首页 > 最新文献

Engineering in Life Sciences最新文献

英文 中文
Cover Picture: Engineering in Life Sciences 12'24 封面图片:Engineering in Life Sciences 12'24
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-05 DOI: 10.1002/elsc.202470121
{"title":"Cover Picture: Engineering in Life Sciences 12'24","authors":"","doi":"10.1002/elsc.202470121","DOIUrl":"https://doi.org/10.1002/elsc.202470121","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202470121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Succinic Acid Production With Actinobacillus succinogenes –Influence of an Electric Potential on the Intercellular NADH/NAD+ Balance 琥珀酸放线菌产琥珀酸——电位对细胞间NADH/NAD+平衡的影响。
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-13 DOI: 10.1002/elsc.202400053
Jan-Niklas Hengsbach, Marcel Cwienczek, Wolfgang Laudensack, Judith Stiefelmaier, Nils Tippkötter, Roland Ulber

Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO2 fixation using Actinobacillus succinogenes. In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD+) balance. However, it remains unclear whether BES can improve NADH regeneration and achieve higher NADH/NAD+ ratios across all growth phases of A. succinogenes. This study investigates the impact of an applied electrical potential on the intracellular NADH/NAD+ ratio during an electrochemical-assisted fermentation process. Using an adapted high-performance liquid chromatography method with a Supelcosil LC-18-T column, it was demonstrated that NADH availability in BES, particularly during the stationary growth phase, improved by up to 1.98-fold compared to the control. This enhancement in reducing power led to a succinate yield of 0.747 ± 0.01 g g−1, representing a 15.65% increase compared to a fermentation without electrochemical assistance. These findings support the expectation that the use of BES could enhance the competitiveness of bio-based succinate production.

生物电化学系统(BESs)为化学生产提供了一种可持续的方法,包括提高琥珀酸的生产。通过将发酵与BES相结合,琥珀酸放线菌可以实现可持续的琥珀酸生产和CO2固定。在文献中,BES的潜在应用通常与琥珀酸盐产量的增加有关,因为它有望提高NADH的可用性,从而影响细胞内烟酰胺腺嘌呤二核苷酸(NADH/NAD+)的平衡。然而,目前尚不清楚BES是否能改善琥珀酸草所有生长阶段的NADH再生并实现更高的NADH/NAD+比率。本研究探讨了在电化学辅助发酵过程中,外加电位对细胞内NADH/NAD+比值的影响。采用Supelcosil LC-18-T色谱柱的高效液相色谱方法,研究表明,与对照相比,BES中的NADH利用率提高了1.98倍,特别是在固定生长阶段。这种还原能力的增强导致琥珀酸产率为0.747±0.01 g g-1,与没有电化学辅助的发酵相比,增加了15.65%。这些发现支持了使用BES可以提高生物基琥珀酸盐生产竞争力的期望。
{"title":"Succinic Acid Production With Actinobacillus succinogenes –Influence of an Electric Potential on the Intercellular NADH/NAD+ Balance","authors":"Jan-Niklas Hengsbach,&nbsp;Marcel Cwienczek,&nbsp;Wolfgang Laudensack,&nbsp;Judith Stiefelmaier,&nbsp;Nils Tippkötter,&nbsp;Roland Ulber","doi":"10.1002/elsc.202400053","DOIUrl":"10.1002/elsc.202400053","url":null,"abstract":"<p>Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO<sub>2</sub> fixation using <i>Actinobacillus succinogenes</i>. In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD<sup>+</sup>) balance. However, it remains unclear whether BES can improve NADH regeneration and achieve higher NADH/NAD<sup>+</sup> ratios across all growth phases of <i>A. succinogenes</i>. This study investigates the impact of an applied electrical potential on the intracellular NADH/NAD<sup>+</sup> ratio during an electrochemical-assisted fermentation process. Using an adapted high-performance liquid chromatography method with a Supelcosil LC-18-T column, it was demonstrated that NADH availability in BES, particularly during the stationary growth phase, improved by up to 1.98-fold compared to the control. This enhancement in reducing power led to a succinate yield of 0.747 ± 0.01 g g<sup>−1</sup>, representing a 15.65% increase compared to a fermentation without electrochemical assistance. These findings support the expectation that the use of BES could enhance the competitiveness of bio-based succinate production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 11'24 封面图片:生命科学工程 11'24
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-04 DOI: 10.1002/elsc.202470111
{"title":"Cover Picture: Engineering in Life Sciences 11'24","authors":"","doi":"10.1002/elsc.202470111","DOIUrl":"https://doi.org/10.1002/elsc.202470111","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman-Enabled Predictions of Protein Content and Metabolites in Biopharmaceutical Saccharomyces cerevisiae Fermentations 生物制药酿酒酵母发酵过程中蛋白质含量和代谢物的拉曼预测。
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-16 DOI: 10.1002/elsc.202400045
Jeppe Hagedorn, Guilherme Ramos, Miguel Ressurreição, Ernst Broberg Hansen, Michael Sokolov, Carlos Casado Vázquez, Christos Panos

Raman spectroscopy, a robust and non-invasive analytical method, has demonstrated significant potential for monitoring biopharmaceutical production processes. Its ability to provide detailed information about molecular vibrations makes it ideal for the detection and quantification of therapeutic proteins and critical control parameters in complex biopharmaceutical mixtures. However, its application in Saccharomyces cerevisiae fermentations has been hindered by the inherent strong fluorescence background from the cells. This fluorescence interferes with Raman signals, compromising spectral data accuracy. In this study, we present an approach that mitigates this issue by deploying Raman spectroscopy on cell-free media samples, combined with advanced chemometric modeling. This method enables accurate prediction of protein concentration and key process parameters, fundamental for the control and optimization of biopharmaceutical fermentation processes. Utilizing variable importance in projection (VIP) further enhances model robustness, leading to lower relative root mean squared error of prediction (RMSEP) values across the six targets studied. Our findings highlight the potential of Raman spectroscopy for real-time, on-line monitoring and control of complex microbial fermentations, thereby significantly enhancing the efficiency and quality of S. cerevisiae-based biopharmaceutical production.

拉曼光谱是一种强大的非侵入性分析方法,在监测生物制药生产过程中显示出巨大的潜力。它能够提供有关分子振动的详细信息,使其成为复杂生物制药混合物中治疗性蛋白质和关键控制参数的检测和定量的理想选择。然而,它在酿酒酵母发酵中的应用一直受到细胞固有的强荧光背景的阻碍。这种荧光干扰拉曼信号,影响光谱数据的准确性。在本研究中,我们提出了一种方法,通过在无细胞介质样品上部署拉曼光谱,结合先进的化学计量学建模,缓解了这一问题。该方法能够准确预测蛋白质浓度和关键工艺参数,为生物制药发酵过程的控制和优化奠定了基础。利用预测中的变量重要性(VIP)进一步增强了模型的鲁棒性,从而降低了六个研究目标的相对预测均方根误差(RMSEP)值。我们的研究结果突出了拉曼光谱在复杂微生物发酵过程的实时、在线监测和控制方面的潜力,从而显著提高了酿酒葡萄球菌生物制药生产的效率和质量。
{"title":"Raman-Enabled Predictions of Protein Content and Metabolites in Biopharmaceutical Saccharomyces cerevisiae Fermentations","authors":"Jeppe Hagedorn,&nbsp;Guilherme Ramos,&nbsp;Miguel Ressurreição,&nbsp;Ernst Broberg Hansen,&nbsp;Michael Sokolov,&nbsp;Carlos Casado Vázquez,&nbsp;Christos Panos","doi":"10.1002/elsc.202400045","DOIUrl":"10.1002/elsc.202400045","url":null,"abstract":"<p>Raman spectroscopy, a robust and non-invasive analytical method, has demonstrated significant potential for monitoring biopharmaceutical production processes. Its ability to provide detailed information about molecular vibrations makes it ideal for the detection and quantification of therapeutic proteins and critical control parameters in complex biopharmaceutical mixtures. However, its application in <i>Saccharomyces cerevisiae</i> fermentations has been hindered by the inherent strong fluorescence background from the cells. This fluorescence interferes with Raman signals, compromising spectral data accuracy. In this study, we present an approach that mitigates this issue by deploying Raman spectroscopy on cell-free media samples, combined with advanced chemometric modeling. This method enables accurate prediction of protein concentration and key process parameters, fundamental for the control and optimization of biopharmaceutical fermentation processes. Utilizing variable importance in projection (VIP) further enhances model robustness, leading to lower relative root mean squared error of prediction (RMSEP) values across the six targets studied. Our findings highlight the potential of Raman spectroscopy for real-time, on-line monitoring and control of complex microbial fermentations, thereby significantly enhancing the efficiency and quality of <i>S. cerevisiae</i>-based biopharmaceutical production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency 提高免疫组化效率的机械微振动装置
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-13 DOI: 10.1002/elsc.202400062
Weifeng Zhang, Jirui Li, Fengshan Xie, Liting Zeng, Liangli Hong, Penghao Li, Xiaomiao Yan, Jingliang Xu, Meina Du, Jiongzhi Hong, Dingrong Yi, Jiahao Xie, Jiang Gu

Immunohistochemistry (IHC) is a widely used technique in diagnostic pathology and biomedical research, but there is still a need to shorten the operation process and reduce the cost of antibodies. This study aims to assess a novel IHC technique that incorporates mechanical microvibration (MMV) to expedite the process, reduce antibody consumption, and enhance staining quality. MMV was generated using coin vibration motors attached to glass slides mounted with consecutive tissue sections. Multiple antibodies targeting various antigens were used to stain cancerous and normal tissues, with and without microvibration. Various parameters were tested, including incubation durations, temperatures, and antibody dilutions. The novel method showed the potential to achieve comparable or superior outcomes in significantly less time, utilizing over 10 times less antibody than controls. MMV improved specific staining quality, yielding stronger, and better-defined positive reactions. This was validated through a multicenter double-blind assessment and quantitative image analysis. The possible mechanisms were also investigated. MMV shortens immunohistochemical staining duration, reduces antibody usage, and enhances staining specificity, likely by accelerating antibody movement and diffusion. These improvements translate to time and cost savings, offering clinical and financial value for diagnostic pathology and biomedical research.

免疫组化(IHC)是一种广泛应用于病理诊断和生物医学研究的技术,但仍需缩短操作流程并降低抗体成本。本研究旨在评估一种新型 IHC 技术,该技术结合了机械微振动(MMV)技术,可加快操作流程、减少抗体消耗并提高染色质量。MMV是使用硬币振动电机产生的,该电机连接到装有连续组织切片的玻璃载玻片上。针对不同抗原的多种抗体被用于对癌症和正常组织进行染色,包括使用和不使用微振动。测试了各种参数,包括孵育时间、温度和抗体稀释度。结果表明,这种新方法可以在更短的时间内取得相当或更好的效果,使用的抗体比对照组少 10 倍以上。MMV 提高了特异性染色质量,可产生更强、更清晰的阳性反应。多中心双盲评估和定量图像分析验证了这一点。此外,还对可能的机制进行了研究。MMV 可缩短免疫组化染色时间,减少抗体用量,提高染色特异性,这可能是通过加速抗体的移动和扩散实现的。这些改进节省了时间和成本,为病理诊断和生物医学研究提供了临床和经济价值。
{"title":"Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency","authors":"Weifeng Zhang,&nbsp;Jirui Li,&nbsp;Fengshan Xie,&nbsp;Liting Zeng,&nbsp;Liangli Hong,&nbsp;Penghao Li,&nbsp;Xiaomiao Yan,&nbsp;Jingliang Xu,&nbsp;Meina Du,&nbsp;Jiongzhi Hong,&nbsp;Dingrong Yi,&nbsp;Jiahao Xie,&nbsp;Jiang Gu","doi":"10.1002/elsc.202400062","DOIUrl":"https://doi.org/10.1002/elsc.202400062","url":null,"abstract":"<p>Immunohistochemistry (IHC) is a widely used technique in diagnostic pathology and biomedical research, but there is still a need to shorten the operation process and reduce the cost of antibodies. This study aims to assess a novel IHC technique that incorporates mechanical microvibration (MMV) to expedite the process, reduce antibody consumption, and enhance staining quality. MMV was generated using coin vibration motors attached to glass slides mounted with consecutive tissue sections. Multiple antibodies targeting various antigens were used to stain cancerous and normal tissues, with and without microvibration. Various parameters were tested, including incubation durations, temperatures, and antibody dilutions. The novel method showed the potential to achieve comparable or superior outcomes in significantly less time, utilizing over 10 times less antibody than controls. MMV improved specific staining quality, yielding stronger, and better-defined positive reactions. This was validated through a multicenter double-blind assessment and quantitative image analysis. The possible mechanisms were also investigated. MMV shortens immunohistochemical staining duration, reduces antibody usage, and enhances staining specificity, likely by accelerating antibody movement and diffusion. These improvements translate to time and cost savings, offering clinical and financial value for diagnostic pathology and biomedical research.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 10'24 封面图片:生命科学工程 10'24
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-09 DOI: 10.1002/elsc.202470101
{"title":"Cover Picture: Engineering in Life Sciences 10'24","authors":"","doi":"10.1002/elsc.202470101","DOIUrl":"https://doi.org/10.1002/elsc.202470101","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 10","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202470101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ Product Recovery of Microbially Synthesized Ethyl Acetate from the Exhaust Gas of a Bioreactor by Membrane Technology 膜技术从生物反应器废气中原位回收微生物合成乙酸乙酯的研究。
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-30 DOI: 10.1002/elsc.202400041
Andreas Hoffmann, Alexander Franz, Christian Löser, Thomas Hoyer, Marcus Weyd, Thomas Walther

Ethyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery. Previous research on microbial formation of ethyl acetate has focused on the kinetics of ester synthesis and in part on the ester stripping, while the separation of the ester from the exhaust gas has hardly been investigated. A mixed matrix membrane was developed consisting of Silikalite-1 embedded in polydimethylsiloxane which was installed in a radial–symmetrical membrane module. Evaluation of the separation of ethyl acetate was based on the analysis of the composition of the feed and retentate gas by mass spectrometry. The separation efficiency of the membrane was first tested with varied flows of artificial exhaust gas, containing defined amounts of ethyl acetate. A model for describing the separation process was parametrized by the measured data and used to design a real separation experiment. Ethyl acetate produced from delactosed whey permeate by Kluyveromyces marxianus DSM 5422 in a stirred bioreactor gassed with 0.5 vvm air was successfully separated from the exhaust gas by membranes; 93.6% of the stripped ester was separated. Liquid ethyl acetate was recovered by cooling the permeate gas to ‒78°C, whereby 99.75% of the condensed organic compounds were ethyl acetate. This study demonstrates for the first time that microbially produced and stripped ethyl acetate can be effectively separated from the exhaust gas of bioreactors by membrane technology to obtain the ester in high yield and purity.

乙酸乙酯目前完全由化石资源生产。微生物从富含糖的废物中合成这种酯作为替代品是一个好氧过程。乙酸乙酯是高度挥发性的,因此与生物反应器的废气一起剥离,从而实现原位产品回收。以往对微生物形成乙酸乙酯的研究主要集中在酯合成动力学和部分酯剥离上,而对酯从废气中分离的研究很少。制备了一种由硅石-1包埋聚二甲基硅氧烷组成的混合基质膜,并将其安装在径向对称膜模块中。采用质谱法对进料和保留气的组成进行了分析,评价了乙酸乙酯的分离效果。首先用不同流量的人工废气(含一定量的乙酸乙酯)测试了膜的分离效率。利用实测数据参数化了描述分离过程的模型,并用于设计实际的分离实验。利用马氏克鲁维菌DSM 5422在0.5 vvm空气的搅拌式生物反应器中渗透脱乳糖乳清制备乙酸乙酯,并成功地通过膜分离废气;剥离酯的分离率为93.6%。通过将渗透气体冷却至-78℃回收液体乙酸乙酯,其中99.75%的浓缩有机化合物是乙酸乙酯。本研究首次证明了利用膜技术可以有效地将微生物产生的剥离乙酸乙酯从生物反应器废气中分离出来,获得高收率、高纯度的酯。
{"title":"In situ Product Recovery of Microbially Synthesized Ethyl Acetate from the Exhaust Gas of a Bioreactor by Membrane Technology","authors":"Andreas Hoffmann,&nbsp;Alexander Franz,&nbsp;Christian Löser,&nbsp;Thomas Hoyer,&nbsp;Marcus Weyd,&nbsp;Thomas Walther","doi":"10.1002/elsc.202400041","DOIUrl":"10.1002/elsc.202400041","url":null,"abstract":"<p>Ethyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery. Previous research on microbial formation of ethyl acetate has focused on the kinetics of ester synthesis and in part on the ester stripping, while the separation of the ester from the exhaust gas has hardly been investigated. A mixed matrix membrane was developed consisting of Silikalite-1 embedded in polydimethylsiloxane which was installed in a radial–symmetrical membrane module. Evaluation of the separation of ethyl acetate was based on the analysis of the composition of the feed and retentate gas by mass spectrometry. The separation efficiency of the membrane was first tested with varied flows of artificial exhaust gas, containing defined amounts of ethyl acetate. A model for describing the separation process was parametrized by the measured data and used to design a real separation experiment. Ethyl acetate produced from delactosed whey permeate by <i>Kluyveromyces marxianus</i> DSM 5422 in a stirred bioreactor gassed with 0.5 vvm air was successfully separated from the exhaust gas by membranes; 93.6% of the stripped ester was separated. Liquid ethyl acetate was recovered by cooling the permeate gas to ‒78°C, whereby 99.75% of the condensed organic compounds were ethyl acetate. This study demonstrates for the first time that microbially produced and stripped ethyl acetate can be effectively separated from the exhaust gas of bioreactors by membrane technology to obtain the ester in high yield and purity.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Plant Peroxidases Catalyzing the Degradation of Fluorinated Aromatics Using a Peroxidase Library Approach 利用过氧化物酶库方法鉴定催化氟化芳烃降解的植物过氧化物酶
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-17 DOI: 10.1002/elsc.202400054
Ashton Ware, Sally Hess, David Gligor, Sierra Numer, Jack Gregory, Carson Farmer, Gregory M. Raner, Hector E. Medina

In this work, the degradation of mono- and polyfluorinated phenolic compounds was demonstrated by a series of crude plant peroxidases, including horseradish root (HRP) and six members of the Cucurbita genus. Highly active samples were identified using a library screening approach in which more than 50 crude plant samples were initially evaluated for defluorination activity toward 4-fluorophenol. The highest concentrations were observed in the HRP, pumpkin skin (PKS), and butternut squash skin (BNS), which consistently gave the highest intrinsic rates of decomposition for all the substrates tested. Although HRP exhibited a significant decrease in activity with increased fluorination of the phenolic substrate, PKS showed only minor reductions. Furthermore, in silico studies indicated that the active site of HRP poorly accommodates the steric bulk of additional fluorines, causing the substrate to dock farther from the catalytic heme and thus slowing the catalysis rate. We propose that the PKS active site might be larger, allowing closer access to the perfluorinated substrate, and therefore maintaining higher activity compared to the HRP enzyme. However, detailed kinetic characterization studies of the peroxidases are recommended. Conclusively, the high catalytic activity of PKS and its high yield per gram of tissue make it an excellent candidate for developing environmentally friendly biocatalytic methods for degrading fluorinated aromatics. Finally, the success of the library approach in identifying highly active samples for polyfluorinated aromatic compound (PFAC) degradation suggests the method may find utility in the quest for other advanced catalysts for PFAS degradation.

在这项工作中,一系列粗制植物过氧化物酶(包括辣根(HRP)和葫芦属的六个成员)证明了单氟和多氟酚类化合物的降解能力。通过文库筛选法确定了高活性样本,其中对 50 多种粗制植物样本进行了初步评估,以确定其对 4-氟苯酚的脱氟活性。在 HRP、南瓜皮(PKS)和南瓜皮(BNS)中观察到了最高的浓度,它们对所有测试底物的内在分解率都是最高的。虽然随着酚类底物氟化程度的增加,HRP 的活性会显著降低,但 PKS 的活性仅略有降低。此外,硅学研究表明,HRP 的活性位点不能很好地容纳额外氟的立体体积,导致底物与催化血红素对接得更远,从而减慢了催化速率。我们认为 PKS 的活性位点可能更大,能更接近全氟底物,因此与 HRP 酶相比能保持更高的活性。不过,我们建议对过氧化物酶进行详细的动力学特性研究。总之,PKS 的高催化活性及其每克组织的高产率使其成为开发降解含氟芳烃的环境友好型生物催化方法的绝佳候选物。最后,文库方法成功地鉴定出了降解多氟芳烃化合物(PFAC)的高活性样本,这表明该方法在寻找其他降解多氟芳烃化合物的先进催化剂时可能会派上用场。
{"title":"Identification of Plant Peroxidases Catalyzing the Degradation of Fluorinated Aromatics Using a Peroxidase Library Approach","authors":"Ashton Ware,&nbsp;Sally Hess,&nbsp;David Gligor,&nbsp;Sierra Numer,&nbsp;Jack Gregory,&nbsp;Carson Farmer,&nbsp;Gregory M. Raner,&nbsp;Hector E. Medina","doi":"10.1002/elsc.202400054","DOIUrl":"10.1002/elsc.202400054","url":null,"abstract":"<p>In this work, the degradation of mono- and polyfluorinated phenolic compounds was demonstrated by a series of crude plant peroxidases, including horseradish root (HRP) and six members of the <i>Cucurbita</i> genus. Highly active samples were identified using a library screening approach in which more than 50 crude plant samples were initially evaluated for defluorination activity toward 4-fluorophenol. The highest concentrations were observed in the HRP, pumpkin skin (PKS), and butternut squash skin (BNS), which consistently gave the highest intrinsic rates of decomposition for all the substrates tested. Although HRP exhibited a significant decrease in activity with increased fluorination of the phenolic substrate, PKS showed only minor reductions. Furthermore, in silico studies indicated that the active site of HRP poorly accommodates the steric bulk of additional fluorines, causing the substrate to dock farther from the catalytic heme and thus slowing the catalysis rate. We propose that the PKS active site might be larger, allowing closer access to the perfluorinated substrate, and therefore maintaining higher activity compared to the HRP enzyme. However, detailed kinetic characterization studies of the peroxidases are recommended. Conclusively, the high catalytic activity of PKS and its high yield per gram of tissue make it an excellent candidate for developing environmentally friendly biocatalytic methods for degrading fluorinated aromatics. Finally, the success of the library approach in identifying highly active samples for polyfluorinated aromatic compound (PFAC) degradation suggests the method may find utility in the quest for other advanced catalysts for PFAS degradation.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIGHT—A System for Solvent‐Tight Incubation and Growth Monitoring in High Throughput SIGHT--用于高通量溶剂密闭培养和生长监控的系统
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-11 DOI: 10.1002/elsc.202400037
Jakob Rönitz, Felix Herrmann, Benedikt Wynands, Tino Polen, Nick Wierckx
Physiological characterization of microorganisms in the context of solvent tolerance is a tedious process with a high investment of manual labor while often being limited in throughput capability simultaneously. Therefore, we developed a small‐scale solvent‐impervious cultivation system consisting of screw cap‐sealed glass vials in combination with a 3D‐printed vial holder for the Growth Profiler (EnzyScreen) platform. Components and cultivation conditions were empirically tested, and a suitable setup was found for the intended application. To demonstrate the capability of this cultivation system, an adaptive laboratory evolution was performed to further increase the tolerance of Pseudomonas taiwanensis GRC3 toward styrene. This approach yielded heterogenic cultures with improved growth performances in the presence of styrene from which individual clones were isolated and characterized in high throughput. Several clones with improved growth in the presence of 1% (v/v) styrene were analyzed through whole‐genome sequencing, revealing mutations in the co‐chaperone‐encoding gene dnaJ, RNA polymerase α subunit‐encoding gene rpoA, and loss‐of‐function mutations in the ttgGHI solvent efflux pump repressor encoded by ttgV. The developed cultivation system has proven to be a very useful extension of the Growth Profiler, as it reduces manual workload and allows high‐throughput characterization.
耐溶剂微生物的生理学特征描述是一个繁琐的过程,需要投入大量的人工,同时通量能力往往有限。因此,我们开发了一种小规模不透溶剂培养系统,该系统由螺旋盖密封玻璃瓶和三维打印瓶架组成,适用于生长曲线仪(EnzyScreen)平台。根据经验对组件和培养条件进行了测试,找到了适合预期应用的设置。为了证明该培养系统的能力,进行了适应性实验室进化,以进一步提高台湾假单胞菌 GRC3 对苯乙烯的耐受性。这种方法产生了在苯乙烯存在下具有更好生长性能的异源培养物,从中分离出了单个克隆,并对其进行了高通量表征。通过全基因组测序分析了几个在 1%(v/v)苯乙烯存在下生长性能有所改善的克隆,发现了共伴侣蛋白编码基因 dnaJ、RNA 聚合酶 α 亚基编码基因 rpoA 的突变,以及由 ttgV 编码的 ttgGHI 溶剂外排泵抑制因子的功能缺失突变。事实证明,所开发的培养系统是生长曲线仪的一个非常有用的扩展,因为它减少了人工工作量,并能进行高通量表征。
{"title":"SIGHT—A System for Solvent‐Tight Incubation and Growth Monitoring in High Throughput","authors":"Jakob Rönitz, Felix Herrmann, Benedikt Wynands, Tino Polen, Nick Wierckx","doi":"10.1002/elsc.202400037","DOIUrl":"https://doi.org/10.1002/elsc.202400037","url":null,"abstract":"Physiological characterization of microorganisms in the context of solvent tolerance is a tedious process with a high investment of manual labor while often being limited in throughput capability simultaneously. Therefore, we developed a small‐scale solvent‐impervious cultivation system consisting of screw cap‐sealed glass vials in combination with a 3D‐printed vial holder for the Growth Profiler (EnzyScreen) platform. Components and cultivation conditions were empirically tested, and a suitable setup was found for the intended application. To demonstrate the capability of this cultivation system, an adaptive laboratory evolution was performed to further increase the tolerance of <jats:italic>Pseudomonas taiwanensis</jats:italic> GRC3 toward styrene. This approach yielded heterogenic cultures with improved growth performances in the presence of styrene from which individual clones were isolated and characterized in high throughput. Several clones with improved growth in the presence of 1% (v/v) styrene were analyzed through whole‐genome sequencing, revealing mutations in the co‐chaperone‐encoding gene <jats:italic>dnaJ</jats:italic>, RNA polymerase α subunit‐encoding gene <jats:italic>rpoA</jats:italic>, and loss‐of‐function mutations in the <jats:italic>ttgGHI</jats:italic> solvent efflux pump repressor encoded by <jats:italic>ttgV</jats:italic>. The developed cultivation system has proven to be a very useful extension of the Growth Profiler, as it reduces manual workload and allows high‐throughput characterization.","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"37 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of a Mutualistic Escherichia coli Co-Culture During Violacein Production Depends on the Kind of Carbon Source 互助型大肠杆菌共培养菌群在生产维拉丝素过程中的稳定性取决于碳源种类
IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-08 DOI: 10.1002/elsc.202400025
Simon Schick, Tobias Müller, Ralf Takors, Georg A. Sprenger

The L-tryptophan–derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding Escherichia coli co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L–1 in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.

由 L-色氨酸衍生的紫色色素紫草素(VIO)是在重组细菌中生产出来的,其用途广泛。微生物合成共培养作为合成高价值化合物的高效工厂,正变得越来越重要。在这项工作中,通过代谢工程改造了一种互生和交叉进食的大肠杆菌共培养物,以生产 VIO。这些菌株通过色氨酸(TRP)途径中的辅助营养因子进行了基因改造,从而实现了代谢分工。其中,一个菌株生产蒽酸(ANT),另一个菌株将其转化为 TRP,再进一步转化为 VIO。种群的动态和稳定性取决于碳源的选择,这影响到代谢物的存在和交换,以及整个 VIO 的生产率。我们对四种碳源(D-葡萄糖、甘油、D-半乳糖和 D-木糖)进行了比较。D-木糖导致的共培养显示出稳定的生长和 VIO 产量、ANT-TRP 交换以及 VIO 产量的提高。在摇瓶中,最佳滴度为∼126 mg L-1。该研究证明了在 VIO 合成过程中采用互作方法的重要性和优势,并强调了碳源在共培养稳定性和生产率中的作用。将这些知识应用到大规模生物反应器系统中,对提高整体 VIO 产量具有巨大潜力。
{"title":"Stability of a Mutualistic Escherichia coli Co-Culture During Violacein Production Depends on the Kind of Carbon Source","authors":"Simon Schick,&nbsp;Tobias Müller,&nbsp;Ralf Takors,&nbsp;Georg A. Sprenger","doi":"10.1002/elsc.202400025","DOIUrl":"10.1002/elsc.202400025","url":null,"abstract":"<p>The L-tryptophan–derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding <i>Escherichia coli</i> co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L<sup>–1</sup> in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 10","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering in Life Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1