Roberta Iacono, Federica De Lise, Marco Moracci, Beatrice Cobucci-Ponzano, Andrea Strazzulli
(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.
{"title":"Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications.","authors":"Roberta Iacono, Federica De Lise, Marco Moracci, Beatrice Cobucci-Ponzano, Andrea Strazzulli","doi":"10.1042/EBC20220196","DOIUrl":"https://doi.org/10.1042/EBC20220196","url":null,"abstract":"<p><p>(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 4","pages":"731-751"},"PeriodicalIF":6.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9986310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gwion B Williams, Hairong Ma, Anna N Khusnutdinova, Alexander F Yakunin, Peter N Golyshin
The steady growth in industrial production of synthetic plastics and their limited recycling have resulted in severe environmental pollution and contribute to global warming and oil depletion. Currently, there is an urgent need to develop efficient plastic recycling technologies to prevent further environmental pollution and recover chemical feedstocks for polymer re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic polyesters by microbial carboxylesterases provides an attractive addition to existing mechanical and chemical recycling technologies due to enzyme specificity, low energy consumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. However, the stability and hydrolytic activity of identified natural esterases towards synthetic polyesters are usually insufficient for applications in industrial polyester recycling. This necessitates further efforts on the discovery of robust enzymes, as well as protein engineering of natural enzymes for enhanced activity and stability. In this essay, we discuss the current knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with focus on polyethylene terephthalate (PET), which is one of the five major synthetic polymers. Then, we briefly review the recent progress in the discovery and protein engineering of microbial polyesterases, as well as developing enzyme cocktails and secreted protein expression for applications in the depolymerisation of polyester blends and mixed plastics. Future research aimed at the discovery of novel polyesterases from extreme environments and protein engineering for improved performance will aid developing efficient polyester recycling technologies for the circular plastics economy.
{"title":"Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling.","authors":"Gwion B Williams, Hairong Ma, Anna N Khusnutdinova, Alexander F Yakunin, Peter N Golyshin","doi":"10.1042/EBC20220255","DOIUrl":"10.1042/EBC20220255","url":null,"abstract":"<p><p>The steady growth in industrial production of synthetic plastics and their limited recycling have resulted in severe environmental pollution and contribute to global warming and oil depletion. Currently, there is an urgent need to develop efficient plastic recycling technologies to prevent further environmental pollution and recover chemical feedstocks for polymer re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic polyesters by microbial carboxylesterases provides an attractive addition to existing mechanical and chemical recycling technologies due to enzyme specificity, low energy consumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. However, the stability and hydrolytic activity of identified natural esterases towards synthetic polyesters are usually insufficient for applications in industrial polyester recycling. This necessitates further efforts on the discovery of robust enzymes, as well as protein engineering of natural enzymes for enhanced activity and stability. In this essay, we discuss the current knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with focus on polyethylene terephthalate (PET), which is one of the five major synthetic polymers. Then, we briefly review the recent progress in the discovery and protein engineering of microbial polyesterases, as well as developing enzyme cocktails and secreted protein expression for applications in the depolymerisation of polyester blends and mixed plastics. Future research aimed at the discovery of novel polyesterases from extreme environments and protein engineering for improved performance will aid developing efficient polyester recycling technologies for the circular plastics economy.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 4","pages":"715-729"},"PeriodicalIF":5.6,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10058357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.
{"title":"Structure and function of microbial α-l-fucosidases: a mini review.","authors":"Haiyang Wu, C David Owen, Nathalie Juge","doi":"10.1042/EBC20220158","DOIUrl":"https://doi.org/10.1042/EBC20220158","url":null,"abstract":"<p><p>Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"399-414"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9409472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM. Still, numerous studies report on effects of alginates on bacterial communities from digestive tracts of various, predominantly marine organisms feeding on alginate and some of the involved alginate lyases have been characterized. Other studies describe the beneficial impact on gut microbiota elicited by alginates in animal models, for example, high-fat-diet-fed mice addressing obesity or as feed supplements for livestock. Alginates are depolymerized by a β-elimination reaction catalyzed by polysaccharide lyases (PLs) referred to as alginate lyases (ALs). The ALs are found in 15 of the 42 PL families categorized in the CAZy database. While genome mining has led to prediction of ALs encoded by bacteria of the HGM; currently, only four enzymes from this niche have been characterized biochemically and two crystal structures are reported. Alginates are composed of mannuronate (M) and guluronate (G) residues organized in M-, G-, and MG-blocks, which calls for ALs of complementary specificity to effectively depolymerize alginate to alginate oligosaccharides (AOSs) and monosaccharides. Typically, ALs of different PL families are encoded by genes arranged in clusters denoted as polysaccharide utilization loci. Currently, biochemical and structural analyses of marine bacterial ALs contribute to depicting the mode of action of predicted enzymes from bacteria of the HGM.
{"title":"Gut bacterial alginate degrading enzymes.","authors":"Mette E Rønne, Mikkel Madsen, Tobias Tandrup, Casper Wilkens, Birte Svensson","doi":"10.1042/EBC20220123","DOIUrl":"https://doi.org/10.1042/EBC20220123","url":null,"abstract":"<p><p>Alginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM. Still, numerous studies report on effects of alginates on bacterial communities from digestive tracts of various, predominantly marine organisms feeding on alginate and some of the involved alginate lyases have been characterized. Other studies describe the beneficial impact on gut microbiota elicited by alginates in animal models, for example, high-fat-diet-fed mice addressing obesity or as feed supplements for livestock. Alginates are depolymerized by a β-elimination reaction catalyzed by polysaccharide lyases (PLs) referred to as alginate lyases (ALs). The ALs are found in 15 of the 42 PL families categorized in the CAZy database. While genome mining has led to prediction of ALs encoded by bacteria of the HGM; currently, only four enzymes from this niche have been characterized biochemically and two crystal structures are reported. Alginates are composed of mannuronate (M) and guluronate (G) residues organized in M-, G-, and MG-blocks, which calls for ALs of complementary specificity to effectively depolymerize alginate to alginate oligosaccharides (AOSs) and monosaccharides. Typically, ALs of different PL families are encoded by genes arranged in clusters denoted as polysaccharide utilization loci. Currently, biochemical and structural analyses of marine bacterial ALs contribute to depicting the mode of action of predicted enzymes from bacteria of the HGM.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"387-398"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9703528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure-function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
本文综述了参与植物半纤维素木聚糖降解的微生物酯酶。该多糖的主链由β-1,4-糖苷连接的木吡喃基残基组成,被其他糖取代并部分乙酰化。除了乙酸酯外,植物木聚糖中还有另外两种类型的酯键。l -阿拉伯糖脲基侧链与酚酸形成酯,主要与阿魏酸形成酯。阿魏酸残基的二聚化导致连接半纤维素分子的交联。阿魏酸交联被证明是木质素和半纤维素之间的共价键。木质素和半纤维素之间的另一种交联是由葡萄糖醛酸或4- o -甲基- d -葡萄糖醛酸的木聚糖侧残基与木质素醇之间的酯提供的。不考虑交联,侧残基阻止木聚糖主链结合,导致类似纤维素的结晶。同时,木聚糖修饰妨碍了作用于主链上的酶的作用。因此,植物木聚糖的酶分解需要攻击主链的聚糖酶和催化脱支的酶协同作用,这些酶被称为辅助木聚糖水解酶,包括木聚糖水解酯酶。乙酰木聚糖酯酶和阿魏酰酯酶直接参与木聚糖的降解,葡萄糖醛酸酯酶催化木聚糖从木质素中分离。本文讨论了三类木聚糖水解糖酯酶的多样性、分类和结构功能关系等方面的研究现状,并重点讨论了今后与它们的工业应用相关的研究方向。
{"title":"Microbial xylanolytic carbohydrate esterases.","authors":"Vladimír Puchart, Peter Biely","doi":"10.1042/EBC20220129","DOIUrl":"https://doi.org/10.1042/EBC20220129","url":null,"abstract":"<p><p>This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure-function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"479-491"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.
{"title":"O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases.","authors":"Aurore Labourel, Jean-Luc Parrou, Céline Deraison, Muriel Mercier-Bonin, Sophie Lajus, Gabrielle Potocki-Veronese","doi":"10.1042/EBC20220153","DOIUrl":"https://doi.org/10.1042/EBC20220153","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"331-344"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.
{"title":"Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans.","authors":"Ana S Luis, Edwin A Yates, Alan Cartmell","doi":"10.1042/EBC20220120","DOIUrl":"https://doi.org/10.1042/EBC20220120","url":null,"abstract":"<p><p>Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"429-442"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9463720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.
n -聚糖对蛋白质的修饰在大多数生物体中是普遍存在的,它们具有多种生物学功能,例如,保护相邻蛋白质免受降解,促进细胞之间的通信或粘附。微生物已经进化出CAZymes来分解不同类型的n -聚糖,其中一些已经从来自不同生态位的微生物中被表征出来,包括共生生物和病原体。这些CAZymes的特异性为不同的微生物如何分解这些底物并可能交叉喂养它们提供了线索。n -聚糖高特异性CAZymes的发现也为糖蛋白修饰提供了新的工具和选择。
{"title":"N-glycan breakdown by bacterial CAZymes.","authors":"Lucy I Crouch","doi":"10.1042/EBC20220256","DOIUrl":"https://doi.org/10.1042/EBC20220256","url":null,"abstract":"<p><p>The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"373-385"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10080785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabina Leanti La Rosa, Lars J Lindstad, Bjørge Westereng
Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.
{"title":"Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota.","authors":"Sabina Leanti La Rosa, Lars J Lindstad, Bjørge Westereng","doi":"10.1042/EBC20220161","DOIUrl":"https://doi.org/10.1042/EBC20220161","url":null,"abstract":"<p><p>Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"443-454"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/18/ebc-67-ebc20220161.PMC10154613.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9408311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.
{"title":"Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function.","authors":"Takatsugu Miyazaki","doi":"10.1042/EBC20220219","DOIUrl":"https://doi.org/10.1042/EBC20220219","url":null,"abstract":"<p><p>Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"505-520"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}