Zachary Cosenza, David E. Block, Keith Baar, Xingyu Chen
In this work, we applied a multi-information source modeling technique to solve a multi-objective Bayesian optimization problem involving the simultaneous minimization of cost and maximization of growth for serum-free C2C12 cells using a hyper-volume improvement acquisition function. In sequential batches of custom media experiments designed using our Bayesian criteria, collected using multiple assays targeting different cellular growth dynamics, the algorithm learned to identify the trade-off relationship between long-term growth and cost. We were able to identify several media with more growth of C2C12 cells than the control, as well as a medium with 23% more growth at only 62.5% of the cost of the control. These algorithmically generated media also maintained growth far past the study period, indicating the modeling approach approximates the cell growth well from an extremely limited data set.
{"title":"Multi-objective Bayesian algorithm automatically discovers low-cost high-growth serum-free media for cellular agriculture application","authors":"Zachary Cosenza, David E. Block, Keith Baar, Xingyu Chen","doi":"10.1002/elsc.202300005","DOIUrl":"10.1002/elsc.202300005","url":null,"abstract":"<p>In this work, we applied a multi-information source modeling technique to solve a multi-objective Bayesian optimization problem involving the simultaneous minimization of cost and maximization of growth for serum-free C2C12 cells using a hyper-volume improvement acquisition function. In sequential batches of custom media experiments designed using our Bayesian criteria, collected using multiple assays targeting different cellular growth dynamics, the algorithm learned to identify the trade-off relationship between long-term growth and cost. We were able to identify several media with <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>></mo>\u0000 <mn>100</mn>\u0000 <mo>%</mo>\u0000 </mrow>\u0000 <annotation>$>100%$</annotation>\u0000 </semantics></math> more growth of C2C12 cells than the control, as well as a medium with 23% more growth at only 62.5% of the cost of the control. These algorithmically generated media also maintained growth far past the study period, indicating the modeling approach approximates the cell growth well from an extremely limited data set.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9935867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Capillary biofilm reactors (CBRs) are attractive for growing photoautotrophic bacteria as they allow high cell-density cultivation. Here, we evaluated the CBR system's suitability to grow an artificial consortium composed of Synechocystis sp. PCC 6803 and Pseudomonas sp. VBL120. The impact of reactor material, flow rate, pH, O2, and medium composition on biomass development and long-term biofilm stability at different reactor scales was studied. Silicone was superior over other materials like glass or PVC due to its excellent O2 permeability. High flow rates of 520 μL min−1 prevented biofilm sloughing in 1 m capillary reactors, leading to a 54% higher biomass dry weight combined with the lowest O2 concentration inside the reactor compared to standard operating conditions. Further increase in reactor length to 5 m revealed a limitation in trace elements. Increasing trace elements by a factor of five allowed for complete surface coverage with a biomass dry weight of 36.8 g m−2 and, thus, a successful CBR scale-up by a factor of 25.
Practical application: Cyanobacteria use light energy to upgrade CO2, thereby holding the potential for carbon-neutral production processes. One of the persisting challenges is low cell density due to light limitations and O2 accumulation often occurring in established flat panel or tubular photobioreactors. Compared to planktonic cultures, much higher cell densities (factor 10 to 100) can be obtained in cyanobacterial biofilms. The capillary biofilm reactor (CBR) offers good growth conditions for cyanobacterial biofilms, but its applicability has been shown only on the laboratory scale. Here, a first scale-up study based on sizing up was performed, testing the feasibility of this system for large-scale applications. We demonstrate that by optimizing nutrient supply and flow conditions, the system could be enlarged by factor 25 by enhancing the length of the reactor. This reactor concept, combined with cyanobacterial biofilms and numbering up, holds the potential to be applied as a flexible, carbon-neutral production platform for value-added compounds.
毛细管生物膜反应器(CBRs)对生长光自养细菌具有吸引力,因为它们允许高细胞密度培养。在这里,我们评估了CBR系统生长由聚囊藻属PCC 6803和假单胞菌属VBL120组成的人工群落的适宜性。研究了不同反应器规模下反应器材料、流速、pH、O2和介质组成对生物量发展和生物膜长期稳定性的影响。硅树脂由于其优异的O2渗透性而优于玻璃或PVC等其他材料。520μL min−1的高流速防止了1 m毛细管反应器中的生物膜脱落,与标准操作条件相比,生物量干重增加了54%,反应器内的O2浓度最低。反应器长度进一步增加到5米表明微量元素的限制。将微量元素增加5倍,可以实现完全的表面覆盖,生物质干重为36.8 g m−2,因此,成功地将CBR放大25倍。实际应用:蓝细菌利用光能升级CO2,从而保持碳中和的生产工艺的潜力。持续存在的挑战之一是由于光限制和O2积累导致的低细胞密度,O2积累通常发生在已建立的平板或管状光生物反应器中。与浮游培养物相比,蓝藻生物膜中可以获得更高的细胞密度(因子10-100)。毛细管生物膜反应器(CBR)为蓝藻生物膜提供了良好的生长条件,但其适用性仅在实验室规模上得到证明。在这里,进行了第一次基于规模的放大研究,测试了该系统在大规模应用中的可行性。我们证明,通过优化营养物供应和流动条件,可以通过增加反应器的长度将系统扩大25倍。这种反应器的概念,与蓝藻生物膜和编号相结合,具有作为一种灵活的碳中和的增值化合物生产平台的潜力。
{"title":"Evaluating scaling of capillary photo-biofilm reactors for high cell density cultivation of mixed trophies artificial microbial consortia","authors":"Amelie Kenkel, Rohan Karande, Katja Bühler","doi":"10.1002/elsc.202300014","DOIUrl":"10.1002/elsc.202300014","url":null,"abstract":"<p>Capillary biofilm reactors (CBRs) are attractive for growing photoautotrophic bacteria as they allow high cell-density cultivation. Here, we evaluated the CBR system's suitability to grow an artificial consortium composed of <i>Synechocystis</i> sp. PCC 6803 and <i>Pseudomonas</i> sp. VBL120. The impact of reactor material, flow rate, pH, O<sub>2</sub>, and medium composition on biomass development and long-term biofilm stability at different reactor scales was studied. Silicone was superior over other materials like glass or PVC due to its excellent O<sub>2</sub> permeability. High flow rates of 520 μL min<sup>−1</sup> prevented biofilm sloughing in 1 m capillary reactors, leading to a 54% higher biomass dry weight combined with the lowest O<sub>2</sub> concentration inside the reactor compared to standard operating conditions. Further increase in reactor length to 5 m revealed a limitation in trace elements. Increasing trace elements by a factor of five allowed for complete surface coverage with a biomass dry weight of 36.8 g m<sup>−2</sup> and, thus, a successful CBR scale-up by a factor of 25.</p><p><b>Practical application</b>: Cyanobacteria use light energy to upgrade CO<sub>2</sub>, thereby holding the potential for carbon-neutral production processes. One of the persisting challenges is low cell density due to light limitations and O<sub>2</sub> accumulation often occurring in established flat panel or tubular photobioreactors. Compared to planktonic cultures, much higher cell densities (factor 10 to 100) can be obtained in cyanobacterial biofilms. The capillary biofilm reactor (CBR) offers good growth conditions for cyanobacterial biofilms, but its applicability has been shown only on the laboratory scale. Here, a first scale-up study based on sizing up was performed, testing the feasibility of this system for large-scale applications. We demonstrate that by optimizing nutrient supply and flow conditions, the system could be enlarged by factor 25 by enhancing the length of the reactor. This reactor concept, combined with cyanobacterial biofilms and numbering up, holds the potential to be applied as a flexible, carbon-neutral production platform for value-added compounds.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 9","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10143907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.
{"title":"Biocompatible scaffolds based on collagen and oxidized dextran for endothelial cell survival and function in tissue engineering","authors":"Fatemeh Sabet Sarvestani, Ali-Mohammad Tamaddon, Ramin Yaghoobi, Bita Geramizadeh, Negar Azarpira","doi":"10.1002/elsc.202200140","DOIUrl":"10.1002/elsc.202200140","url":null,"abstract":"<p>Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
非酒精性脂肪肝(NAFLD)是全球日益关注的健康问题,可导致肝病和癌症。非酒精性脂肪肝的特点是脂肪在肝脏中过度积累,与过量饮酒无关。研究表明,肠道微生物与宿主的相互作用可能在非酒精性脂肪肝的发病机制中起着因果作用,而表观遗传修饰是调节这种相互作用的关键机制。在本综述中,我们将探讨肠道微生物群与宿主表观基因组之间的相互作用如何影响非酒精性脂肪肝的发病。具体而言,我们将讨论肠道微生物群衍生因子(如脂多糖(LPS)和短链脂肪酸(SCFA))如何调节非酒精性脂肪肝相关基因的 DNA 甲基化和组蛋白乙酰化,进而影响脂质代谢和免疫稳态。尽管目前的文献表明肠道微生物群与非酒精性脂肪肝之间存在联系,但我们对这种相互影响的分子机制和信号通路的了解仍然有限。因此,需要进行更全面的表观基因组学和多基因组学研究,包括更广泛的临床和动物实验,以进一步探索肠道微生物群与非酒精性脂肪肝相关基因之间的联系机制。预计这些研究将改进基于表观遗传学策略的微生物标记物,并为非酒精性脂肪肝的发病机制提供新的见解,最终解决尚未满足的重大临床需求。
{"title":"Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis","authors":"Ruiqi Tang, Rongrong Liu, Hua Zha, Yiwen Cheng, Zongxin Ling, Lanjuan Li","doi":"10.1002/elsc.202300016","DOIUrl":"10.1002/elsc.202300016","url":null,"abstract":"<p>Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44505655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Engineering in Life Sciences 6'23","authors":"","doi":"10.1002/elsc.202370061","DOIUrl":"https://doi.org/10.1002/elsc.202370061","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50115969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Diep, Heping Leo Shen, Julian A. Wiesner, Nadia Mykytczuk, Vladimiros Papangelakis, Alexander F. Yakunin, Radhakrishnan Mahadevan
Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered Escherichia coli to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.
{"title":"Engineered nickel bioaccumulation in Escherichia coli by NikABCDE transporter and metallothionein overexpression","authors":"Patrick Diep, Heping Leo Shen, Julian A. Wiesner, Nadia Mykytczuk, Vladimiros Papangelakis, Alexander F. Yakunin, Radhakrishnan Mahadevan","doi":"10.1002/elsc.202200133","DOIUrl":"https://doi.org/10.1002/elsc.202200133","url":null,"abstract":"<p>Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered <i>Escherichia coli</i> to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viable cell concentration (VCC) is an essential parameter that is required to support the efficient cultivation of mammalian cells. Although commonly determined using at-line or off-line analytics, in-line capacitance measurements represent a suitable alternative method for the determination of VCC. In addition, these latter efforts are complimentary with the Food and Drug Administration's initiative for process analytical technologies (PATs). However, current applications for online determination of the VCC often rely on single frequency measurements and corresponding linear regression models. It has been reported that this may be insufficient for application at all stages of a mammalian cell culture processes due to changes in multiple cell parameters over time. Alternatively, dielectric spectroscopy, measuring capacitance at multiple frequencies, in combination with multivariate mathematical models, has proven to be more robust. However, this has only been applied for retrospective data analysis. Here, we present the implementation of an O-PLS model for the online processing of multifrequency capacitance signals and the on-the-fly integration of the models’ VCC results into a supervisory control and data acquisition (SCADA) system commonly used for cultivation observation and control. This system was evaluated using a Chinese hamster ovary (CHO) cell perfusion process.
{"title":"Online deployment of an O-PLS model for dielectric spectroscopy-based inline monitoring of viable cell concentrations in Chinese hamster ovary cell perfusion cultivations","authors":"Johannes Lemke, Robert Söldner, Jonas Austerjost","doi":"10.1002/elsc.202200053","DOIUrl":"10.1002/elsc.202200053","url":null,"abstract":"<p>Viable cell concentration (VCC) is an essential parameter that is required to support the efficient cultivation of mammalian cells. Although commonly determined using at-line or off-line analytics, in-line capacitance measurements represent a suitable alternative method for the determination of VCC. In addition, these latter efforts are complimentary with the Food and Drug Administration's initiative for process analytical technologies (PATs). However, current applications for online determination of the VCC often rely on single frequency measurements and corresponding linear regression models. It has been reported that this may be insufficient for application at all stages of a mammalian cell culture processes due to changes in multiple cell parameters over time. Alternatively, dielectric spectroscopy, measuring capacitance at multiple frequencies, in combination with multivariate mathematical models, has proven to be more robust. However, this has only been applied for retrospective data analysis. Here, we present the implementation of an O-PLS model for the online processing of multifrequency capacitance signals and the on-the-fly integration of the models’ VCC results into a supervisory control and data acquisition (SCADA) system commonly used for cultivation observation and control. This system was evaluated using a Chinese hamster ovary (CHO) cell perfusion process.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Da Chen, Yue-Sheng Dong, Yong-Ming Bao, Zhi-Long Xiu
Traditional technology of cell disruption has become one of the bottlenecks restricting the industrialization of genetic engineering products due to its high cost and low efficiency. In this study, a novel bioprocess of phage lysis coupled with salting‐out extraction (SOE) was evaluated. The lysis effect of T7 phage on genetically engineered Escherichia coli expressing κ‐carrageenase was investigated at different multiplicity of infection (MOI), meanwhile the phage and enzyme released into the lysate were separated by SOE. It was found that T7 phage could lyse 99.9% of host cells at MOI = 1 and release more than 90.0% of enzyme within 90 min. After phage lysis, 87.1% of T7 phage and 71.2% of κ‐carrageenase could be distributed at the middle phase and the bottom phase, respectively, in the SOE system composed of 16% ammonium sulfate and 20% ethyl acetate (w/w). Furthermore, κ‐carrageenase in the bottom phase could be salted out by ammonium sulfate with a yield of 40.1%. Phage lysis exhibits some advantages, such as mild operation conditions and low cost. While SOE can efficiently separate phage and intracellular products. Therefore, phage lysis coupled with SOE is expected to become a viable alternative to the classical cell disruption and intracellular product recovery.
{"title":"Salting-out extraction of recombinant κ-carrageenase and phage T7 released from Escherichia coli cells","authors":"Da Chen, Yue-Sheng Dong, Yong-Ming Bao, Zhi-Long Xiu","doi":"10.1002/elsc.202200125","DOIUrl":"https://doi.org/10.1002/elsc.202200125","url":null,"abstract":"Traditional technology of cell disruption has become one of the bottlenecks restricting the industrialization of genetic engineering products due to its high cost and low efficiency. In this study, a novel bioprocess of phage lysis coupled with salting‐out extraction (SOE) was evaluated. The lysis effect of T7 phage on genetically engineered Escherichia coli expressing κ‐carrageenase was investigated at different multiplicity of infection (MOI), meanwhile the phage and enzyme released into the lysate were separated by SOE. It was found that T7 phage could lyse 99.9% of host cells at MOI = 1 and release more than 90.0% of enzyme within 90 min. After phage lysis, 87.1% of T7 phage and 71.2% of κ‐carrageenase could be distributed at the middle phase and the bottom phase, respectively, in the SOE system composed of 16% ammonium sulfate and 20% ethyl acetate (w/w). Furthermore, κ‐carrageenase in the bottom phase could be salted out by ammonium sulfate with a yield of 40.1%. Phage lysis exhibits some advantages, such as mild operation conditions and low cost. While SOE can efficiently separate phage and intracellular products. Therefore, phage lysis coupled with SOE is expected to become a viable alternative to the classical cell disruption and intracellular product recovery.","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50136094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximilian J. Surger, Katharina Mayer, Karthik Shivaram, Felix Stibany, Wilfried Plum, Andreas Schäffer, Simon Eiden, Lars M. Blank
Since 2008, European and German legislative initiatives for climate protection and reduced dependency on fossil resources led to the introduction of biofuels as CO2-reduced alternatives in the heating oil sector. In the case of biodiesel, customers were confronted with accelerated microbial contaminations during storage. Since then, other fuel alternatives, like hydrogenated vegetable oils (HVOs), gas-to-liquid (GtL) products, or oxymethylene ether (OME) have been developed. In this study, we use online monitoring of microbial CO2 production and the simulation of onset of microbial contamination to investigate the contamination potential of fuel alternatives during storage. As references, fossil heating oil of German refineries are used. Biodiesel blends with fossil heating oils confirmed the promotion of microbial activity. In stark contrast, OMEs have an antimicrobial effect. The paraffinic Fischer–Tropsch products and biogenic hydrogenation products demonstrate to be at least as resistant to microbial contamination as fossil heating oils despite allowing a diversity of representative microbes. Through mass spectrometry, elemental analysis, and microbial sequencing, we can discuss fuel properties that affect microbial contaminations. In summary, novel, non-fossil heating oils show clear differences in microbial resistance during long-term storage. Designing blends with an intrinsic resistance against microbial contamination and hence reduced activity might be an option.
{"title":"Evaluating microbial contaminations of alternative heating oils","authors":"Maximilian J. Surger, Katharina Mayer, Karthik Shivaram, Felix Stibany, Wilfried Plum, Andreas Schäffer, Simon Eiden, Lars M. Blank","doi":"10.1002/elsc.202300010","DOIUrl":"10.1002/elsc.202300010","url":null,"abstract":"<p>Since 2008, European and German legislative initiatives for climate protection and reduced dependency on fossil resources led to the introduction of biofuels as CO<sub>2</sub>-reduced alternatives in the heating oil sector. In the case of biodiesel, customers were confronted with accelerated microbial contaminations during storage. Since then, other fuel alternatives, like hydrogenated vegetable oils (HVOs), gas-to-liquid (GtL) products, or oxymethylene ether (OME) have been developed. In this study, we use online monitoring of microbial CO<sub>2</sub> production and the simulation of onset of microbial contamination to investigate the contamination potential of fuel alternatives during storage. As references, fossil heating oil of German refineries are used. Biodiesel blends with fossil heating oils confirmed the promotion of microbial activity. In stark contrast, OMEs have an antimicrobial effect. The paraffinic Fischer–Tropsch products and biogenic hydrogenation products demonstrate to be at least as resistant to microbial contamination as fossil heating oils despite allowing a diversity of representative microbes. Through mass spectrometry, elemental analysis, and microbial sequencing, we can discuss fuel properties that affect microbial contaminations. In summary, novel, non-fossil heating oils show clear differences in microbial resistance during long-term storage. Designing blends with an intrinsic resistance against microbial contamination and hence reduced activity might be an option.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Engineering in Life Sciences 5'23","authors":"","doi":"10.1002/elsc.202370051","DOIUrl":"https://doi.org/10.1002/elsc.202370051","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50121172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}