Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging infectious pathogen with a high fatality rate, is an enveloped tripartite segmented single-stranded negative-sense RNA virus. SFTSV infection is characterized by suppressed host innate immunity, proinflammatory cytokine storm, failure of B-cell immunity, and robust viral replication. m6A modification has been shown to play a role in viral infections. However, interactions between m6A modification and SFTSV infection remain poorly understood. Through MeRIP-seq, we identify m6A modifications on SFTSV RNA. We show that YTHDF1 can bind to m6A modification sites on SFTSV, decreasing the stability of SFTSV RNA and reducing the translation efficiency of SFTSV proteins. The SFTSV virulence factor NSs increases lactylation of YTHDF1 and YTHDF1 degradation, thus facilitating SFTSV replication. Our findings indicate that the SFTSV protein NSs induce lactylation to inhibit YTHDF1 as a countermeasure to host's YTHDF1-mediated degradation of m6A-marked viral mRNAs.
{"title":"Severe fever with thrombocytopenia syndrome virus induces lactylation of m6A reader protein YTHDF1 to facilitate viral replication.","authors":"Bingxin Liu, Xiaoyan Tian, Linrun Li, Rui Zhang, Jing Wu, Na Jiang, Meng Yuan, Deyan Chen, Airong Su, Shijie Xu, Zhiwei Wu","doi":"10.1038/s44319-024-00310-7","DOIUrl":"10.1038/s44319-024-00310-7","url":null,"abstract":"<p><p>Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging infectious pathogen with a high fatality rate, is an enveloped tripartite segmented single-stranded negative-sense RNA virus. SFTSV infection is characterized by suppressed host innate immunity, proinflammatory cytokine storm, failure of B-cell immunity, and robust viral replication. m6A modification has been shown to play a role in viral infections. However, interactions between m6A modification and SFTSV infection remain poorly understood. Through MeRIP-seq, we identify m6A modifications on SFTSV RNA. We show that YTHDF1 can bind to m6A modification sites on SFTSV, decreasing the stability of SFTSV RNA and reducing the translation efficiency of SFTSV proteins. The SFTSV virulence factor NSs increases lactylation of YTHDF1 and YTHDF1 degradation, thus facilitating SFTSV replication. Our findings indicate that the SFTSV protein NSs induce lactylation to inhibit YTHDF1 as a countermeasure to host's YTHDF1-mediated degradation of m6A-marked viral mRNAs.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s44319-024-00307-2
Chunyan Hu, Gaoming Liu, Zhan Zhang, Qi Pan, Xiaoxiao Zhang, Weiqiang Liu, Zihao Li, Meng Li, Pingfen Zhu, Ting Ji, Paul A Garber, Xuming Zhou
The impact of negative selection against deleterious mutations in endangered species remains underexplored. Recent studies have measured mutation load by comparing the accumulation of deleterious mutations, however, this method is most effective when comparing within and between populations of phylogenetically closely related species. Here, we introduced new statistics, LDcor, and its standardized form nLDcor, which allows us to detect and compare global linkage disequilibrium of deleterious mutations across species using unphased genotypes. These statistics measure averaged pairwise standardized covariance and standardize mutation differences based on the standard deviation of alleles to reflect selection intensity. We then examined selection strength in the genomes of seven mammals. Tigers exhibited an over-dispersion of deleterious mutations, while gorillas, giant pandas, and golden snub-nosed monkeys displayed negative linkage disequilibrium. Furthermore, the distribution of deleterious mutations in threatened mammals did not reveal consistent trends. Our results indicate that these newly developed statistics could help us understand the genetic burden of threatened species.
{"title":"Genetic linkage disequilibrium of deleterious mutations in threatened mammals.","authors":"Chunyan Hu, Gaoming Liu, Zhan Zhang, Qi Pan, Xiaoxiao Zhang, Weiqiang Liu, Zihao Li, Meng Li, Pingfen Zhu, Ting Ji, Paul A Garber, Xuming Zhou","doi":"10.1038/s44319-024-00307-2","DOIUrl":"https://doi.org/10.1038/s44319-024-00307-2","url":null,"abstract":"<p><p>The impact of negative selection against deleterious mutations in endangered species remains underexplored. Recent studies have measured mutation load by comparing the accumulation of deleterious mutations, however, this method is most effective when comparing within and between populations of phylogenetically closely related species. Here, we introduced new statistics, LDcor, and its standardized form nLDcor, which allows us to detect and compare global linkage disequilibrium of deleterious mutations across species using unphased genotypes. These statistics measure averaged pairwise standardized covariance and standardize mutation differences based on the standard deviation of alleles to reflect selection intensity. We then examined selection strength in the genomes of seven mammals. Tigers exhibited an over-dispersion of deleterious mutations, while gorillas, giant pandas, and golden snub-nosed monkeys displayed negative linkage disequilibrium. Furthermore, the distribution of deleterious mutations in threatened mammals did not reveal consistent trends. Our results indicate that these newly developed statistics could help us understand the genetic burden of threatened species.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s44319-024-00303-6
Daniel Giménez-Llorente, Ana Cuadrado, María José Andreu, Inmaculada Sanclemente-Alamán, Maria Solé-Ferran, Miriam Rodríguez-Corsino, Ana Losada
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.
{"title":"STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1.","authors":"Daniel Giménez-Llorente, Ana Cuadrado, María José Andreu, Inmaculada Sanclemente-Alamán, Maria Solé-Ferran, Miriam Rodríguez-Corsino, Ana Losada","doi":"10.1038/s44319-024-00303-6","DOIUrl":"https://doi.org/10.1038/s44319-024-00303-6","url":null,"abstract":"<p><p>Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.1038/s44319-024-00263-x
Jianheng Fox Liu, Samie R Jaffrey
{"title":"Dinoflagellate mRNA is pervasively modified with m<sup>1</sup>A.","authors":"Jianheng Fox Liu, Samie R Jaffrey","doi":"10.1038/s44319-024-00263-x","DOIUrl":"10.1038/s44319-024-00263-x","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4634-4635"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1038/s44319-024-00267-7
Honghui Zhang, Ying Cui, Bohan Yang, Zhenzhen Hou, Mengge Zhang, Wei Su, Tailai Chen, Yuehong Bian, Mei Li, Zi-Jiang Chen, Han Zhao, Shigang Zhao, Keliang Wu
CHK1 mutations could cause human zygote arrest at the pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescued the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.
{"title":"CHK1 controls zygote pronuclear envelope breakdown by regulating F-actin through interacting with MICAL3.","authors":"Honghui Zhang, Ying Cui, Bohan Yang, Zhenzhen Hou, Mengge Zhang, Wei Su, Tailai Chen, Yuehong Bian, Mei Li, Zi-Jiang Chen, Han Zhao, Shigang Zhao, Keliang Wu","doi":"10.1038/s44319-024-00267-7","DOIUrl":"10.1038/s44319-024-00267-7","url":null,"abstract":"<p><p>CHK1 mutations could cause human zygote arrest at the pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescued the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4876-4897"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-03DOI: 10.1038/s44319-024-00281-9
Ivanéia V Nunes, Luisa Breitenbach, Sarah Pawusch, Tatjana Eigenbrod, Swetha Ananth, Paulina Schad, Oliver T Fackler, Falk Butter, Alexander H Dalpke, Lan-Sun Chen
TLR8 senses single-stranded RNA (ssRNA) fragments, processed via cleavage by ribonuclease (RNase) T2 and RNase A family members. Processing by these RNases releases uridines and purine-terminated residues resulting in TLR8 activation. Monocytes show high expression of RNase 6, yet this RNase has not been analyzed for its physiological contribution to the recognition of bacterial RNA by TLR8. Here, we show a role for RNase 6 in TLR8 activation. BLaER1 cells, transdifferentiated into monocyte-like cells, as well as primary monocytes deficient for RNASE6 show a dampened TLR8-dependent response upon stimulation with isolated bacterial RNA (bRNA) and also upon infection with live bacteria. Pretreatment of bacterial RNA with recombinant RNase 6 generates fragments that induce TLR8 stimulation in RNase 6 knockout cells. 2'O-RNA methyl modification, when introduced at the first uridine in the UA dinucleotide, impairs processing by RNase 6 and dampens TLR8 stimulation. In summary, our data show that RNase 6 processes bacterial RNA and generates uridine-terminated breakdown products that activate TLR8.
{"title":"Bacterial RNA sensing by TLR8 requires RNase 6 processing and is inhibited by RNA 2'O-methylation.","authors":"Ivanéia V Nunes, Luisa Breitenbach, Sarah Pawusch, Tatjana Eigenbrod, Swetha Ananth, Paulina Schad, Oliver T Fackler, Falk Butter, Alexander H Dalpke, Lan-Sun Chen","doi":"10.1038/s44319-024-00281-9","DOIUrl":"10.1038/s44319-024-00281-9","url":null,"abstract":"<p><p>TLR8 senses single-stranded RNA (ssRNA) fragments, processed via cleavage by ribonuclease (RNase) T2 and RNase A family members. Processing by these RNases releases uridines and purine-terminated residues resulting in TLR8 activation. Monocytes show high expression of RNase 6, yet this RNase has not been analyzed for its physiological contribution to the recognition of bacterial RNA by TLR8. Here, we show a role for RNase 6 in TLR8 activation. BLaER1 cells, transdifferentiated into monocyte-like cells, as well as primary monocytes deficient for RNASE6 show a dampened TLR8-dependent response upon stimulation with isolated bacterial RNA (bRNA) and also upon infection with live bacteria. Pretreatment of bacterial RNA with recombinant RNase 6 generates fragments that induce TLR8 stimulation in RNase 6 knockout cells. 2'O-RNA methyl modification, when introduced at the first uridine in the UA dinucleotide, impairs processing by RNase 6 and dampens TLR8 stimulation. In summary, our data show that RNase 6 processes bacterial RNA and generates uridine-terminated breakdown products that activate TLR8.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4674-4692"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-30DOI: 10.1038/s44319-024-00270-y
Sandip Patra, Rupinder Kaur
Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.
{"title":"Aspartyl proteases target host actin nucleator complex protein to limit epithelial innate immunity.","authors":"Sandip Patra, Rupinder Kaur","doi":"10.1038/s44319-024-00270-y","DOIUrl":"10.1038/s44319-024-00270-y","url":null,"abstract":"<p><p>Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4846-4875"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-16DOI: 10.1038/s44319-024-00288-2
Amelia M Knudsen-Clark, Daniel Mwangi, Juliana Cazarin, Kristina Morris, Cameron Baker, Lauren M Hablitz, Matthew N McCall, Minsoo Kim, Brian J Altman
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
{"title":"Circadian rhythms of macrophages are altered by the acidic tumor microenvironment.","authors":"Amelia M Knudsen-Clark, Daniel Mwangi, Juliana Cazarin, Kristina Morris, Cameron Baker, Lauren M Hablitz, Matthew N McCall, Minsoo Kim, Brian J Altman","doi":"10.1038/s44319-024-00288-2","DOIUrl":"10.1038/s44319-024-00288-2","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"5080-5112"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-18DOI: 10.1038/s44319-024-00208-4
Junqing Sun, Lu Kuai, Lei Zhang, Yufeng Xie, Yanfang Zhang, Yan Li, Qi Peng, Yuekun Shao, Qiuxian Yang, Wen-Xia Tian, Junhao Zhu, Jianxun Qi, Yi Shi, Tao Deng, George F Gao
Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.
甲型流感病毒(FluA)的基因组转录和复制由病毒 RNA 聚合酶(FluAPol)催化,在整个病毒生命周期中受到微妙的控制。感染后期从转录到复制的转换对于后代病毒的产生至关重要,而病毒非结构蛋白 NS2 被认为参与了这一转换的调控。然而,NS2 的潜在调控机制和结构多年来一直未被发现。在这里,我们以 ~3.0 Å 的分辨率确定了 FluAPol-NS2 复合物的冷冻电镜结构。令人惊讶的是,三个结构域互换的 NS2 二聚体将三个对称的 FluPol 二聚体排列成一个高度有序的桶状六聚体。进一步的结构和功能分析表明,由于立体冲突,NS2 的结合不仅阻碍了 FluAPol 与 Pol II CTD 之间的相互作用,而且还使 FluAPol 在复制酶构象中停滞,从而损害了它的转录酶活性。此外,这是首次可视化的全长 NS2 结构。我们的发现揭示了 FluA 转录-复制转换的关键分子机制,对开发抗病毒药物具有重要意义。
{"title":"NS2 induces an influenza A RNA polymerase hexamer and acts as a transcription to replication switch.","authors":"Junqing Sun, Lu Kuai, Lei Zhang, Yufeng Xie, Yanfang Zhang, Yan Li, Qi Peng, Yuekun Shao, Qiuxian Yang, Wen-Xia Tian, Junhao Zhu, Jianxun Qi, Yi Shi, Tao Deng, George F Gao","doi":"10.1038/s44319-024-00208-4","DOIUrl":"10.1038/s44319-024-00208-4","url":null,"abstract":"<p><p>Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4708-4727"},"PeriodicalIF":6.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}