Pub Date : 2026-01-06DOI: 10.1038/s44319-025-00673-5
Gabriela Zurawska, Zuzanna Sas, Aneta Jończy, Raghunandan Mahadeva, Patryk Slusarczyk, Marta Chwałek, Daniel Seehofer, Georg Damm, Rafał Mazgaj, Marcin Skórzyński, Maria Kulecka, Izabela Rumieńczyk, Morgane Moulin, Kamil Jastrzębski, Kevin Waldron, Michal Mikula, Anders Etzerodt, Remigiusz Serwa, Marta Miączyńska, Tomasz P Rygiel, Katarzyna Mleczko-Sanecka
Mild rupture of aged erythrocytes occurs in the spleen, resulting in hemoglobin (Hb) release, whereas pathological hemolysis characterizes several diseases. Hb detoxification is attributed to macrophages, but other routes of Hb clearance remain elusive. Here, we uncover that Hb uptake is chiefly executed by liver sinusoidal endothelial cells (LSECs) via macropinocytosis. Consistently, LSECs display proteomic signatures indicative of heme catabolism, ferritin iron storage, antioxidant defense, and macropinocytic capacity, alongside high iron content and expression of the iron exporter ferroportin. Erythrocyte/Hb transfusion assays demonstrate that splenic macrophages excel in erythrophagocytosis, while LSECs and Kupffer cells scavenge the spleen-borne hemolysis products Hb and erythrocyte membranes, respectively. High Hb doses result in transient hepatic iron retention, LSEC-specific induction of heme-catabolizing Hmox1, along with the iron-sensing Bmp6-hepcidin axis culminating in hypoferremia. Transcriptional induction of Bmp6 in LSECs is phenocopied by erythrocyte lysis upon phenylhydrazine and elicits a distinct transcriptional signature compared to iron. Collectively, we identify LSECs as key Hb scavengers, a function that establishes the spleen-to-liver axis for iron recycling and contributes to heme detoxification during hemolysis.
{"title":"Liver sinusoidal endothelial cells constitute a major route for hemoglobin clearance.","authors":"Gabriela Zurawska, Zuzanna Sas, Aneta Jończy, Raghunandan Mahadeva, Patryk Slusarczyk, Marta Chwałek, Daniel Seehofer, Georg Damm, Rafał Mazgaj, Marcin Skórzyński, Maria Kulecka, Izabela Rumieńczyk, Morgane Moulin, Kamil Jastrzębski, Kevin Waldron, Michal Mikula, Anders Etzerodt, Remigiusz Serwa, Marta Miączyńska, Tomasz P Rygiel, Katarzyna Mleczko-Sanecka","doi":"10.1038/s44319-025-00673-5","DOIUrl":"https://doi.org/10.1038/s44319-025-00673-5","url":null,"abstract":"<p><p>Mild rupture of aged erythrocytes occurs in the spleen, resulting in hemoglobin (Hb) release, whereas pathological hemolysis characterizes several diseases. Hb detoxification is attributed to macrophages, but other routes of Hb clearance remain elusive. Here, we uncover that Hb uptake is chiefly executed by liver sinusoidal endothelial cells (LSECs) via macropinocytosis. Consistently, LSECs display proteomic signatures indicative of heme catabolism, ferritin iron storage, antioxidant defense, and macropinocytic capacity, alongside high iron content and expression of the iron exporter ferroportin. Erythrocyte/Hb transfusion assays demonstrate that splenic macrophages excel in erythrophagocytosis, while LSECs and Kupffer cells scavenge the spleen-borne hemolysis products Hb and erythrocyte membranes, respectively. High Hb doses result in transient hepatic iron retention, LSEC-specific induction of heme-catabolizing Hmox1, along with the iron-sensing Bmp6-hepcidin axis culminating in hypoferremia. Transcriptional induction of Bmp6 in LSECs is phenocopied by erythrocyte lysis upon phenylhydrazine and elicits a distinct transcriptional signature compared to iron. Collectively, we identify LSECs as key Hb scavengers, a function that establishes the spleen-to-liver axis for iron recycling and contributes to heme detoxification during hemolysis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145910942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective visualization of 3D microscopy data is essential for communicating biological results. While scientific 3D rendering software is specifically designed for this purpose, it often lacks the flexibility found in non-scientific software like Blender, which is a free and open-source 3D graphics platform. However, loading microscopy data in Blender is not trivial. To bridge this gap, we introduce Microscopy Nodes, an extension for Blender that enables the seamless integration of large microscopy data. Microscopy Nodes provides efficient loading and visualization of up to 5D microscopy data from Tif and OME-Zarr files. Microscopy Nodes supports various visualization modes including volumetric, isosurface, and label-mask representations, and offers additional tools for slicing, annotation, and dynamic adjustments. By leveraging Blender's advanced rendering capabilities, users can create high-quality visualizations that accommodate both light and electron microscopy. Microscopy Nodes makes powerful, clear data visualization available to all researchers, regardless of their computational experience, and is available through the Blender extensions platform with comprehensive tutorials.
{"title":"Microscopy Nodes: versatile 3D microscopy visualization with Blender.","authors":"Aafke Gros, Chandni Bhickta, Granita Lokaj, Brady Johnston, Yannick Schwab, Simone Köhler, Niccolò Banterle","doi":"10.1038/s44319-025-00654-8","DOIUrl":"https://doi.org/10.1038/s44319-025-00654-8","url":null,"abstract":"<p><p>Effective visualization of 3D microscopy data is essential for communicating biological results. While scientific 3D rendering software is specifically designed for this purpose, it often lacks the flexibility found in non-scientific software like Blender, which is a free and open-source 3D graphics platform. However, loading microscopy data in Blender is not trivial. To bridge this gap, we introduce Microscopy Nodes, an extension for Blender that enables the seamless integration of large microscopy data. Microscopy Nodes provides efficient loading and visualization of up to 5D microscopy data from Tif and OME-Zarr files. Microscopy Nodes supports various visualization modes including volumetric, isosurface, and label-mask representations, and offers additional tools for slicing, annotation, and dynamic adjustments. By leveraging Blender's advanced rendering capabilities, users can create high-quality visualizations that accommodate both light and electron microscopy. Microscopy Nodes makes powerful, clear data visualization available to all researchers, regardless of their computational experience, and is available through the Blender extensions platform with comprehensive tutorials.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145905893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00667-3
Cecilia Perez-Borrajero, Frank Stein, Kristian Schweimer, Mandy Rettel, Jennifer J Schwarz, Per Haberkant, Karine Lapouge, Jesse Gayk, Thomas Hoffmann, Sagar Bhogaraju, Kyung-Min Noh, Mikhail Savitski, Julia Mahamid, Janosch Hennig
TRIM2 is a mammalian E3 ligase with particularly high expression in Purkinje neurons, where it contributes to neuronal development and homeostasis. The understanding of ubiquitin E3 ligase function hinges on thoroughly identifying their cellular targets, but the transient nature of signaling complexes leading to ubiquitination poses a significant challenge for detailed mechanistic studies. Here, we tailored a recently developed ubiquitin-specific proximity labeling tool to identify substrates of TRIM2 in cells. We show that TRIM2 targets proteins involved in the endolysosomal pathway. Specifically, we demonstrate using biochemical and structural studies, that TRIM2 ubiquitinates TMEM106B at lysine residues located in the cytosolic N-terminal region. Substrate recognition involves a direct interaction between TRIM2 and a newly identified zinc-coordination motif in TMEM106B that mediates homodimerization, is required for specific protein-protein interactions, and lysosomal size regulation. We found that in addition to catalysis, the tripartite motif is involved in substrate recruitment. Our study thus contributes a catalog of TRIM2 effectors and identifies a previously unrecognized regulatory region of TMEM106B crucial to its function.
{"title":"TRIM2 E3 ligase substrate discovery reveals zinc-mediated regulation of TMEM106B in the endolysosomal pathway.","authors":"Cecilia Perez-Borrajero, Frank Stein, Kristian Schweimer, Mandy Rettel, Jennifer J Schwarz, Per Haberkant, Karine Lapouge, Jesse Gayk, Thomas Hoffmann, Sagar Bhogaraju, Kyung-Min Noh, Mikhail Savitski, Julia Mahamid, Janosch Hennig","doi":"10.1038/s44319-025-00667-3","DOIUrl":"https://doi.org/10.1038/s44319-025-00667-3","url":null,"abstract":"<p><p>TRIM2 is a mammalian E3 ligase with particularly high expression in Purkinje neurons, where it contributes to neuronal development and homeostasis. The understanding of ubiquitin E3 ligase function hinges on thoroughly identifying their cellular targets, but the transient nature of signaling complexes leading to ubiquitination poses a significant challenge for detailed mechanistic studies. Here, we tailored a recently developed ubiquitin-specific proximity labeling tool to identify substrates of TRIM2 in cells. We show that TRIM2 targets proteins involved in the endolysosomal pathway. Specifically, we demonstrate using biochemical and structural studies, that TRIM2 ubiquitinates TMEM106B at lysine residues located in the cytosolic N-terminal region. Substrate recognition involves a direct interaction between TRIM2 and a newly identified zinc-coordination motif in TMEM106B that mediates homodimerization, is required for specific protein-protein interactions, and lysosomal size regulation. We found that in addition to catalysis, the tripartite motif is involved in substrate recruitment. Our study thus contributes a catalog of TRIM2 effectors and identifies a previously unrecognized regulatory region of TMEM106B crucial to its function.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00672-6
Xiaoya Wang, Huanju Liu, Zhiyong Yin, Tianning Shao, Lin Li, Jun Ma, Feng He
Folliculogenesis is a process that requires accurate interpretation of female physiological cues and elaborate coordination between the growing oocyte and its surrounding follicle cells, each being capable of responding to external signals. Here, we investigate the role of insulin signaling in Drosophila follicle cells. Using a phase separation-based reporter system, we observe a surge of insulin receptor activity in follicle cells during vitellogenic stages, a surge that is disrupted by a maternal high-sucrose diet. Single-cell RNA-seq reveals a diet-sensitive subpopulation of stage-8 follicle cells, which exhibits a reduction in CrebA-mediated transcription of genes for yolk and vitelline membrane proteins. Our results suggest a critical role of CrebA in implementing the stage-specific effect of insulin signaling to boost the secretory capacity of follicle cells. Mechanistically, CrebA is directly repressed by nuclear FoxO that is subject to insulin control, a regulatory axis that we show is conserved in human granulosa cells. This study delineates a mechanism through which insulin and nutrient cues act on a developmental transition via modulating the biosynthetic and secretory functions of the ovary.
{"title":"An insulin receptor activity surge in follicle cells drives vitellogenesis by upregulating CrebA.","authors":"Xiaoya Wang, Huanju Liu, Zhiyong Yin, Tianning Shao, Lin Li, Jun Ma, Feng He","doi":"10.1038/s44319-025-00672-6","DOIUrl":"https://doi.org/10.1038/s44319-025-00672-6","url":null,"abstract":"<p><p>Folliculogenesis is a process that requires accurate interpretation of female physiological cues and elaborate coordination between the growing oocyte and its surrounding follicle cells, each being capable of responding to external signals. Here, we investigate the role of insulin signaling in Drosophila follicle cells. Using a phase separation-based reporter system, we observe a surge of insulin receptor activity in follicle cells during vitellogenic stages, a surge that is disrupted by a maternal high-sucrose diet. Single-cell RNA-seq reveals a diet-sensitive subpopulation of stage-8 follicle cells, which exhibits a reduction in CrebA-mediated transcription of genes for yolk and vitelline membrane proteins. Our results suggest a critical role of CrebA in implementing the stage-specific effect of insulin signaling to boost the secretory capacity of follicle cells. Mechanistically, CrebA is directly repressed by nuclear FoxO that is subject to insulin control, a regulatory axis that we show is conserved in human granulosa cells. This study delineates a mechanism through which insulin and nutrient cues act on a developmental transition via modulating the biosynthetic and secretory functions of the ovary.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00628-w
Benjamin D Trump, Christopher L Cummings, Beth Ellinport, Stephanie Galaitsi, Thomas Janisko, Elizaveta Pinigina, Hannah Herzig, Cindy S Groff-Vindman, Markus Schmidt, Gerald Epstein, Ruth Mampuys, Christian Haggenmiller, Tatyana Novossiolova, Travis Tubbs, James H Lambert, Alexander Titus, Igor Linkov
{"title":"Governing the AI-biotech convergence : The rapid progress in and the dual-use nature of biotechnology and AI requires adaptive and resilient regulatory frameworks to address potential risks.","authors":"Benjamin D Trump, Christopher L Cummings, Beth Ellinport, Stephanie Galaitsi, Thomas Janisko, Elizaveta Pinigina, Hannah Herzig, Cindy S Groff-Vindman, Markus Schmidt, Gerald Epstein, Ruth Mampuys, Christian Haggenmiller, Tatyana Novossiolova, Travis Tubbs, James H Lambert, Alexander Titus, Igor Linkov","doi":"10.1038/s44319-025-00628-w","DOIUrl":"https://doi.org/10.1038/s44319-025-00628-w","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00683-3
Juan P Bolaños, Angeles Almeida
Astrocytes, the most abundant glial cell type in the central nervous system, have traditionally been viewed from the perspective of metabolic support, particularly supplying neurons with lactate via glycolysis. This view has focused heavily on glucose metabolism as the primary mode of sustaining neuronal function. However, recent research challenges this paradigm by positioning astrocytes as dynamic metabolic hubs that actively engage in lipid metabolism, especially mitochondrial fatty acid β-oxidation. Far from serving solely as an energy source, fatty acid ß-oxidation in astrocytes orchestrates reactive oxygen species-mediated signaling pathways that modulate neuron-glia communication and cognitive outcomes. This review integrates recent advances on astrocytic fatty acid ß-oxidation and ketogenesis, alongside other metabolic pathways converging on reactive oxygen species dynamics, including cholesterol metabolism and peroxisomal β-oxidation. In reframing astrocytic metabolism from energy provision to signaling, we propose new directions for understanding central nervous system function and dysfunction.
{"title":"Signaling roles for astrocytic lipid metabolism in brain function.","authors":"Juan P Bolaños, Angeles Almeida","doi":"10.1038/s44319-025-00683-3","DOIUrl":"https://doi.org/10.1038/s44319-025-00683-3","url":null,"abstract":"<p><p>Astrocytes, the most abundant glial cell type in the central nervous system, have traditionally been viewed from the perspective of metabolic support, particularly supplying neurons with lactate via glycolysis. This view has focused heavily on glucose metabolism as the primary mode of sustaining neuronal function. However, recent research challenges this paradigm by positioning astrocytes as dynamic metabolic hubs that actively engage in lipid metabolism, especially mitochondrial fatty acid β-oxidation. Far from serving solely as an energy source, fatty acid ß-oxidation in astrocytes orchestrates reactive oxygen species-mediated signaling pathways that modulate neuron-glia communication and cognitive outcomes. This review integrates recent advances on astrocytic fatty acid ß-oxidation and ketogenesis, alongside other metabolic pathways converging on reactive oxygen species dynamics, including cholesterol metabolism and peroxisomal β-oxidation. In reframing astrocytic metabolism from energy provision to signaling, we propose new directions for understanding central nervous system function and dysfunction.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00681-5
Victor de Lorenzo
{"title":"From domination to partnership : Lab-trained microorganisms for environmental bioremediation.","authors":"Victor de Lorenzo","doi":"10.1038/s44319-025-00681-5","DOIUrl":"https://doi.org/10.1038/s44319-025-00681-5","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1038/s44319-025-00680-6
Ronald P de Vries, Mao Peng
{"title":"Give credit where credit is due, also for omics data.","authors":"Ronald P de Vries, Mao Peng","doi":"10.1038/s44319-025-00680-6","DOIUrl":"https://doi.org/10.1038/s44319-025-00680-6","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-11-20DOI: 10.1038/s44319-025-00604-4
Hannah Heininger, Xiao Feng, Alp Altunkaya, Fang Zheng, Florian Stockinger, Benedikt Wefers, Stephan A Müller, Pieter Giesbertz, Sarah K Tschirner, Dorina Shqau, Helmuth Adelsberger, Alexey Ponomarenko, Thomas Fenzl, Christian Alzheimer, Stefan F Lichtenthaler, Tobias Huth
The β-secretase BACE1 has become a prime target in Alzheimer's disease (AD) therapy, because it drives the production of pathogenic amyloid β peptides. However, clinical trials with BACE1-targeting drugs were halted due to adverse effects on cognitive performance. We propose here that cognitive impairment by BACE1 inhibitors may be a corollary of a higher function of BACE1 related to proper sleep regulation. To address non-enzymatic effects of BACE1 on ion channels likely involved in the sleep-wake cycle, we analyze sleep patterns in both BACE1-KO mice and a newly generated transgenic line expressing a proteolysis-deficient BACE1 variant (BACE1-KI). We find that BACE1-KI and BACE1-KO mice display common and distinct sleep-wake disturbances. Compared with their respective wild-type littermates, both mutant lines sleep less during the light phase (when they preferentially rest). Furthermore, transition rates between wake and sleep states are altered, as are sleep spindles and EEG power spectra mainly in the gamma range. Thus, a better understanding of how BACE1 interferes with sleep-modulated behaviors is needed if clinical trials with BACE1-targeted inhibitors are to resume.
{"title":"BACE1 regulates sleep-wake cycle through both enzymatic and non-enzymatic actions.","authors":"Hannah Heininger, Xiao Feng, Alp Altunkaya, Fang Zheng, Florian Stockinger, Benedikt Wefers, Stephan A Müller, Pieter Giesbertz, Sarah K Tschirner, Dorina Shqau, Helmuth Adelsberger, Alexey Ponomarenko, Thomas Fenzl, Christian Alzheimer, Stefan F Lichtenthaler, Tobias Huth","doi":"10.1038/s44319-025-00604-4","DOIUrl":"10.1038/s44319-025-00604-4","url":null,"abstract":"<p><p>The β-secretase BACE1 has become a prime target in Alzheimer's disease (AD) therapy, because it drives the production of pathogenic amyloid β peptides. However, clinical trials with BACE1-targeting drugs were halted due to adverse effects on cognitive performance. We propose here that cognitive impairment by BACE1 inhibitors may be a corollary of a higher function of BACE1 related to proper sleep regulation. To address non-enzymatic effects of BACE1 on ion channels likely involved in the sleep-wake cycle, we analyze sleep patterns in both BACE1-KO mice and a newly generated transgenic line expressing a proteolysis-deficient BACE1 variant (BACE1-KI). We find that BACE1-KI and BACE1-KO mice display common and distinct sleep-wake disturbances. Compared with their respective wild-type littermates, both mutant lines sleep less during the light phase (when they preferentially rest). Furthermore, transition rates between wake and sleep states are altered, as are sleep spindles and EEG power spectra mainly in the gamma range. Thus, a better understanding of how BACE1 interferes with sleep-modulated behaviors is needed if clinical trials with BACE1-targeted inhibitors are to resume.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"50-68"},"PeriodicalIF":6.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12796456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145563079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}