{"title":"Cover Picture: Engineering in Life Sciences 1'24","authors":"","doi":"10.1002/elsc.202470011","DOIUrl":"https://doi.org/10.1002/elsc.202470011","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202470011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139109942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Process Analytical Technologies (PATs) are taking a key role in the run for automatization in the biopharmaceutical industry. Spectroscopic methods such as Raman spectroscopy or mid-infrared (MIR) spectroscopy are getting more recognition in the recent years for inline monitoring of bioprocesses due to their ability to measure various molecules simultaneously. However, their dependency on laborious model calibration making them a challenge to implement. In this study, a novel one-point calibration that requires a single reference point prior to the inline monitoring of glucose and lactate in bioprocesses with MIR spectroscopy is assessed with 22 mammalian cell perfusion (PER) processes in two different scales and four different products. Concentrations are predicted over all PERs runs with a root mean square error (RMSE) of 0.29 g/L for glucose and 0.24 g/L for lactate, respectively. For comparison conventional partial least square regression (PLSR) models were used and trained with spectroscopic data from six bioreactor runs in two different scales and three products. The general accuracy of those models (RMSE of 0.41 g/L for glucose and 0.16 g/L for lactate) are in the range of the accuracy of the one-point calibration. This shows the potential of the one-point calibration as an approach making spectroscopy more accessible for bioprocess development.
{"title":"Automized inline monitoring in perfused mammalian cell culture by MIR spectroscopy without calibration model building","authors":"Hannah Marienberg, Nicole Desch, Vitalii Mozin, Lorenz Sykora-Mirle, Anja Müller, Andreas Roth, Mathias Käfer, Rüdiger Neef","doi":"10.1002/elsc.202300237","DOIUrl":"10.1002/elsc.202300237","url":null,"abstract":"<p>Process Analytical Technologies (PATs) are taking a key role in the run for automatization in the biopharmaceutical industry. Spectroscopic methods such as Raman spectroscopy or mid-infrared (MIR) spectroscopy are getting more recognition in the recent years for inline monitoring of bioprocesses due to their ability to measure various molecules simultaneously. However, their dependency on laborious model calibration making them a challenge to implement. In this study, a novel one-point calibration that requires a single reference point prior to the inline monitoring of glucose and lactate in bioprocesses with MIR spectroscopy is assessed with 22 mammalian cell perfusion (PER) processes in two different scales and four different products. Concentrations are predicted over all PERs runs with a root mean square error (RMSE) of 0.29 g/L for glucose and 0.24 g/L for lactate, respectively. For comparison conventional partial least square regression (PLSR) models were used and trained with spectroscopic data from six bioreactor runs in two different scales and three products. The general accuracy of those models (RMSE of 0.41 g/L for glucose and 0.16 g/L for lactate) are in the range of the accuracy of the one-point calibration. This shows the potential of the one-point calibration as an approach making spectroscopy more accessible for bioprocess development.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Engineering in Life Sciences 12'23","authors":"","doi":"10.1002/elsc.202370121","DOIUrl":"https://doi.org/10.1002/elsc.202370121","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 12","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most recent advances for phosphorus (P) recovery using brewery yeast on laboratory scale were used to scale up to a pilot-scale process (BioP-Rec module) and applied in a full-scale wastewater treatment plant (WWTP). A P balance was established for WWTP Markranstädt according to two thresholds: (1) the economic feasibility threshold for P recovery of 0.05 kg/m3 of free P, and (2) the German Sewage Sludge Ordinance (GSSO) threshold, which demands that all WWTPs with a P content in dry matter (DM) of biosolids of 20 gP/kgDM or higher in the coming years must perform mandatory P recovery. In terms of defined thresholds, return and excess sludges were identified as the most feasible WWTP process streams for P recovery. In a 1 m3 BioP-Rec module a 3 stage process was established. From the P-rich water-phase of the return sludge produced in stage 1, which contained 0.051 kg/m3 of free P, 77.56% was taken up by P-depleted brewer's yeast Saccharomyces pastorianus in 3 h in stage 2. In stage 3, the yeast was concentrated in 1 h to produce yeast sludge as a fertilizer product. We demonstrated a novel pilot-scale process for the production of bio-based P-rich fertilizer.
利用酿酒酵母在实验室规模上进行磷(P)回收的最新进展被用于扩大到中试规模的工艺(BioP-Rec 模块),并应用于大规模污水处理厂(WWTP)。根据两个阈值为 Markranstädt 污水处理厂建立了 P 平衡:(1) P 回收的经济可行性阈值为 0.05 kg/m3 游离 P,(2) 德国污水污泥条例 (GSSO) 阈值,该条例要求在未来几年内,所有生物固体干物质 (DM) 中 P 含量达到或超过 20 gP/kgDM 的污水处理厂都必须进行强制性 P 回收。根据规定的阈值,回流污泥和过量污泥被认为是最可行的回收 P 的污水处理厂工艺流。在一个 1 立方米的 BioP-Rec 模块中,建立了一个三阶段工艺。第 1 阶段产生的回流污泥中富含 P 的水相(游离 P 含量为 0.051 kg/m3),在第 2 阶段的 3 小时内,77.56% 的 P 被贫 P 啤酒酵母吸收。在第 3 阶段,酵母在 1 小时内浓缩,产生酵母污泥作为肥料产品。我们展示了一种生产富含 P 的生物基肥料的新型中试规模工艺。
{"title":"Biological recovery of phosphorus (BioP-Rec) from wastewater streams using brewer's yeast on pilot-scale","authors":"Vedran Vučić, Hauke Harms, Susann Müller","doi":"10.1002/elsc.202300208","DOIUrl":"10.1002/elsc.202300208","url":null,"abstract":"<p>Most recent advances for phosphorus (P) recovery using brewery yeast on laboratory scale were used to scale up to a pilot-scale process (BioP-Rec module) and applied in a full-scale wastewater treatment plant (WWTP). A P balance was established for WWTP Markranstädt according to two thresholds: (1) the economic feasibility threshold for P recovery of 0.05 kg/m<sup>3</sup> of free P, and (2) the German Sewage Sludge Ordinance (GSSO) threshold, which demands that all WWTPs with a P content in dry matter (DM) of biosolids of 20 gP/kg<sub>DM</sub> or higher in the coming years must perform mandatory P recovery. In terms of defined thresholds, return and excess sludges were identified as the most feasible WWTP process streams for P recovery. In a 1 m<sup>3</sup> BioP-Rec module a 3 stage process was established. From the P-rich water-phase of the return sludge produced in stage 1, which contained 0.051 kg/m<sup>3</sup> of free P, 77.56% was taken up by P-depleted brewer's yeast <i>Saccharomyces pastorianus</i> in 3 h in stage 2. In stage 3, the yeast was concentrated in 1 h to produce yeast sludge as a fertilizer product. We demonstrated a novel pilot-scale process for the production of bio-based P-rich fertilizer.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on Candida albicans cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 μL sample volume, glass particle size below 10 μm, concentration of 0.2 μg, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.
{"title":"Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification","authors":"Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman","doi":"10.1002/elsc.202300230","DOIUrl":"10.1002/elsc.202300230","url":null,"abstract":"<p>We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on <i>Candida albicans</i> cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 μL sample volume, glass particle size below 10 μm, concentration of 0.2 μg, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growing world population, public awareness of animal welfare, environmental impacts and changes in meat consumption leads to the search for novel approaches to food production. Novel foods include products with a new or specifically modified molecular structure, foods made from microorganisms, fungi, algae or insects, as well as from animal cell or tissue cultures. The latter approach is known by various names: “clean meat”, “in vitro meat” and “cell-cultured” or “(cell-)cultivated meat”. Here, cells isolated from agronomically important species are expanded ex vivo to produce cell biomass used in unstructured meat or to grow and differentiate cells on scaffolds to produce structured meat analogues. Despite the fast-growing field and high financial interest from investors and governments, cultivated meat production still faces challenges ranging from cell source choice, affordable expansion, use of cruelty-free and food-grade media, regulatory issues and consumer acceptance. This overview discusses the above challenges and possible solutions and strategies in the production of cultivated meat. The review integrates multifaceted historical, social, and technological insights of the field, and provides both an engaging comprehensive introduction for general interested and a robust perspective for experts.
{"title":"Cultivated meat manufacturing: Technology, trends, and challenges","authors":"Marline Kirsch, Jordi Morales-Dalmau, Antonina Lavrentieva","doi":"10.1002/elsc.202300227","DOIUrl":"10.1002/elsc.202300227","url":null,"abstract":"<p>The growing world population, public awareness of animal welfare, environmental impacts and changes in meat consumption leads to the search for novel approaches to food production. Novel foods include products with a new or specifically modified molecular structure, foods made from microorganisms, fungi, algae or insects, as well as from animal cell or tissue cultures. The latter approach is known by various names: “clean meat”, “in vitro meat” and “cell-cultured” or “(cell-)cultivated meat”. Here, cells isolated from agronomically important species are expanded ex vivo to produce cell biomass used in unstructured meat or to grow and differentiate cells on scaffolds to produce structured meat analogues. Despite the fast-growing field and high financial interest from investors and governments, cultivated meat production still faces challenges ranging from cell source choice, affordable expansion, use of cruelty-free and food-grade media, regulatory issues and consumer acceptance. This overview discusses the above challenges and possible solutions and strategies in the production of cultivated meat. The review integrates multifaceted historical, social, and technological insights of the field, and provides both an engaging comprehensive introduction for general interested and a robust perspective for experts.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 12","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH4-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H2-producing Bacteroides, homoacetogenic Eubacteriaceae and methanogenic Methanosarcinaceae, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.
{"title":"Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives","authors":"Xinyu Zhu, Ping Li, Feng Ju","doi":"10.1002/elsc.202300216","DOIUrl":"10.1002/elsc.202300216","url":null,"abstract":"<p>Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH<sub>4</sub>-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H<sub>2</sub>-producing <i>Bacteroides</i>, homoacetogenic <i>Eubacteriaceae</i> and methanogenic <i>Methanosarcinaceae</i>, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miao Zhou, Jie Ma, Meng Kang, Wenjie Tang, Siting Xia, Jie Yin, Yulong Yin
Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.
{"title":"Flavonoids, gut microbiota, and host lipid metabolism","authors":"Miao Zhou, Jie Ma, Meng Kang, Wenjie Tang, Siting Xia, Jie Yin, Yulong Yin","doi":"10.1002/elsc.202300065","DOIUrl":"10.1002/elsc.202300065","url":null,"abstract":"<p>Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136352108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Engineering in Life Sciences 11'23","authors":"","doi":"10.1002/elsc.202370111","DOIUrl":"https://doi.org/10.1002/elsc.202370111","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109231180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.
{"title":"Endospore production of Bacillus spp. for industrial use","authors":"Riekje Biermann, Sascha Beutel","doi":"10.1002/elsc.202300013","DOIUrl":"https://doi.org/10.1002/elsc.202300013","url":null,"abstract":"<p>The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming <i>Bacillus</i> spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different <i>Bacillus</i> spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109168046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}