The plant Artemesia nilagirica, collected from the terrain of the Himalayan region in Uttarakhand, India, was evaluated for its phytochemical composition, antioxidant and anti-inflammatory activities in vitro. The different polarity extracts of the plant were prepared and subjected to GC-MS analysis for their phytochemical composition. Twenty-six compounds were identified in the hexane extract of Artemisia nilagirica that represents 73.30% of the total area. The main compounds were tetracontane (15.21%), heneicosane (6.52%), and phytyl tetradecanoate (5.11%). The methanol extract yielded 26 compounds, accounting for 83.78% of the total compounds detected. The main compounds were palmitic acid (13.25%), alpha-linolenic acid (10.32%), oleamide (9.41%), phytol (8.58%), muco-inositol (7.27%), and neophytadiene (5.05%). The hexane and methanol extracts showed significant metal chelating activity having IC50 values of 2.23±0.01 and 2.41±0.02 µg/mL, respectively, with standard EDTA having an IC50 value of 2.22±0.01 µg/mL. The methanol extract showed a better anti-inflammatory property having an IC50 value of 2.97±0.03 µg/mL compared to the standard diclofenac potassium having an IC50 value of 3.79±0.01 µg/mL. The hexane extract showed better antioxidant activity in terms of metal chelating activity and reducing power activity than the methanol extract. The anti-inflammatory activity of both hexane and methanol extracts showed better results than the standard marketed drug diclofenac potassium. The current study reveals that Artemisia nilagirica plant extracts have potent antioxidant and anti-inflammatory activities. The effective biological compounds of plant extracts, such as phenols and flavonoids, can be potential alternatives to standard pharmaceuticals.
{"title":"Composition, antioxidant and anti-inflammatory activities of different polarity extracts of Artemisia nilagirica collected from hilly areas in the Himalayan terrain of Uttarakhand","authors":"Vaishali Garia, Shiv Kumar Dubey, Ananya Bahuguna, Ravendra Kumar, Om Prakash, Dharmendra Singh Rawat","doi":"10.5155/eurjchem.14.3.323-329.2449","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.323-329.2449","url":null,"abstract":"The plant Artemesia nilagirica, collected from the terrain of the Himalayan region in Uttarakhand, India, was evaluated for its phytochemical composition, antioxidant and anti-inflammatory activities in vitro. The different polarity extracts of the plant were prepared and subjected to GC-MS analysis for their phytochemical composition. Twenty-six compounds were identified in the hexane extract of Artemisia nilagirica that represents 73.30% of the total area. The main compounds were tetracontane (15.21%), heneicosane (6.52%), and phytyl tetradecanoate (5.11%). The methanol extract yielded 26 compounds, accounting for 83.78% of the total compounds detected. The main compounds were palmitic acid (13.25%), alpha-linolenic acid (10.32%), oleamide (9.41%), phytol (8.58%), muco-inositol (7.27%), and neophytadiene (5.05%). The hexane and methanol extracts showed significant metal chelating activity having IC50 values of 2.23±0.01 and 2.41±0.02 µg/mL, respectively, with standard EDTA having an IC50 value of 2.22±0.01 µg/mL. The methanol extract showed a better anti-inflammatory property having an IC50 value of 2.97±0.03 µg/mL compared to the standard diclofenac potassium having an IC50 value of 3.79±0.01 µg/mL. The hexane extract showed better antioxidant activity in terms of metal chelating activity and reducing power activity than the methanol extract. The anti-inflammatory activity of both hexane and methanol extracts showed better results than the standard marketed drug diclofenac potassium. The current study reveals that Artemisia nilagirica plant extracts have potent antioxidant and anti-inflammatory activities. The effective biological compounds of plant extracts, such as phenols and flavonoids, can be potential alternatives to standard pharmaceuticals.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"160 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.401-413.2439
Murad Qassim Abdulraqeb Al-Gunaid, Gayitri Hebbur Maheshwarappa, Shashikala Badaga Shivanna, Mohammed Ali Hussein Dhaif-Allah, Waled Abdo Ahmed, Fares Hezam Al-Ostoot
Nanometal oxides have attracted considerable research interest because of the widespread applications in which nanomaterials can be synthesised in various oxide forms that can adopt various structural geometries with unique electronic band structures. Additionally, nanometal oxides provide unique features imputed to quantum confinement effects that stimulate changes in their optical, electrical, and optoelectronic behaviours. Meanwhile, introducing such nanometal oxides into host polymeric materials enables the formation of advanced polymeric nanocomposites with versatile properties. Even so, the utilisation of such nanocomposites in diverse potential applications requires a fundamental understanding of their inherent material functionalities. Therefore, this document aims to demonstrate the importance of polymer nanocomposites with a special focus on the impact of nanometal oxides to enhance the optical and electrical behaviours of polymer composites for advanced optoelectronic and energy storage applications.
{"title":"Metal oxide nanofillers induced changes in material properties and related applications of polymer composites","authors":"Murad Qassim Abdulraqeb Al-Gunaid, Gayitri Hebbur Maheshwarappa, Shashikala Badaga Shivanna, Mohammed Ali Hussein Dhaif-Allah, Waled Abdo Ahmed, Fares Hezam Al-Ostoot","doi":"10.5155/eurjchem.14.3.401-413.2439","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.401-413.2439","url":null,"abstract":"Nanometal oxides have attracted considerable research interest because of the widespread applications in which nanomaterials can be synthesised in various oxide forms that can adopt various structural geometries with unique electronic band structures. Additionally, nanometal oxides provide unique features imputed to quantum confinement effects that stimulate changes in their optical, electrical, and optoelectronic behaviours. Meanwhile, introducing such nanometal oxides into host polymeric materials enables the formation of advanced polymeric nanocomposites with versatile properties. Even so, the utilisation of such nanocomposites in diverse potential applications requires a fundamental understanding of their inherent material functionalities. Therefore, this document aims to demonstrate the importance of polymer nanocomposites with a special focus on the impact of nanometal oxides to enhance the optical and electrical behaviours of polymer composites for advanced optoelectronic and energy storage applications.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.348-352.2435
Anil Kumar
Groundwater is contaminated by undesirable elements that are introduced directly or indirectly into a natural water reservoir supplied by human activity, thus changing its physico-chemical properties. The north-east of Jhunjhunu in Rajasthan state of India was chosen as the study area due to the lack of research evidence in the past. The heavy metal content of a total of 42 water samples was analysed using an atomic absorption spectrometer. The copper and iron content in the groundwater of the study area is revealing a spatial distribution range of 1.75 to 4.01 mg/L for copper and 0.44 to 1.22 mg/L for iron. The obtained result was compared with Buero of Indian Standard (10500:2012), Indian Council of Medical Research, and World Health Organisation. There are iron and copper mining facilities in the studied area. Therefore, the concentration of both minerals was observed in the groundwater of all sampling stations. The iron and copper content are much higher in groundwater than the permissible limit of Buero of Indian Standard and World Health Organisation. The manganese content was not detected at all sampling sites. Both iron and copper elements are trace elements, and their higher concentration has proven to be a major problem and there are many health risks associated with it. These observed concentrations indicate a hazardous risk to human health. The official authorities should take the necessary measures in this regard.
{"title":"Heavy metal concentrations in drinking water in the region north-east of Jhunjhunu, Rajasthan, India","authors":"Anil Kumar","doi":"10.5155/eurjchem.14.3.348-352.2435","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.348-352.2435","url":null,"abstract":"Groundwater is contaminated by undesirable elements that are introduced directly or indirectly into a natural water reservoir supplied by human activity, thus changing its physico-chemical properties. The north-east of Jhunjhunu in Rajasthan state of India was chosen as the study area due to the lack of research evidence in the past. The heavy metal content of a total of 42 water samples was analysed using an atomic absorption spectrometer. The copper and iron content in the groundwater of the study area is revealing a spatial distribution range of 1.75 to 4.01 mg/L for copper and 0.44 to 1.22 mg/L for iron. The obtained result was compared with Buero of Indian Standard (10500:2012), Indian Council of Medical Research, and World Health Organisation. There are iron and copper mining facilities in the studied area. Therefore, the concentration of both minerals was observed in the groundwater of all sampling stations. The iron and copper content are much higher in groundwater than the permissible limit of Buero of Indian Standard and World Health Organisation. The manganese content was not detected at all sampling sites. Both iron and copper elements are trace elements, and their higher concentration has proven to be a major problem and there are many health risks associated with it. These observed concentrations indicate a hazardous risk to human health. The official authorities should take the necessary measures in this regard.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.337-347.2458
Festus Kipkemoi Langat, Joshua Kiprotich Kibet, Francis Inyangala Okanga, John Onyango Adongo
Currently, groundwater is largely becoming the main source of fresh water in most developing countries. However, various deleterious impacts resulting from anthropogenic activities beneath the earth’s surface have significantly affected groundwater quality, as evidenced in several areas endowed with mineral and hydrocarbon deposits, agricultural activities, and industrial processes. The possible etiological impacts may include cancer and genetic aberrations which result from the toxic effects of organic waterborne contaminants ingested by humans and animals over time. The motivation behind this study was to identify and determine the concentration profiles of various organic pollutants in the wells located along the Kerio Valley water basin near the exploratory wells for hydrocarbons and mining activities. Therefore, this study is necessary in unraveling the level of organic contaminants in the sampled borehole water, which can then be extrapolated to cover other boreholes within the Kerio Valley basin. The study was carried out during the dry season of December 2022. The water samples from the boreholes were extracted using a solid phase extraction procedure and characterized using a gas chromatograph interfaced with a mass selective detector. The findings indicate that benzene derivatives which were mainly xylenes, 1,3,5-trimethylbenzene, 1-ethyl-3-methylbenzene, 1-methyl-2-propylpentylbenzene and polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene, fluoranthene, azulene, and pyrene were found in most of the boreholes sampled. Furthermore, long-chain hydrocarbons were present in all groundwater samples with varying concentrations. The concentration of benzene derivatives ranged from 2.84 to 20.47 ppm. However, polycyclic hydrocarbons exhibited the highest concentrations of all organic pollutants, with pyrene giving a concentration of 23.14 ppm, fluoranthene (18.54 ppm), phenanthrene (14.13 ppm) and anthracene (11.06 ppm). According to the findings reported in this study, most of the borehole water in the Kerio Valley basin is contaminated and may be unsafe for drinking. Most of the reported concentration levels were several times higher than the standards of the U.S. Environmental and Protection Agency. However, it is necessary to develop a policy framework on the assessment and monitoring of water quality in the region and propose urgent measures to ensure a clean water supply for the benefit of residents.
{"title":"Organic contaminants in the groundwater of the Kerio Valley water basin, Baringo County, Kenya","authors":"Festus Kipkemoi Langat, Joshua Kiprotich Kibet, Francis Inyangala Okanga, John Onyango Adongo","doi":"10.5155/eurjchem.14.3.337-347.2458","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.337-347.2458","url":null,"abstract":"Currently, groundwater is largely becoming the main source of fresh water in most developing countries. However, various deleterious impacts resulting from anthropogenic activities beneath the earth’s surface have significantly affected groundwater quality, as evidenced in several areas endowed with mineral and hydrocarbon deposits, agricultural activities, and industrial processes. The possible etiological impacts may include cancer and genetic aberrations which result from the toxic effects of organic waterborne contaminants ingested by humans and animals over time. The motivation behind this study was to identify and determine the concentration profiles of various organic pollutants in the wells located along the Kerio Valley water basin near the exploratory wells for hydrocarbons and mining activities. Therefore, this study is necessary in unraveling the level of organic contaminants in the sampled borehole water, which can then be extrapolated to cover other boreholes within the Kerio Valley basin. The study was carried out during the dry season of December 2022. The water samples from the boreholes were extracted using a solid phase extraction procedure and characterized using a gas chromatograph interfaced with a mass selective detector. The findings indicate that benzene derivatives which were mainly xylenes, 1,3,5-trimethylbenzene, 1-ethyl-3-methylbenzene, 1-methyl-2-propylpentylbenzene and polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene, fluoranthene, azulene, and pyrene were found in most of the boreholes sampled. Furthermore, long-chain hydrocarbons were present in all groundwater samples with varying concentrations. The concentration of benzene derivatives ranged from 2.84 to 20.47 ppm. However, polycyclic hydrocarbons exhibited the highest concentrations of all organic pollutants, with pyrene giving a concentration of 23.14 ppm, fluoranthene (18.54 ppm), phenanthrene (14.13 ppm) and anthracene (11.06 ppm). According to the findings reported in this study, most of the borehole water in the Kerio Valley basin is contaminated and may be unsafe for drinking. Most of the reported concentration levels were several times higher than the standards of the U.S. Environmental and Protection Agency. However, it is necessary to develop a policy framework on the assessment and monitoring of water quality in the region and propose urgent measures to ensure a clean water supply for the benefit of residents.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.376-384.2462
Fatma Aydin, Nahide Burcu Arslan
Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.
以甲醇:四氢呋喃(1:1,v: v)为溶剂,采用慢蒸发法制备了9-氨基吖啶酸苦味酸(9-AAcPc)有机盐,并通过FT-IR、1H NMR和13C NMR波谱法以及单晶x射线衍射分析证实了所制化合物的分子结构。对标题化合物的晶体结构进行了x射线衍射分析,结果表明该化合物存在P-1三斜空间群。2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°,β = 83.330(3)°,γ = 66.595(3)°,V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3,测量反射56338(5.89°≤2Θ≤56.704°),unique 5097 (Rint = 0.0400, Rsigma = 0.0210),用于所有计算。最终R1为0.0552 (I >2σ(I)), wR2为0.1757(所有数据)。利用密度泛函理论对分子几何结构进行了优化。计算了分子前沿轨道,讨论了质子从苦味酸酚羟基转移到不同氮基的概率。利用密度泛函理论方法得到了标题分子的计算电子结构性质,如HOMO和LUMO分析,以及不同的分子静电势图,并将计算结构与实验结构进行了比较。并用TGA/DTG技术分析了晶体的热稳定性。
{"title":"Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate","authors":"Fatma Aydin, Nahide Burcu Arslan","doi":"10.5155/eurjchem.14.3.376-384.2462","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.376-384.2462","url":null,"abstract":"Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.330-336.2432
Sunshine Dominic Kurbah, Ndege Simisi Clovis
A new 'turn on' fluorescence chemosensor derived from coumarin-based compounds was successfully synthesised. N'-(2-Oxo-2H-chromene-3-carbonyl)isonicotinohydrazide (H2L) was characterised by different spectroscopic techniques such as IR, UV-vis, and NMR spectroscopy. The electronic structures of H2L and Al@HL were calculated using the density functional theory method using Becke’s three parameter Lee-Yang-Parr (B3LYP) exchange functional with the 6-31G+(d,p) basis set. The detection limit of H2L for the Al (III) ion was found to be 2.6 µM, which is low enough to detect micromolar and is below the World Health Organisation guideline for drinking water.
{"title":"Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies","authors":"Sunshine Dominic Kurbah, Ndege Simisi Clovis","doi":"10.5155/eurjchem.14.3.330-336.2432","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.330-336.2432","url":null,"abstract":"A new 'turn on' fluorescence chemosensor derived from coumarin-based compounds was successfully synthesised. N'-(2-Oxo-2H-chromene-3-carbonyl)isonicotinohydrazide (H2L) was characterised by different spectroscopic techniques such as IR, UV-vis, and NMR spectroscopy. The electronic structures of H2L and Al@HL were calculated using the density functional theory method using Becke’s three parameter Lee-Yang-Parr (B3LYP) exchange functional with the 6-31G+(d,p) basis set. The detection limit of H2L for the Al (III) ion was found to be 2.6 µM, which is low enough to detect micromolar and is below the World Health Organisation guideline for drinking water.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.370-375.2455
Mohammad Suhail, Safwana Usmani, Mehmood Ahmad
Sickle cell anemia disease has been a great challenge for the world in the present situation. It occurs only due to the polymerization of sickle hemoglobin (HbS) having Pro-Val-Glu (PVG) typed mutation, while the polymerization does not occur in normal hemoglobin (HbA) having Pro-Glu-Glu (PGG) residues. According to data from the literature, Val-beta6 of Pro-Val-Glu is hydrophobic in nature, which appears to fit into a hydrophobic pocket in the adjacent HbS. After the insertion of Pro-Val-Glu into a hydrophobic pocket on the adjacent HbS, the polymerization is started. This is a questionable point on how the replacement of glutamic acid with valine in HbS makes it more reactive to fit into a hydrophobic pocket on adjacent HbS for polymerization. No data from the literature on the reactivity of HbS for polymerization was found yet. This is the first time that the theoretical calculation was done in both HbA and HbS where they were structurally different. After that, a comparative study between PVG and PGG was done at quantum level for the evaluation of the reactivity to fit into a hydrophobic pocket on adjacent HbS. At a quantum level, it was found that the HOMO-LUMO gap of Pro-Val-Glu was lower than that of Pro-Glu-Glu. According to the data from the literature, the lesser HOMO-LUMO gap promotes the initiation of the polymerization reaction. On the basis of the results, it was also shown how the mutation point (Pro-Val-Glu) in HbS becomes more reactive to polymerization, whereas Pro-Glu-Glu in HbA does not. The computational method developed for the first time will be very helpful not only for molecular biologists but also for computational and medicinal chemists. Additionally, the required modifications based on gaps in anti-sickling drug development are also suggested in the presented article.
{"title":"A quantum chemistry background of sickle cell anemia and gaps in antisickling drug development","authors":"Mohammad Suhail, Safwana Usmani, Mehmood Ahmad","doi":"10.5155/eurjchem.14.3.370-375.2455","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.370-375.2455","url":null,"abstract":"Sickle cell anemia disease has been a great challenge for the world in the present situation. It occurs only due to the polymerization of sickle hemoglobin (HbS) having Pro-Val-Glu (PVG) typed mutation, while the polymerization does not occur in normal hemoglobin (HbA) having Pro-Glu-Glu (PGG) residues. According to data from the literature, Val-beta6 of Pro-Val-Glu is hydrophobic in nature, which appears to fit into a hydrophobic pocket in the adjacent HbS. After the insertion of Pro-Val-Glu into a hydrophobic pocket on the adjacent HbS, the polymerization is started. This is a questionable point on how the replacement of glutamic acid with valine in HbS makes it more reactive to fit into a hydrophobic pocket on adjacent HbS for polymerization. No data from the literature on the reactivity of HbS for polymerization was found yet. This is the first time that the theoretical calculation was done in both HbA and HbS where they were structurally different. After that, a comparative study between PVG and PGG was done at quantum level for the evaluation of the reactivity to fit into a hydrophobic pocket on adjacent HbS. At a quantum level, it was found that the HOMO-LUMO gap of Pro-Val-Glu was lower than that of Pro-Glu-Glu. According to the data from the literature, the lesser HOMO-LUMO gap promotes the initiation of the polymerization reaction. On the basis of the results, it was also shown how the mutation point (Pro-Val-Glu) in HbS becomes more reactive to polymerization, whereas Pro-Glu-Glu in HbA does not. The computational method developed for the first time will be very helpful not only for molecular biologists but also for computational and medicinal chemists. Additionally, the required modifications based on gaps in anti-sickling drug development are also suggested in the presented article.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5155/eurjchem.14.3.414-428.2452
Salaha Saeed, Muhammad Yousaf Arshad, Anam Suhail Ahmed
This groundbreaking review explores the crucial role of the circular economy in industrial chemistry and environmental engineering. It surpasses a mere examination of principles and methods, delving into the profound significance and urgency of this transformative shift. By analyzing key elements such as resource efficiency, waste valorization, sustainable product design, industrial symbiosis, and policy integration, the study highlights the power of collaboration, technological advancements, and extensive literature research. It reveals the remarkable alignment between the circular economy and the Sustainable Development Goals (SDGs), emphasizing how circular practices promote resource efficiency, waste reduction, and sustainable production and consumption patterns, thus driving progress across multiple SDGs. With a specific focus on responsible consumption and production, clean energy, innovative industrial practices, climate action, ecosystem protection, water resource management, job creation, economic growth, sustainable urbanization, and collaboration, the review provides a comprehensive roadmap for adopting circularity. Its practical recommendations cover sustainable material selection, resource efficiency, closing loop, digitalization, and robust policy support. In addition, it emphasizes the paramount importance of collaboration, stakeholder engagement, education, capacity building, circular supply chain management, and effective policy frameworks in spearheading circular economy initiatives. Drawing inspiration from diverse circular economy models and compelling case studies in industrial chemistry, the study highlights the integration of environmental, social, and governance (ESG) factors, ensuring both sustainability and positive societal impact. This comprehensive review serves as a guiding light, demonstrating the immense potential of the circular economy in driving sustainable development. It offers actionable guidance for implementing circular practices, empowering professionals to make tangible contributions to a more sustainable future. Additionally, it serves as a foundational piece, fueling the advancement of knowledge, inspiring further research, and propelling remarkable progress in the ever-evolving fields of industrial chemistry and environmental engineering.
{"title":"Advancing circular economy in industrial chemistry and environmental engineering: Principles, alignment with United Nations sustainable development goals, and pathways to implementation","authors":"Salaha Saeed, Muhammad Yousaf Arshad, Anam Suhail Ahmed","doi":"10.5155/eurjchem.14.3.414-428.2452","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.414-428.2452","url":null,"abstract":"This groundbreaking review explores the crucial role of the circular economy in industrial chemistry and environmental engineering. It surpasses a mere examination of principles and methods, delving into the profound significance and urgency of this transformative shift. By analyzing key elements such as resource efficiency, waste valorization, sustainable product design, industrial symbiosis, and policy integration, the study highlights the power of collaboration, technological advancements, and extensive literature research. It reveals the remarkable alignment between the circular economy and the Sustainable Development Goals (SDGs), emphasizing how circular practices promote resource efficiency, waste reduction, and sustainable production and consumption patterns, thus driving progress across multiple SDGs. With a specific focus on responsible consumption and production, clean energy, innovative industrial practices, climate action, ecosystem protection, water resource management, job creation, economic growth, sustainable urbanization, and collaboration, the review provides a comprehensive roadmap for adopting circularity. Its practical recommendations cover sustainable material selection, resource efficiency, closing loop, digitalization, and robust policy support. In addition, it emphasizes the paramount importance of collaboration, stakeholder engagement, education, capacity building, circular supply chain management, and effective policy frameworks in spearheading circular economy initiatives. Drawing inspiration from diverse circular economy models and compelling case studies in industrial chemistry, the study highlights the integration of environmental, social, and governance (ESG) factors, ensuring both sustainability and positive societal impact. This comprehensive review serves as a guiding light, demonstrating the immense potential of the circular economy in driving sustainable development. It offers actionable guidance for implementing circular practices, empowering professionals to make tangible contributions to a more sustainable future. Additionally, it serves as a foundational piece, fueling the advancement of knowledge, inspiring further research, and propelling remarkable progress in the ever-evolving fields of industrial chemistry and environmental engineering.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The multiheterocyclic ring system shows valuable pharmaceutical and biological activities. In the present study, a microwave-assisted three-component reaction between aryl aldehyde, malononitrile, and 5-methyl-2,4-dihydro-3H-pyrazole-3-one led to the synthesis of pyrano[2,3-c]pyrazoles has been described. The reaction was carried out under solvent-free conditions in the presence of a new magnetically recoverable nanocatalyst (CoFe2O4@SiO2-HClO4). The reported protocol offers several advantages such as being environmentally benign, being rapid, inexpensive, having high atom and step economy, and being facile. The simple method of catalyst preparation, easy magnetic recovery, and reusability of the catalyst for four runs are notable features of the nanocatalyst. Antibacterial activity of all synthesized compounds was tested against Escherichia coli and Staphylococcus aureus. All synthesized compounds showed promising biological activity and may be used as a potential antibacterial candidate in biological science.
{"title":"Magnetically recoverable nanocatalyst for the synthesis of pyranopyrazoles: CoFe2O4@SiO2-HClO4","authors":"Nikita Vinod Thakare, Anand Shankar Aswar, Nilesh Govindrao Salunkhe","doi":"10.5155/eurjchem.14.3.385-392.2457","DOIUrl":"https://doi.org/10.5155/eurjchem.14.3.385-392.2457","url":null,"abstract":"The multiheterocyclic ring system shows valuable pharmaceutical and biological activities. In the present study, a microwave-assisted three-component reaction between aryl aldehyde, malononitrile, and 5-methyl-2,4-dihydro-3H-pyrazole-3-one led to the synthesis of pyrano[2,3-c]pyrazoles has been described. The reaction was carried out under solvent-free conditions in the presence of a new magnetically recoverable nanocatalyst (CoFe2O4@SiO2-HClO4). The reported protocol offers several advantages such as being environmentally benign, being rapid, inexpensive, having high atom and step economy, and being facile. The simple method of catalyst preparation, easy magnetic recovery, and reusability of the catalyst for four runs are notable features of the nanocatalyst. Antibacterial activity of all synthesized compounds was tested against Escherichia coli and Staphylococcus aureus. All synthesized compounds showed promising biological activity and may be used as a potential antibacterial candidate in biological science.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}