xia, Hua Zhang","doi":"10.1038/s44319-025-00663-7","DOIUrl":"10.1038/s44319-025-00663-7","url":null,"abstract":"<p><p>During ovariogenesis, more than two-thirds of germ cells are sacrificed to improve the quality of the remaining oocytes. However, the detailed mechanisms behind this selection process are not fully understood in mammals. Here, we developed a high-resolution, four-dimensional ovariogenesis imaging system to track the progression of oocyte fate determination in live mouse ovaries. Through this, we identified a cyst-independent oocyte phagocytosis mechanism that plays a key role in determining oocyte survival. We found that oocytes act as individual cells, rather than connected cyst structures, during ovarian reserve construction. In this process, dominant oocytes capture and absorb cell debris from sacrificed oocytes to enrich their cytoplasm and support their survival. Single-cell sequencing indicated that the sacrificed oocytes are regulated by autophagy. When oocyte sacrifice was inhibited using autophagy inhibitors, the pool of surviving oocytes expanded, but they failed to fully develop and contribute to fertility. Our study suggests that mammals have evolved a cyst-independent selection system to improve oocyte quality, which is essential for sustaining a long reproductive lifespan.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"230-255"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12796176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During vertebrate neurogenesis, a transition from symmetric proliferative to asymmetric neurogenic divisions is critical to balance growth and differentiation. Using single-cell RNA-seq data from the chick embryonic neural tube, we identify the cell cycle regulator Cdkn1c as a key regulator of this transition. While Cdkn1 is classically associated with neuronal cell cycle exit, we show that its expression initiates at low levels in neurogenic progenitors. Functionally targeting the onset of this expression impacts the course of neurogenesis: Cdkn1c knockdown impairs neuron production by favoring proliferative symmetric divisions. Conversely, inducing a low-level Cdkn1c misexpression in self-expanding progenitors forces them to prematurely undergo neurogenic divisions. Cdkn1c exerts this effect primarily by inhibiting the CyclinD1-CDK4/6 complex and G1 phase lengthening. We propose that Cdkn1c acts as a dual driver of the neurogenic transition whose low level of expression first controls the progressive entry of progenitors into neurogenic modes of division before higher expression mediates cell cycle exit in daughter cells. This highlights that the precise control of neurogenesis regulators' expression sequentially imparts distinct functions essential for proper neural development.
{"title":"A low-level Cdkn1c/p57<sup>kip2</sup> expression in spinal progenitors drives the transition from proliferative to neurogenic modes of division.","authors":"Baptiste Mida, Nathalie Lehmann, Rosette Goïame, Fanny Coulpier, Kamal Bouhali, Isabelle Barbosa, Hervé le Hir, Morgane Thomas-Chollier, Evelyne Fischer, Xavier Morin","doi":"10.1038/s44319-025-00653-9","DOIUrl":"10.1038/s44319-025-00653-9","url":null,"abstract":"<p><p>During vertebrate neurogenesis, a transition from symmetric proliferative to asymmetric neurogenic divisions is critical to balance growth and differentiation. Using single-cell RNA-seq data from the chick embryonic neural tube, we identify the cell cycle regulator Cdkn1c as a key regulator of this transition. While Cdkn1 is classically associated with neuronal cell cycle exit, we show that its expression initiates at low levels in neurogenic progenitors. Functionally targeting the onset of this expression impacts the course of neurogenesis: Cdkn1c knockdown impairs neuron production by favoring proliferative symmetric divisions. Conversely, inducing a low-level Cdkn1c misexpression in self-expanding progenitors forces them to prematurely undergo neurogenic divisions. Cdkn1c exerts this effect primarily by inhibiting the CyclinD1-CDK4/6 complex and G1 phase lengthening. We propose that Cdkn1c acts as a dual driver of the neurogenic transition whose low level of expression first controls the progressive entry of progenitors into neurogenic modes of division before higher expression mediates cell cycle exit in daughter cells. This highlights that the precise control of neurogenesis regulators' expression sequentially imparts distinct functions essential for proper neural development.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"433-470"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-12-02DOI: 10.1038/s44319-025-00660-w
Ashok Mari, Kevin Graciano, Raj Kumar, Emily Giles, Patrick T Ball, Revu V L Narayana, Romi Gupta
Melanoma is a highly metastatic form of skin cancer for which current therapies offer limited benefits. We show here that the histone reader ATAD2 is overexpressed in melanoma and predicts poor prognosis, and that the MAP kinase pathway, via the transcription factor E2F1, stimulates ATAD2 expression. Genetic or pharmacological inhibition of ATAD2 suppresses the growth and metastasis of BRAF and NRAS mutant melanoma. Mechanistically, we show that ATAD2 inhibition activates both distinct and common tumor-suppressive pathways in BRAF and NRAS mutant melanoma. In particular, we find that ATAD2 inhibition induces ferroptosis in both contexts by downregulating the ferroptosis suppressor GPX4. The ferroptosis inducer erastin also inhibits melanoma growth. Combining the ATAD2 inhibitor BAY-850 with the MEK inhibitor trametinib potently suppresses melanoma growth. Our study identifies ATAD2 as a key driver of melanoma and provides a rationale for targeting ATAD2 in conjunction with the MAPK pathway to treat melanoma.
{"title":"ATAD2 drives melanoma growth and progression and inhibits ferroptosis.","authors":"Ashok Mari, Kevin Graciano, Raj Kumar, Emily Giles, Patrick T Ball, Revu V L Narayana, Romi Gupta","doi":"10.1038/s44319-025-00660-w","DOIUrl":"10.1038/s44319-025-00660-w","url":null,"abstract":"<p><p>Melanoma is a highly metastatic form of skin cancer for which current therapies offer limited benefits. We show here that the histone reader ATAD2 is overexpressed in melanoma and predicts poor prognosis, and that the MAP kinase pathway, via the transcription factor E2F1, stimulates ATAD2 expression. Genetic or pharmacological inhibition of ATAD2 suppresses the growth and metastasis of BRAF and NRAS mutant melanoma. Mechanistically, we show that ATAD2 inhibition activates both distinct and common tumor-suppressive pathways in BRAF and NRAS mutant melanoma. In particular, we find that ATAD2 inhibition induces ferroptosis in both contexts by downregulating the ferroptosis suppressor GPX4. The ferroptosis inducer erastin also inhibits melanoma growth. Combining the ATAD2 inhibitor BAY-850 with the MEK inhibitor trametinib potently suppresses melanoma growth. Our study identifies ATAD2 as a key driver of melanoma and provides a rationale for targeting ATAD2 in conjunction with the MAPK pathway to treat melanoma.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"501-532"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145660645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}