首页 > 最新文献

Engineering in Life Sciences最新文献

英文 中文
Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives 不同有机负荷和添加剂条件下生物垃圾发酵的微生物组动态和产物概况
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-13 DOI: 10.1002/elsc.202300216
Xinyu Zhu, Ping Li, Feng Ju

Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH4-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H2-producing Bacteroides, homoacetogenic Eubacteriaceae and methanogenic Methanosarcinaceae, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.

生物废料发酵是一种前景广阔的低碳印刷生物能源和生化生产技术。尽管人们认为微生物组决定了生物垃圾的发酵效率和产品特征,但微生物活动如何控制发酵过程的明确机制仍有待探索。本研究调查了不同有机负荷(5、20 和 40 g-VS/L)下生物垃圾发酵的微生物群动态和发酵产物特征,并加入了可能通过抑制甲烷生成(2-溴乙基磺酸盐)或促进电子传递(即还原铁、磁铁矿和活性炭)来调节发酵过程的添加剂。低、中、高负荷发酵的总体发酵产物产量分别为 440、373 和 208 CH4-eq/g-VS。在低和中负荷发酵中,挥发性脂肪酸(VFAs)首先积累,然后逐渐转化为甲烷。在高负荷发酵中,挥发性脂肪酸是整个发酵期的主要发酵产物,占所有产物的 62%。基于 16S rRNA 的分析表明,添加 2-溴乙基磺酸盐和增加有机负荷都会抑制甲烷菌的活性,而促进不同的产生 VFA 的细菌微生物群的活性。此外,活性炭的添加促进了产 H2 的乳酸菌、产同乙酸的优杆菌科和产甲烷的甲烷菌科的活性,它们在发酵过程中的活性动态导致了醋酸盐和甲烷产量的变化。目前的研究结果揭示了影响生物垃圾发酵产物特征的微生物组活性动态机制,为开发微生物组引导的工程方法提供了基本依据,以调节生物垃圾发酵,实现高价值产品回收。
{"title":"Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives","authors":"Xinyu Zhu,&nbsp;Ping Li,&nbsp;Feng Ju","doi":"10.1002/elsc.202300216","DOIUrl":"10.1002/elsc.202300216","url":null,"abstract":"<p>Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH<sub>4</sub>-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H<sub>2</sub>-producing <i>Bacteroides</i>, homoacetogenic <i>Eubacteriaceae</i> and methanogenic <i>Methanosarcinaceae</i>, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoids, gut microbiota, and host lipid metabolism 类黄酮、肠道微生物群和宿主脂质代谢
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-13 DOI: 10.1002/elsc.202300065
Miao Zhou, Jie Ma, Meng Kang, Wenjie Tang, Siting Xia, Jie Yin, Yulong Yin

Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.

类黄酮广泛分布于自然界,具有多种有益的生物效应,包括抗氧化、抗炎和抗肥胖作用。所有这些都与肠道微生物群有关,类黄酮也是宿主与肠道微生物群之间的桥梁。类黄酮通常通过促进或抑制肠道内的特定微生物物种以及改变其代谢物来改变肠道微生物群的组成。反过来,肠道微生物群也会广泛代谢类黄酮。因此,类黄酮与肠道微生物群之间的这种互惠关系可能在维持代谢系统的平衡和功能方面发挥着至关重要的作用。在这篇综述中,我们主要强调了黄酮类化合物的抗氧化、抗炎和抗肥胖等生物效应,并讨论了黄酮类化合物、肠道微生物群和脂质代谢之间的相互作用,阐述了其对宿主脂质代谢的潜在机制。
{"title":"Flavonoids, gut microbiota, and host lipid metabolism","authors":"Miao Zhou,&nbsp;Jie Ma,&nbsp;Meng Kang,&nbsp;Wenjie Tang,&nbsp;Siting Xia,&nbsp;Jie Yin,&nbsp;Yulong Yin","doi":"10.1002/elsc.202300065","DOIUrl":"10.1002/elsc.202300065","url":null,"abstract":"<p>Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136352108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 11'23 封面图片:Engineering in Life Sciences 11'23
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-08 DOI: 10.1002/elsc.202370111
{"title":"Cover Picture: Engineering in Life Sciences 11'23","authors":"","doi":"10.1002/elsc.202370111","DOIUrl":"https://doi.org/10.1002/elsc.202370111","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109231180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endospore production of Bacillus spp. for industrial use 工业用芽孢杆菌的孢子内生产
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-12 DOI: 10.1002/elsc.202300013
Riekje Biermann, Sascha Beutel

The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.

抗生素耐药性的增加和农药的有害使用是现代的一个主要问题。禁止在动物养殖中使用抗生素作为生长促进剂,这使得益生菌市场受到关注。益生菌食品补充剂是多功能的,在动物和人类营养方面显示出有希望的结果。生物农药可以取代化学农药,由于研究的增加,生物农药对植物中的各种害虫非常有效。这些领域的共同点是使用孢子形成细菌。芽孢杆菌属的内孢子形成芽孢杆菌为解决上述问题提供了有效的方法。因此,生物技术生产足够质量的内生孢子已经成为一个创新和经济上可行的研究领域。本文将对不同芽孢杆菌内生孢子的生产进行综述。为此,对近20年来的培养基组成、培养条件和生物工艺优化方法进行了介绍和反思。
{"title":"Endospore production of Bacillus spp. for industrial use","authors":"Riekje Biermann,&nbsp;Sascha Beutel","doi":"10.1002/elsc.202300013","DOIUrl":"https://doi.org/10.1002/elsc.202300013","url":null,"abstract":"<p>The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming <i>Bacillus</i> spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different <i>Bacillus</i> spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109168046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions 肠道微生物群与儿童营养不良:了解联系并探索治疗干预措施
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-05 DOI: 10.1002/elsc.202300070
Sevda Zoghi, Fatemah Sadeghpour Heravi, Zeinab Nikniaz, Masoud Shirmohamadi, Seyed Yaghoub Moaddab, Hamed Ebrahimzadeh Leylabadlo

Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host–microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.

儿童营养不良是一种影响儿童身心健康的新陈代谢状况,会导致儿童发育成熟后出现障碍。儿童营养不良的发生受多种生理和环境因素的影响,包括代谢压力、感染、饮食、遗传变异和肠道微生物群。失衡的肠道微生物群是主要的环境风险因素之一,对宿主的生理机能和儿童营养不良的发展有重大影响。在这篇综述中,我们评估了肠道微生物群与儿童营养不良和营养过剩的关联,然后评估了肠道菌群失调的定量和定性意义,以揭示使用益生菌、益生元、合成益生元、后益生元、粪便微生物群移植和工程生物学方法改变肠道微生物群对能量平衡紊乱管理中的新治疗挑战的影响。了解宿主与微生物群之间的相互作用以及肠道微生物群对其他器官和途径的远程调控,可以提高新治疗方法的有效性,减轻儿童营养不良的负面影响。
{"title":"Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions","authors":"Sevda Zoghi,&nbsp;Fatemah Sadeghpour Heravi,&nbsp;Zeinab Nikniaz,&nbsp;Masoud Shirmohamadi,&nbsp;Seyed Yaghoub Moaddab,&nbsp;Hamed Ebrahimzadeh Leylabadlo","doi":"10.1002/elsc.202300070","DOIUrl":"10.1002/elsc.202300070","url":null,"abstract":"<p>Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host–microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 10'23 封面图片:生命科学工程10’23
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-03 DOI: 10.1002/elsc.202370101
{"title":"Cover Picture: Engineering in Life Sciences 10'23","authors":"","doi":"10.1002/elsc.202370101","DOIUrl":"https://doi.org/10.1002/elsc.202370101","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium 使用优化的化学限定培养基由凝结芽孢杆菌生产内生孢子的生物工艺开发
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-15 DOI: 10.1002/elsc.202300210
Riekje Biermann, Laura Rösner, Lisa-Marie Beyer, Laura Niemeyer, Sascha Beutel
Bacillus coagulans is a promising probiotic, because it combines probiotic properties of Lactobacillus and the ability of Bacillus to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain‐specific bioprocess for B. coagulans was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one‐factor‐at‐a‐time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH‐control. Especially the pH‐control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%–90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH‐control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.
凝结芽孢杆菌是一种很有前途的益生菌,因为它结合了乳酸杆菌的益生菌特性和芽孢杆菌形成内孔的能力。由于这种杂交关系,这种生物的培养具有挑战性。随着益生菌市场的持续增长,人们对这些微生物的生产有了新的关注。在这项工作中,开发了一种凝结芽孢杆菌的菌株特异性生物工艺,一方面支持生长,另一方面确保孢子形成。这种情况并非微不足道,因为这两种代谢状态是相反的。所开发的生物工艺使用了一种改良的化学定义培养基,在适应后,在一次一因子的测定中对其进行了进一步研究。在这项工作的范围内,成功地证明了从摇瓶到生物反应器的转移。研究的工艺参数包括温度、搅拌和pH控制。特别是与摇瓶相比,pH控制改善了生物反应器中的孢子形成。该生物过程产生了80%-90%的孢子形成效率。这对应于由于转移到具有pH控制的生物反应器而使孢子形成效率增加7倍。此外,还进行了实验设计(DoE),以测试生物过程的稳健性。该实验验证了所开发的生物工艺的先前预测的孢子形成效率。然后将生物过程从1L规模放大到10L生物反应器规模。实现了与小规模中类似的80%的孢子形成效率。所开发的生物工艺有助于扩大规模并应用于工业规模,从而有助于满足日益增长的益生菌市场。
{"title":"Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium","authors":"Riekje Biermann,&nbsp;Laura Rösner,&nbsp;Lisa-Marie Beyer,&nbsp;Laura Niemeyer,&nbsp;Sascha Beutel","doi":"10.1002/elsc.202300210","DOIUrl":"https://doi.org/10.1002/elsc.202300210","url":null,"abstract":"Bacillus coagulans is a promising probiotic, because it combines probiotic properties of Lactobacillus and the ability of Bacillus to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain‐specific bioprocess for B. coagulans was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one‐factor‐at‐a‐time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH‐control. Especially the pH‐control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%–90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH‐control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50134360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture 在完全基于膜的抗体捕获过程中整合灌注反应器和连续沉淀。
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-07 DOI: 10.1002/elsc.202300219
Gabriele Recanati, Magdalena Pappenreiter, Christoph Gstoettner, Patrick Scheidl, Elena Domínguez Vega, Bernhard Sissolak, Alois Jungbauer

Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.

连续沉淀与连续切向流过滤相结合是从粗细胞培养上清液中捕获重组抗体的一种具有成本效益的替代方案。通过采用管式反应器,在单元操作之间移除缓冲罐,保持了产品的连续收获和质量流,具有窄停留时间分布(RTD)的优点。我们开发了一种实施两种正交沉淀方法的连续工艺,CaCl2沉淀用于去除宿主细胞DNA,聚乙二醇(PEG)用于捕获重组抗体,对糖基化谱没有影响。我们的实验室规模的原型由两个管式反应器和两级切向流微滤组成,以真正连续的方式连续运行长达8天,没有任何产品流中断,无论是作为独立捕获还是作为集成灌注捕获。此外,我们探索了使用带负电荷的膜吸附器进行流通式阴离子交换作为第一抛光步骤。通过基于沉淀的捕获和第一抛光步骤的组合,我们获得了约80%的产品回收率和恒定的产品质量,宿主细胞蛋白质和宿主细胞DNA都具有两个以上的对数还原值(LRV)。
{"title":"Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture","authors":"Gabriele Recanati,&nbsp;Magdalena Pappenreiter,&nbsp;Christoph Gstoettner,&nbsp;Patrick Scheidl,&nbsp;Elena Domínguez Vega,&nbsp;Bernhard Sissolak,&nbsp;Alois Jungbauer","doi":"10.1002/elsc.202300219","DOIUrl":"10.1002/elsc.202300219","url":null,"abstract":"<p>Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl<sub>2</sub> precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41114057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 9'23 封面图片:生命科学工程9’23
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-01 DOI: 10.1002/elsc.202370091
{"title":"Cover Picture: Engineering in Life Sciences 9'23","authors":"","doi":"10.1002/elsc.202370091","DOIUrl":"https://doi.org/10.1002/elsc.202370091","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 9","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50117492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and evaluation of a 3D-printed optical modified cultivation vessel for improved scattered light measurement of biotechnologically relevant organisms 用于改进生物技术相关生物散射光测量的3d打印光学修饰培养容器的研究和评估
IF 2.7 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-08-23 DOI: 10.1002/elsc.202300204
Johanna S. Rehfeld, Louis M. Kuhnke, Christian Ude, Gernot T. John, Sascha Beutel

In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.

在生物过程开发领域,小型化、并行化和灵活性在降低成本和时间方面发挥着关键作用。为了精确满足这些要求,增材制造(3D打印)是一种理想的技术。3D打印能够根据需要快速成型并经济高效地制造具有复杂几何形状的单独设计的设备。为了成功开发生物工艺,监测工艺相关参数,如pH、溶解氧(DO)和生物量,至关重要。由于离线采样耗时且会导致信息丢失,因此首选在线监测。在这项研究中,评估了具有光学棱镜的3D打印培养容器在不同工业相关微生物和细胞系的上游过程中的用途。研究表明,3D打印的光学修饰井(OMW)对各种生物技术相关的微生物,甚至对哺乳动物悬浮细胞都有好处。用大肠杆菌、枯草芽孢杆菌、酿酒酵母和中国仓鼠卵巢(CHO)细胞进行了评估测试,提供了高度可重复的结果。OMW培养物的生长行为与摇瓶(SF)培养物的行为相当,并且通过使用OMW,在线生物量测量中的信噪比降低了95.8%。特别是在浊度较低的培养阶段,即光密度低于1.0 rel.AU的培养阶段可以首次得到准确的监测。此外,研究表明,3D打印的光学器件可以转移到不同的井几何形状和尺寸,通过小规模定制的3D打印培养容器,能够有效监测个人需求的生物量。
{"title":"Investigation and evaluation of a 3D-printed optical modified cultivation vessel for improved scattered light measurement of biotechnologically relevant organisms","authors":"Johanna S. Rehfeld,&nbsp;Louis M. Kuhnke,&nbsp;Christian Ude,&nbsp;Gernot T. John,&nbsp;Sascha Beutel","doi":"10.1002/elsc.202300204","DOIUrl":"10.1002/elsc.202300204","url":null,"abstract":"<p>In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with <i>Escherichia coli</i>, <i>Bacillus subtilis</i>, <i>Saccharomyces cerevisiae</i>, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 9","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/2b/ELSC-23-e2300204.PMC10472911.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Engineering in Life Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1