M. Laschke, M. Seifert, C. Scheuer, E. Kontaxi, W. Metzger, M. Menger
High glucose concentrations have been shown to activate endothelial cells and promote angiogenesis. In the present study, it was investigated whether high glucose concentrations could improve the vascularisation capacity of adipose-tissue-derived microvascular fragments (ad-MVF). Ad-MVF were isolated from the epididymal fat pads of donor mice and cultivated for 24 h in University of Wisconsin (UW) solution supplemented with vehicle or 30 mM glucose. Protein expression, morphology, viability and proliferation of the cultivated ad-MVF were analysed by means of proteome profiler mouse angiogenesis array, scanning electron microscopy and immunohistochemistry. Additional cultivated ad-MVF were seeded on to collagen-glycosaminoglycan scaffolds to study their in vivo vascularisation capacity in the dorsal skinfold chamber model by intravital fluorescence microscopy, histology and immunohistochemistry. In vitro, high glucose exposure changed the protein expression pattern of ad-MVF with endoglin, interleukin (IL)-1β and monocyte chemoattractant protein (MCP)-1 as the most up-regulated pro-angiogenic factors. Moreover, high glucose exposure induced the formation of nanopores in the ad-MVF wall. In addition, ad-MVF contained significantly larger numbers of proliferating endothelial and perivascular cells while exhibiting a comparable number of apoptotic cells when compared to vehicle-treated controls. In vivo, scaffolds seeded with high-glucose-exposed ad-MVF exhibited an improved vascularisation and tissue incorporation. These findings demonstrated that the exposure of cultivated ad-MVF to high glucose concentrations is a promising approach to improve their in vivo performance as vascularisation units for tissue engineering and regenerative medicine.
高葡萄糖浓度已被证明可以激活内皮细胞并促进血管生成。在本研究中,研究了高葡萄糖浓度是否可以改善脂肪组织来源的微血管碎片(ad-MVF)的血管化能力。从供体小鼠附睾脂肪垫中分离Ad-MVF,在威斯康星大学(University of Wisconsin, UW)溶液中添加载药或30 mM葡萄糖培养24 h。利用蛋白质组谱仪、小鼠血管生成阵列、扫描电镜和免疫组织化学分析培养的ad-MVF的蛋白表达、形态、活力和增殖情况。将培养的ad-MVF植入胶原-糖胺聚糖支架上,通过活体荧光显微镜、组织学和免疫组织化学方法研究其在背皮肤褶腔模型中的体内血管化能力。在体外,高糖暴露改变了ad-MVF的蛋白表达模式,内啡肽、白细胞介素(IL)-1β和单核细胞趋化蛋白(MCP)-1是上调最多的促血管生成因子。此外,高葡萄糖暴露诱导ad-MVF壁形成纳米孔。此外,与载体处理的对照组相比,ad-MVF含有大量增殖内皮细胞和血管周围细胞,同时显示出相当数量的凋亡细胞。在体内,植入高葡萄糖暴露的ad-MVF的支架显示出改善的血管化和组织整合。这些发现表明,将培养的ad-MVF暴露于高葡萄糖浓度下是一种有希望的方法,可以提高它们作为组织工程和再生医学血管化单元的体内性能。
{"title":"High glucose exposure promotes proliferation and in vivo network formation of adipose-tissue-derived microvascular fragments.","authors":"M. Laschke, M. Seifert, C. Scheuer, E. Kontaxi, W. Metzger, M. Menger","doi":"10.22203/eCM.v038a13","DOIUrl":"https://doi.org/10.22203/eCM.v038a13","url":null,"abstract":"High glucose concentrations have been shown to activate endothelial cells and promote angiogenesis. In the present study, it was investigated whether high glucose concentrations could improve the vascularisation capacity of adipose-tissue-derived microvascular fragments (ad-MVF). Ad-MVF were isolated from the epididymal fat pads of donor mice and cultivated for 24 h in University of Wisconsin (UW) solution supplemented with vehicle or 30 mM glucose. Protein expression, morphology, viability and proliferation of the cultivated ad-MVF were analysed by means of proteome profiler mouse angiogenesis array, scanning electron microscopy and immunohistochemistry. Additional cultivated ad-MVF were seeded on to collagen-glycosaminoglycan scaffolds to study their in vivo vascularisation capacity in the dorsal skinfold chamber model by intravital fluorescence microscopy, histology and immunohistochemistry. In vitro, high glucose exposure changed the protein expression pattern of ad-MVF with endoglin, interleukin (IL)-1β and monocyte chemoattractant protein (MCP)-1 as the most up-regulated pro-angiogenic factors. Moreover, high glucose exposure induced the formation of nanopores in the ad-MVF wall. In addition, ad-MVF contained significantly larger numbers of proliferating endothelial and perivascular cells while exhibiting a comparable number of apoptotic cells when compared to vehicle-treated controls. In vivo, scaffolds seeded with high-glucose-exposed ad-MVF exhibited an improved vascularisation and tissue incorporation. These findings demonstrated that the exposure of cultivated ad-MVF to high glucose concentrations is a promising approach to improve their in vivo performance as vascularisation units for tissue engineering and regenerative medicine.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"188-200"},"PeriodicalIF":3.1,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45906141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J. Kelly, Fiona E. Freeman, David C. Browe, P. Díaz-Payno, J. Nulty, S. V. Euw, Warren L. Grayson
Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an "off-the-shelf" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.
{"title":"Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering.","authors":"Daniel J. Kelly, Fiona E. Freeman, David C. Browe, P. Díaz-Payno, J. Nulty, S. V. Euw, Warren L. Grayson","doi":"10.22203/eCM.v038a12","DOIUrl":"https://doi.org/10.22203/eCM.v038a12","url":null,"abstract":"Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an \"off-the-shelf\" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"168-187"},"PeriodicalIF":3.1,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48074307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cortical bone development is characterised by initial formation of woven bone followed by deposition of lamellar bone on the woven scaffold. This occurs in normal bone formation as an integral obligate self-assembly pattern throughout all vertebrate groups, with specific temporal and spatial features. It also occurs in repair bone, modified by the biophysical/mechanical environment, and in pathological bone, modified by the specific disorder and its severity. Two spatially distinct osteoblast cell populations synthesise woven and lamellar bone: mesenchymal osteoblasts surround themselves circumferentially with collagen in a random array to form woven bone; surface osteoblasts align themselves in a linear array on the woven bone surface (or adjacent lamellar bone) to synthesise parallel-fibred lamellar bone. Four specific stages of woven bone formation are defined: stage I, early differentiation of pre-osteoblasts from undifferentiated mesenchymal cells; stage II, mesenchymal osteoblasts surrounding themselves in a 360° arc with randomly oriented matrix fibres; stage III, woven matrix acting as a scaffold on which surface osteoblasts begin to synthesise bone in parallel-fibred lamellar conformation; stage IV, progressive relative diminution of woven bone in the woven bone/lamellar bone complex. Stages II and IV are further subdivided (in a, b and c) by shifting cell area/matrix area and woven bone/lamellar bone relationships. The under-appreciated biological significance of woven bone is that it initiates formation de novo at sites of no previous bone. This information allows for targeted assessment of molecular-biophysical mechanisms underlying woven bone formation and their utilisation for initiating enhanced bone formation.
{"title":"Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups.","authors":"Frederic Shapiro, Joy Y. Wu","doi":"10.22203/eCM.v038a11","DOIUrl":"https://doi.org/10.22203/eCM.v038a11","url":null,"abstract":"Cortical bone development is characterised by initial formation of woven bone followed by deposition of lamellar bone on the woven scaffold. This occurs in normal bone formation as an integral obligate self-assembly pattern throughout all vertebrate groups, with specific temporal and spatial features. It also occurs in repair bone, modified by the biophysical/mechanical environment, and in pathological bone, modified by the specific disorder and its severity. Two spatially distinct osteoblast cell populations synthesise woven and lamellar bone: mesenchymal osteoblasts surround themselves circumferentially with collagen in a random array to form woven bone; surface osteoblasts align themselves in a linear array on the woven bone surface (or adjacent lamellar bone) to synthesise parallel-fibred lamellar bone. Four specific stages of woven bone formation are defined: stage I, early differentiation of pre-osteoblasts from undifferentiated mesenchymal cells; stage II, mesenchymal osteoblasts surrounding themselves in a 360° arc with randomly oriented matrix fibres; stage III, woven matrix acting as a scaffold on which surface osteoblasts begin to synthesise bone in parallel-fibred lamellar conformation; stage IV, progressive relative diminution of woven bone in the woven bone/lamellar bone complex. Stages II and IV are further subdivided (in a, b and c) by shifting cell area/matrix area and woven bone/lamellar bone relationships. The under-appreciated biological significance of woven bone is that it initiates formation de novo at sites of no previous bone. This information allows for targeted assessment of molecular-biophysical mechanisms underlying woven bone formation and their utilisation for initiating enhanced bone formation.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"137-167"},"PeriodicalIF":3.1,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48142577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Turlo, A. J. Mueller-Breckenridge, D. Zamboulis, S. Tew, E. Canty-Laird, P. Clegg
The main challenge in tendon injury management is suboptimal tissue healing that fails to re-establish original tendon function. Tissue bioengineering is a promising approach for tendon therapy, with potential to improve its functional outcomes. However, evaluation criteria for tissue-engineered tendon are unclear due to the lack of specific markers of differentiated tendon. The study aim was to identify a panel of genes that characterised tendons in comparison to cartilage or muscles and validate those genes, both in human and key species used as models for tendon diseases. Gene expression profiling of rat tendon and cartilage in whole-tissue samples and primary tenocytes and chondrocytes was undertaken using two independent microarray platforms. Genes that demonstrated high expression correlation across two assays were validated by qRT-PCR in rat tendon relative to cartilage and muscle. Five genes demonstrating the highest tendon-related expression in the validation experiment (ASPN, ECM1, IGFBP6, TNMD, THBS4) were further evaluated by qRT-PCR in ovine, equine and human tissue. The group of tendon markers, identified by unbiased transcriptomic analysis of rat musculoskeletal tissues, demonstrated species-dependent profiles of expression. Insulin-like growth factor binding protein 6 (IGFBP6) was identified as the only universal tendon marker. Further investigation in equine tendon showed that IGFBP6 expression was not affected by ageing or tendon function but decreased in anatomical regions subjected to elevated compressive force. IGFBP6 is a robust cross-species marker of tendon phenotype and may find application in evaluation of tendon physiology and guided differentiation of permissive cells towards functional tenocytes.
{"title":"Insulin-like growth factor binding protein (IGFBP6) is a cross-species tendon marker.","authors":"A. Turlo, A. J. Mueller-Breckenridge, D. Zamboulis, S. Tew, E. Canty-Laird, P. Clegg","doi":"10.22203/eCM.v038a10","DOIUrl":"https://doi.org/10.22203/eCM.v038a10","url":null,"abstract":"The main challenge in tendon injury management is suboptimal tissue healing that fails to re-establish original tendon function. Tissue bioengineering is a promising approach for tendon therapy, with potential to improve its functional outcomes. However, evaluation criteria for tissue-engineered tendon are unclear due to the lack of specific markers of differentiated tendon. The study aim was to identify a panel of genes that characterised tendons in comparison to cartilage or muscles and validate those genes, both in human and key species used as models for tendon diseases. Gene expression profiling of rat tendon and cartilage in whole-tissue samples and primary tenocytes and chondrocytes was undertaken using two independent microarray platforms. Genes that demonstrated high expression correlation across two assays were validated by qRT-PCR in rat tendon relative to cartilage and muscle. Five genes demonstrating the highest tendon-related expression in the validation experiment (ASPN, ECM1, IGFBP6, TNMD, THBS4) were further evaluated by qRT-PCR in ovine, equine and human tissue. The group of tendon markers, identified by unbiased transcriptomic analysis of rat musculoskeletal tissues, demonstrated species-dependent profiles of expression. Insulin-like growth factor binding protein 6 (IGFBP6) was identified as the only universal tendon marker. Further investigation in equine tendon showed that IGFBP6 expression was not affected by ageing or tendon function but decreased in anatomical regions subjected to elevated compressive force. IGFBP6 is a robust cross-species marker of tendon phenotype and may find application in evaluation of tendon physiology and guided differentiation of permissive cells towards functional tenocytes.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"123-136"},"PeriodicalIF":3.1,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46057909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Knuth, E. A. Sastre, N. Fahy, J. Witte‐Bouma, Y. Ridwan, EM Strabbing, MJ Koudstaal, J. Peppel, E. Wolvius, R. Narcisi, Eric Farrell
n tissue engineering, endochondral ossification (EO) is often replicated by chondrogenically differentiating mesenchymal stromal cells (MSCs) in vitro and achieving bone formation through in vivo implantation. The resulting marrow-containing bone constructs are promising as a treatment for bone defects. However, limited bone formation capacity has prevented them from reaching their full potential. This is further complicated since it is not fully understood how this bone formation is achieved. Acellular grafts derived from chondrogenically differentiated MSCs can initiate bone formation; however, which component within these decellularised matrices contribute to bone formation has yet to be determined. Collagen type X (COLX), a hypertrophy-associated collagen found within these constructs, is involved in matrix organisation, calcium binding and matrix vesicle compartmentalisation. However, the importance of COLX during tissue-engineered chondrogenesis and subsequent bone formation is unknown. The present study investigated the importance of COLX by shRNA-mediated gene silencing in primary MSCs. A significant knock-down of COLX disrupted the production of extracellular matrix key components and the secretion profile of chondrogenically differentiated MSCs. Following in vivo implantation, disrupted bone formation in knock-down constructs was observed. The importance of COLX was confirmed during both chondrogenic differentiation and subsequent EO in this tissue engineered setting.
{"title":"Collagen type X is essential for successful mesenchymal stem cell-mediated cartilage formation and subsequent endochondral ossification.","authors":"C. Knuth, E. A. Sastre, N. Fahy, J. Witte‐Bouma, Y. Ridwan, EM Strabbing, MJ Koudstaal, J. Peppel, E. Wolvius, R. Narcisi, Eric Farrell","doi":"10.22203/ecm.v038a09","DOIUrl":"https://doi.org/10.22203/ecm.v038a09","url":null,"abstract":"n tissue engineering, endochondral ossification (EO) is often replicated by chondrogenically differentiating mesenchymal stromal cells (MSCs) in vitro and achieving bone formation through in vivo implantation. The resulting marrow-containing bone constructs are promising as a treatment for bone defects. However, limited bone formation capacity has prevented them from reaching their full potential. This is further complicated since it is not fully understood how this bone formation is achieved. Acellular grafts derived from chondrogenically differentiated MSCs can initiate bone formation; however, which component within these decellularised matrices contribute to bone formation has yet to be determined. Collagen type X (COLX), a hypertrophy-associated collagen found within these constructs, is involved in matrix organisation, calcium binding and matrix vesicle compartmentalisation. However, the importance of COLX during tissue-engineered chondrogenesis and subsequent bone formation is unknown. The present study investigated the importance of COLX by shRNA-mediated gene silencing in primary MSCs. A significant knock-down of COLX disrupted the production of extracellular matrix key components and the secretion profile of chondrogenically differentiated MSCs. Following in vivo implantation, disrupted bone formation in knock-down constructs was observed. The importance of COLX was confirmed during both chondrogenic differentiation and subsequent EO in this tissue engineered setting.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"106-122"},"PeriodicalIF":3.1,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/ecm.v038a09","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42319478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Koolen, A. Longoni, J. V. D. Stok, O. P. Jagt, D. Gawlitta, H. Weinans
This study aimed at investigating in vitro and in vivo the efficiency of commercially available fibrin as a carrier for controlled and sustained bone morphogenetic protein-2 (BMP-2) release to induce bone formation and reduce the side effects of its use. In vitro release and activity of low-dose recombinant human BMP-2 (rhBMP-2) (37.5 µg/mL) embedded in commercially available fibrin were evaluated and, subsequently, critical-size femur defects in rats were grafted to study bone regeneration and vascularisation by micro-computed tomography (µCT) and histology. In vitro experiments showed a sustained BMP-2 release with a high BMP activity remaining after 28 d. In vivo, fibrin loaded with BMP-2 showed an extremely fast bone healing, with a large amount of new bone formation throughout the entire defect in the first 4 weeks and complete cortical repair and fusion after 8 weeks, with no ectopic bone formation. In contrast, the control fibrin group did not fuse after 12 weeks. Vascularisation was similar in both groups at 4 and 12 weeks after implantation. In conclusion, commercially available fibrin is a very efficient carrier for rhBMP-2 to graft critical-size cortical bone defects and might be a more optimal delivery vehicle for BMP-2-induced bone regeneration than currently available collagen sponges.
{"title":"Complete regeneration of large bone defects in rats with commercially available fibrin loaded with BMP-2.","authors":"M. Koolen, A. Longoni, J. V. D. Stok, O. P. Jagt, D. Gawlitta, H. Weinans","doi":"10.22203/ecm.v038a08","DOIUrl":"https://doi.org/10.22203/ecm.v038a08","url":null,"abstract":"This study aimed at investigating in vitro and in vivo the efficiency of commercially available fibrin as a carrier for controlled and sustained bone morphogenetic protein-2 (BMP-2) release to induce bone formation and reduce the side effects of its use. In vitro release and activity of low-dose recombinant human BMP-2 (rhBMP-2) (37.5 µg/mL) embedded in commercially available fibrin were evaluated and, subsequently, critical-size femur defects in rats were grafted to study bone regeneration and vascularisation by micro-computed tomography (µCT) and histology. In vitro experiments showed a sustained BMP-2 release with a high BMP activity remaining after 28 d. In vivo, fibrin loaded with BMP-2 showed an extremely fast bone healing, with a large amount of new bone formation throughout the entire defect in the first 4 weeks and complete cortical repair and fusion after 8 weeks, with no ectopic bone formation. In contrast, the control fibrin group did not fuse after 12 weeks. Vascularisation was similar in both groups at 4 and 12 weeks after implantation. In conclusion, commercially available fibrin is a very efficient carrier for rhBMP-2 to graft critical-size cortical bone defects and might be a more optimal delivery vehicle for BMP-2-induced bone regeneration than currently available collagen sponges.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"94-105"},"PeriodicalIF":3.1,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/ecm.v038a08","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43620230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological effects of pulsed electrical stimulation (PES) on cells and tissues have been intensively studied with the aim of advancing their biomedical applications. These effects vary significantly depending on PES parameters, cell and tissue types, which can be attributed to the diverse variety of signaling pathways, ion channels, and epigenetic mechanisms involved. The development of new technology platforms, such as nanosecond pulsed electric fields (nsPEFs) with finely tuned parameters, have added further complexity. The present review systematically examines current research progress in various aspects of PES, from physical models to biological effects on cells and tissues, including voltage-sensing domains of voltage-gated channels, pore formation, intracellular components/organelles, and signaling pathways. Emphasis is placed on the complexity of PES parameters and inconsistency of induced biological effects, with the aim of exploring the underlying physical and cellular mechanisms of the physiological effects of electrical stimulation on cells. With chondrogenic differentiation of stem cells and cartilage regeneration as examples, the underlying mechanisms involved were reviewed and analyzed, hoping to move forward towards potential biomedical applications. Hopefully, the present review will inspire more interest in the wider clinical applications of PES and lay the basis for further comprehensive studies in this field.
{"title":"Diverse effects of pulsed electrical stimulation on cells - with a focus on chondrocytes and cartilage regeneration.","authors":"T. Ning, K. Zhang, Heng Bc, Z. Ge","doi":"10.22203/eCM.v038a07","DOIUrl":"https://doi.org/10.22203/eCM.v038a07","url":null,"abstract":"Biological effects of pulsed electrical stimulation (PES) on cells and tissues have been intensively studied with the aim of advancing their biomedical applications. These effects vary significantly depending on PES parameters, cell and tissue types, which can be attributed to the diverse variety of signaling pathways, ion channels, and epigenetic mechanisms involved. The development of new technology platforms, such as nanosecond pulsed electric fields (nsPEFs) with finely tuned parameters, have added further complexity. The present review systematically examines current research progress in various aspects of PES, from physical models to biological effects on cells and tissues, including voltage-sensing domains of voltage-gated channels, pore formation, intracellular components/organelles, and signaling pathways. Emphasis is placed on the complexity of PES parameters and inconsistency of induced biological effects, with the aim of exploring the underlying physical and cellular mechanisms of the physiological effects of electrical stimulation on cells. With chondrogenic differentiation of stem cells and cartilage regeneration as examples, the underlying mechanisms involved were reviewed and analyzed, hoping to move forward towards potential biomedical applications. Hopefully, the present review will inspire more interest in the wider clinical applications of PES and lay the basis for further comprehensive studies in this field.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"79-93"},"PeriodicalIF":3.1,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a07","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44909837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epithelium attachment to the tooth or abutment surface is necessary to form a biological seal preventing pathogens and irritants from penetrating the body and reaching the underlying soft tissues and bone, which in turn can lead to inflammation and subsequent bone resorption. The present review investigated oral wound closure and the role of micro-environment, saliva, crevicular fluid and microbiota in wound healing. The importance of the junctional epithelium (peri-implant epithelium) attachment to the abutment surface was investigated. Current research focuses on macro-design, surface-topography, surface-chemistry, materials, coatings and wettability to enhance attachment, since these optimised surface properties are expected to promote keratinocyte attachment and spreading through hemi-desmosome formation. Detailed studies describing the extent of junctional epithelium attachment - e.g. barrier function, hemi-desmosomes, epithelium quality, composition of the external basement membrane or ability of the epithelium to resist microbial penetration and colonisation - are not yet reported in animals due to ethical considerations, scalability, expense, technical challenges and limited availability of antibodies. In vitro studies generally include relatively simple 2D culture models, which lack the complexity required to draw relevant conclusions. Additionally, human organotypic 3D mucosa models are being developed. The present review concluded that more research using these organotypic mucosa models may identify relevant parameters involved in soft-tissue-abutment interactions, which could be used to study different macro-shapes and surface modifications. Such studies would bridge the gap between clinical, animal and traditional in vitro cell culture studies supporting development of abutments aiming at improved clinical performance.
{"title":"Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface.","authors":"Susan Gibbs, S. Roffel, M. Meyer, A. Gasser","doi":"10.22203/eCM.v038a06","DOIUrl":"https://doi.org/10.22203/eCM.v038a06","url":null,"abstract":"Epithelium attachment to the tooth or abutment surface is necessary to form a biological seal preventing pathogens and irritants from penetrating the body and reaching the underlying soft tissues and bone, which in turn can lead to inflammation and subsequent bone resorption. The present review investigated oral wound closure and the role of micro-environment, saliva, crevicular fluid and microbiota in wound healing. The importance of the junctional epithelium (peri-implant epithelium) attachment to the abutment surface was investigated. Current research focuses on macro-design, surface-topography, surface-chemistry, materials, coatings and wettability to enhance attachment, since these optimised surface properties are expected to promote keratinocyte attachment and spreading through hemi-desmosome formation. Detailed studies describing the extent of junctional epithelium attachment - e.g. barrier function, hemi-desmosomes, epithelium quality, composition of the external basement membrane or ability of the epithelium to resist microbial penetration and colonisation - are not yet reported in animals due to ethical considerations, scalability, expense, technical challenges and limited availability of antibodies. In vitro studies generally include relatively simple 2D culture models, which lack the complexity required to draw relevant conclusions. Additionally, human organotypic 3D mucosa models are being developed. The present review concluded that more research using these organotypic mucosa models may identify relevant parameters involved in soft-tissue-abutment interactions, which could be used to study different macro-shapes and surface modifications. Such studies would bridge the gap between clinical, animal and traditional in vitro cell culture studies supporting development of abutments aiming at improved clinical performance.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"63-78"},"PeriodicalIF":3.1,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a06","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49125919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michella H. Hagmeijer, L. Vonk, M. Fenu, Y. W. V. Keep, A. Krych, Daniel B.F. Saris, Daniel B.F. Saris
Meniscus regeneration is an unmet clinical need as damage to the meniscus is common and causes early osteoarthritis. The aim of the present study was to investigate the feasibility of a one-stage cell-based treatment for meniscus regeneration by augmenting a resorbable collagen-based implant with a combination of recycled meniscus cells and mesenchymal stromal cells (MSCs). Cell communication and fate of the different cell types over time in co-culture were evaluated by connexin 43 staining for gap junctions and polymerase chain reaction (PCR) to discriminate between meniscus cells and MSCs, based on a Y-chromosome gene. To define optimal ratios, human meniscus cells and bone-marrow-derived MSCs were cultured in different ratios in cell pellets and type I collagen hydrogels. In addition, cells were seeded on the implant in fibrin glue by static seeding or injection. Cellular communication by gap junctions was shown in co-culture and a decrease in the amount of MSCs over time was demonstrated by PCR. 20 : 80 and 10 : 90 ratios showed significantly highest glycosaminoglycan and collagen content in collagen hydrogels. The same statistical trend was found in pellet cultures. Significantly more cells were present in the injected implant and cell distribution was more homogenous as compared to the statically seeded implant. The study demonstrated the feasibility of a new one-stage cell-based procedure for meniscus regeneration, using 20 % meniscus cells and 80 % MSCs seeded statically on the implant. In addition, the stimulatory effect of MSCs towards meniscus cells was demonstrated by communication through gap junctions.
{"title":"Meniscus regeneration combining meniscus and mesenchymal stromal cells in a degradable meniscus implant: an in vitro study.","authors":"Michella H. Hagmeijer, L. Vonk, M. Fenu, Y. W. V. Keep, A. Krych, Daniel B.F. Saris, Daniel B.F. Saris","doi":"10.22203/eCM.v038a05","DOIUrl":"https://doi.org/10.22203/eCM.v038a05","url":null,"abstract":"Meniscus regeneration is an unmet clinical need as damage to the meniscus is common and causes early osteoarthritis. The aim of the present study was to investigate the feasibility of a one-stage cell-based treatment for meniscus regeneration by augmenting a resorbable collagen-based implant with a combination of recycled meniscus cells and mesenchymal stromal cells (MSCs). Cell communication and fate of the different cell types over time in co-culture were evaluated by connexin 43 staining for gap junctions and polymerase chain reaction (PCR) to discriminate between meniscus cells and MSCs, based on a Y-chromosome gene. To define optimal ratios, human meniscus cells and bone-marrow-derived MSCs were cultured in different ratios in cell pellets and type I collagen hydrogels. In addition, cells were seeded on the implant in fibrin glue by static seeding or injection. Cellular communication by gap junctions was shown in co-culture and a decrease in the amount of MSCs over time was demonstrated by PCR. 20 : 80 and 10 : 90 ratios showed significantly highest glycosaminoglycan and collagen content in collagen hydrogels. The same statistical trend was found in pellet cultures. Significantly more cells were present in the injected implant and cell distribution was more homogenous as compared to the statically seeded implant. The study demonstrated the feasibility of a new one-stage cell-based procedure for meniscus regeneration, using 20 % meniscus cells and 80 % MSCs seeded statically on the implant. In addition, the stimulatory effect of MSCs towards meniscus cells was demonstrated by communication through gap junctions.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"51-62"},"PeriodicalIF":3.1,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46121637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meloni Gr, A. Farran, B. Mohanraj, H. Guehring, R. Cocca, E. Rabut, R. Mauck, G. R. Dodge
Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.
{"title":"Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage.","authors":"Meloni Gr, A. Farran, B. Mohanraj, H. Guehring, R. Cocca, E. Rabut, R. Mauck, G. R. Dodge","doi":"10.22203/eCM.v038a03","DOIUrl":"https://doi.org/10.22203/eCM.v038a03","url":null,"abstract":"Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"23-34"},"PeriodicalIF":3.1,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43585287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}