Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.
{"title":"Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions.","authors":"Najia Jeroundi, Charlotte Roy, Laetitia Basset, Pascale Pignon, Laurence Preisser, Simon Blanchard, Cinzia Bocca, Cyril Abadie, Julie Lalande, Naïg Gueguen, Guillaume Mabilleau, Guy Lenaers, Aurélie Moreau, Marie-Christine Copin, Guillaume Tcherkez, Yves Delneste, Dominique Couez, Pascale Jeannin","doi":"10.1038/s44319-024-00278-4","DOIUrl":"https://doi.org/10.1038/s44319-024-00278-4","url":null,"abstract":"<p><p>Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and <sup>13</sup>C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triple-negative breast cancer (TNBC) lacks the expression of hormone and HER2 receptors and is highly malignant with no effective therapeutic targets. In TNBC, the cancer stem-like cell (CSC) population is considered to be the main cause of resistance to treatment. Thus, the therapeutic targeting of this population could substantially improve patient survival. Here, we identify the RNA-binding protein ZCCHC24 as enriched in the mesenchymal-like TNBC population. ZCCHC24 promotes the expression of a set of genes related to tumorigenicity and treatment resistance by directly binding to the cis-element "UGUWHWWA" in their mRNAs, thereby stabilizing them. One of the ZCCHC24 targets, ZEB1, is a transcription factor that promotes the expression of cancer stemness genes and reciprocally induces ZCCHC24 expression. ZCCHC24 knockdown by siRNAs shows a therapeutic effect and reduces the mesenchymal-like cell population in TNBC patient-derived xenografts. ZCCHC24 knockdown also has additive effects with the BET inhibitor JQ1 in suppressing tumor growth in TNBC patient-derived xenografts.
{"title":"RNA binding protein ZCCHC24 promotes tumorigenicity in triple-negative breast cancer.","authors":"Yutaro Uchida, Ryota Kurimoto, Tomoki Chiba, Takahide Matsushima, Goshi Oda, Iichiroh Onishi, Yasuto Takeuchi, Noriko Gotoh, Hiroshi Asahara","doi":"10.1038/s44319-024-00282-8","DOIUrl":"https://doi.org/10.1038/s44319-024-00282-8","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) lacks the expression of hormone and HER2 receptors and is highly malignant with no effective therapeutic targets. In TNBC, the cancer stem-like cell (CSC) population is considered to be the main cause of resistance to treatment. Thus, the therapeutic targeting of this population could substantially improve patient survival. Here, we identify the RNA-binding protein ZCCHC24 as enriched in the mesenchymal-like TNBC population. ZCCHC24 promotes the expression of a set of genes related to tumorigenicity and treatment resistance by directly binding to the cis-element \"UGUWHWWA\" in their mRNAs, thereby stabilizing them. One of the ZCCHC24 targets, ZEB1, is a transcription factor that promotes the expression of cancer stemness genes and reciprocally induces ZCCHC24 expression. ZCCHC24 knockdown by siRNAs shows a therapeutic effect and reduces the mesenchymal-like cell population in TNBC patient-derived xenografts. ZCCHC24 knockdown also has additive effects with the BET inhibitor JQ1 in suppressing tumor growth in TNBC patient-derived xenografts.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3β, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3β inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3β, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3β axis.
{"title":"Nup358 restricts ER-mitochondria connectivity by modulating mTORC2/Akt/GSK3β signalling.","authors":"Misha Kalarikkal, Rimpi Saikia, Lizanne Oliveira, Yashashree Bhorkar, Akshay Lonare, Pallavi Varshney, Prathamesh Dhamale, Amitabha Majumdar, Jomon Joseph","doi":"10.1038/s44319-024-00204-8","DOIUrl":"10.1038/s44319-024-00204-8","url":null,"abstract":"<p><p>ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3β, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3β inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3β, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3β axis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-25DOI: 10.1038/s44319-024-00264-w
Maximilian R Stammnitz, Amber Hartman Scholz, David J Duffy
{"title":"Environmental DNA without borders : Let's embrace decentralised genomics to meet the UN's biodiversity targets.","authors":"Maximilian R Stammnitz, Amber Hartman Scholz, David J Duffy","doi":"10.1038/s44319-024-00264-w","DOIUrl":"10.1038/s44319-024-00264-w","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-09DOI: 10.1038/s44319-024-00241-3
Miriam Rodríguez-Vázquez, Jennifer Falconi, Lisa Heron-Milhavet, Patrice Lassus, Charles Géminard, Alexandre Djiane
The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.
{"title":"Fat body glycolysis defects inhibit mTOR and promote distant muscle disorganization through TNF-α/egr and ImpL2 signaling in Drosophila larvae.","authors":"Miriam Rodríguez-Vázquez, Jennifer Falconi, Lisa Heron-Milhavet, Patrice Lassus, Charles Géminard, Alexandre Djiane","doi":"10.1038/s44319-024-00241-3","DOIUrl":"10.1038/s44319-024-00241-3","url":null,"abstract":"<p><p>The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
{"title":"Epigenetic inheritance and gene expression regulation in early Drosophila embryos.","authors":"Filippo Ciabrelli, Nazerke Atinbayeva, Attilio Pane, Nicola Iovino","doi":"10.1038/s44319-024-00245-z","DOIUrl":"10.1038/s44319-024-00245-z","url":null,"abstract":"<p><p>Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as \"zygotic genome activation\" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-19DOI: 10.1038/s44319-024-00223-5
Zhuoning Zou, Qiuyan Wang, Xi Wu, Richard M Schultz, Wei Xie
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
{"title":"Kick-starting the zygotic genome: licensors, specifiers, and beyond.","authors":"Zhuoning Zou, Qiuyan Wang, Xi Wu, Richard M Schultz, Wei Xie","doi":"10.1038/s44319-024-00223-5","DOIUrl":"10.1038/s44319-024-00223-5","url":null,"abstract":"<p><p>Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1038/s44319-024-00236-0
Huanting Chi, Bingqian Qu, Angga Prawira, Talisa Richardt, Lars Maurer, Jungen Hu, Rebecca M Fu, Florian A Lempp, Zhenfeng Zhang, Dirk Grimm, Xianfang Wu, Stephan Urban, Viet Loan Dao Thi
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
{"title":"An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes.","authors":"Huanting Chi, Bingqian Qu, Angga Prawira, Talisa Richardt, Lars Maurer, Jungen Hu, Rebecca M Fu, Florian A Lempp, Zhenfeng Zhang, Dirk Grimm, Xianfang Wu, Stephan Urban, Viet Loan Dao Thi","doi":"10.1038/s44319-024-00236-0","DOIUrl":"10.1038/s44319-024-00236-0","url":null,"abstract":"<p><p>Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-16DOI: 10.1038/s44319-024-00247-x
David R Smith
{"title":"Espressogate.","authors":"David R Smith","doi":"10.1038/s44319-024-00247-x","DOIUrl":"10.1038/s44319-024-00247-x","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}