Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.203
Posner Esther
{"title":"Navigating the Global Paper Crisis","authors":"Posner Esther","doi":"10.2138/gselements.19.4.203","DOIUrl":"https://doi.org/10.2138/gselements.19.4.203","url":null,"abstract":"<jats:p />","PeriodicalId":11643,"journal":{"name":"Elements","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.248
{"title":"Mineralogical Society of the UK and Ireland","authors":"","doi":"10.2138/gselements.19.4.248","DOIUrl":"https://doi.org/10.2138/gselements.19.4.248","url":null,"abstract":"","PeriodicalId":11643,"journal":{"name":"Elements","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.206
{"title":"Meet the Authors","authors":"","doi":"10.2138/gselements.19.4.206","DOIUrl":"https://doi.org/10.2138/gselements.19.4.206","url":null,"abstract":"","PeriodicalId":11643,"journal":{"name":"Elements","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.234
Pedro Leão, Christopher T. Lefèvre
Some organisms have the unique capacity to geolocate and navigate in response to the Earth’s magnetic field lines. Migratory birds and fishes are the best-documented animals that evolved this capacity to guide their movements. In the microbial world, magnetotactic bacteria (MTB) and multicellular magnetotactic prokaryotes (MMPs) have been the only known magnetoreceptive microorganisms for decades. Some microeukaryotes also orient their motility axis along magnetic field lines thanks to the exploitation of MTB magnetism. The magnetic guidance of these prokaryotes and eukaryotes is due to the biomineralization of magnetic crystals. This article provides a brief overview of the current knowledge concerning the different multicellular prokaryotes and micro/macroeukaryotes capable of magnetoreception. We also discuss the evolution of this unique ability.
{"title":"Magnetic Guidance in Multicellular Prokaryotes and Eukaryotes","authors":"Pedro Leão, Christopher T. Lefèvre","doi":"10.2138/gselements.19.4.234","DOIUrl":"https://doi.org/10.2138/gselements.19.4.234","url":null,"abstract":"Some organisms have the unique capacity to geolocate and navigate in response to the Earth’s magnetic field lines. Migratory birds and fishes are the best-documented animals that evolved this capacity to guide their movements. In the microbial world, magnetotactic bacteria (MTB) and multicellular magnetotactic prokaryotes (MMPs) have been the only known magnetoreceptive microorganisms for decades. Some microeukaryotes also orient their motility axis along magnetic field lines thanks to the exploitation of MTB magnetism. The magnetic guidance of these prokaryotes and eukaryotes is due to the biomineralization of magnetic crystals. This article provides a brief overview of the current knowledge concerning the different multicellular prokaryotes and micro/macroeukaryotes capable of magnetoreception. We also discuss the evolution of this unique ability.","PeriodicalId":11643,"journal":{"name":"Elements","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.208
James M. Byrne, Matthieu Amor
Biomagnetism describes the biological origin of magnetism within living organisms. This phenomenon occurs due to the formation of iron-based minerals that exhibit magnetic ordering at room temperature. Perhaps the most studied form of biomagnetism originates in bacteria, especially magnetotactic bacteria that produce internal magnetite and greigite grains and iron-reducing bacteria that produce magnetite nanoparticles externally as a byproduct of iron respiration. These bacteria likely contribute to a significant proportion of environmental magnetite. The emergence of biomagnetism remains unclear, although it is thought that magnetotactic bacteria evolved this mechanism several billion years ago. Understanding how and why micro-organisms generate biomagnetism is helping to shed light on the origin of life on Earth and potentially on other planets. Biomagnetism is also of broad interest to industrial and environmental applications.
{"title":"Biomagnetism: Insights Into Magnetic Minerals Produced by Microorganisms","authors":"James M. Byrne, Matthieu Amor","doi":"10.2138/gselements.19.4.208","DOIUrl":"https://doi.org/10.2138/gselements.19.4.208","url":null,"abstract":"Biomagnetism describes the biological origin of magnetism within living organisms. This phenomenon occurs due to the formation of iron-based minerals that exhibit magnetic ordering at room temperature. Perhaps the most studied form of biomagnetism originates in bacteria, especially magnetotactic bacteria that produce internal magnetite and greigite grains and iron-reducing bacteria that produce magnetite nanoparticles externally as a byproduct of iron respiration. These bacteria likely contribute to a significant proportion of environmental magnetite. The emergence of biomagnetism remains unclear, although it is thought that magnetotactic bacteria evolved this mechanism several billion years ago. Understanding how and why micro-organisms generate biomagnetism is helping to shed light on the origin of life on Earth and potentially on other planets. Biomagnetism is also of broad interest to industrial and environmental applications.","PeriodicalId":11643,"journal":{"name":"Elements","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135165175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.252
{"title":"Mineralogical Association of Canada","authors":"","doi":"10.2138/gselements.19.4.252","DOIUrl":"https://doi.org/10.2138/gselements.19.4.252","url":null,"abstract":"","PeriodicalId":11643,"journal":{"name":"Elements","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.2138/gselements.19.4.256
{"title":"Japan Association of Mineralogical Sciences","authors":"","doi":"10.2138/gselements.19.4.256","DOIUrl":"https://doi.org/10.2138/gselements.19.4.256","url":null,"abstract":"","PeriodicalId":11643,"journal":{"name":"Elements","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}