首页 > 最新文献

Environmental microbiology最新文献

英文 中文
Microbiome and floral associations of a wild bee using biodiversity survey collections 利用生物多样性调查采集的野生蜜蜂的微生物组和花卉关联。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-30 DOI: 10.1111/1462-2920.16657
Phuong N. Nguyen, Farida Samad-zada, Katherine D. Chau, Sandra M. Rehan

The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.

蜜蜂的健康状况可以通过其微生物组来评估,微生物组是一种生物标志物,表明蜜蜂群落中存在有益和有害微生物。本研究介绍了双色汗蜂(Agapostemon virescens)成蜂角质层上细菌、真菌和植物组成的特征。研究人员在双色汗蜂栖息地的北部范围内使用了各种方法收集这些蜜蜂,如盘式诱捕器、蓝色叶片诱捕器和扫网。研究人员采用非破坏性方法从这些野生蜜蜂的整个针状标本中提取 DNA。然后对 16S rRNA、ITS 和 rbcL 区域进行元标码。研究发现,采集方法会影响某些微生物和植物类群的检测。在各种采集方法中,扫网样本的真菌阿尔法多样性最低。然而,细菌或真菌贝塔多样性的微小差异表明,没有一种方法明显优于其他方法。因此,多种技术的结合可以满足更广泛的微生物检测需要。研究还揭示了细菌、真菌和植物多样性的地区差异。A. virescens的核心微生物组包括两种细菌、三种真菌和一种植物协会,所有这些都是在其他野生蜜蜂中经常检测到的。这些核心微生物在不同的采集方法和采集地点保持一致。对不同物种和地貌的野生蜜蜂微生物组的进一步广泛研究将有助于发现授粉者健康与其环境之间的重要关系。
{"title":"Microbiome and floral associations of a wild bee using biodiversity survey collections","authors":"Phuong N. Nguyen,&nbsp;Farida Samad-zada,&nbsp;Katherine D. Chau,&nbsp;Sandra M. Rehan","doi":"10.1111/1462-2920.16657","DOIUrl":"10.1111/1462-2920.16657","url":null,"abstract":"<p>The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (<i>Agapostemon virescens</i>). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of <i>A. virescens</i> comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 6","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversity of the banana Fusarium wilt pathogen in Cuba and across Latin America and the Caribbean 古巴以及整个拉丁美洲和加勒比地区香蕉镰刀菌枯萎病病原体的遗传多样性。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-23 DOI: 10.1111/1462-2920.16636
Einar Martínez-de la Parte, Luis Pérez-Vicente, David E. Torres, Anouk van Westerhoven, Harold J. G. Meijer, Michael F. Seidl, Gert H. J. Kema

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.

香蕉镰刀菌枯萎病(FWB)是一种严重的植物病害,导致全球香蕉生产遭受重大损失。它仍然是古巴香蕉种植的一个主要问题。香蕉枯萎病是由土壤传播的 Fusarium oxysporum 复合菌种引起的。然而,古巴香蕉所感染的镰刀菌种之间的遗传多样性在很大程度上仍未得到探索。在我们的全面调查中,我们检查了古巴所有生产区有症状的香蕉植株,收集了 170 个镰刀菌分离株。通过基因分型测序和全基因组比较,我们研究了这些分离株的遗传多样性,并将其与全球镰刀菌样本进行了比较。值得注意的是,在 14 个省的 Bluggoe 烹饪香蕉和 Pisang Awak 亚群中观察到了典型的 FWB 症状。我们的系统发育分析表明,F. purpurascens、F. phialophorum 和 F. tardichlamydosporum 是古巴 FWB 的罪魁祸首,其中 F. tardichlamydosporum 在种群中占主导地位。此外,我们还发现了五到七个不同的基因群,其中 F. tardichlamydosporum 分离物至少形成了两个亚群。这一发现强调了造成美洲 FWB 的镰刀菌属的高度遗传多样性。我们的研究揭示了古巴以及更广泛的拉丁美洲和加勒比地区的 FWB 病原体的种群遗传结构和多样性。
{"title":"Genetic diversity of the banana Fusarium wilt pathogen in Cuba and across Latin America and the Caribbean","authors":"Einar Martínez-de la Parte,&nbsp;Luis Pérez-Vicente,&nbsp;David E. Torres,&nbsp;Anouk van Westerhoven,&nbsp;Harold J. G. Meijer,&nbsp;Michael F. Seidl,&nbsp;Gert H. J. Kema","doi":"10.1111/1462-2920.16636","DOIUrl":"10.1111/1462-2920.16636","url":null,"abstract":"<p>Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne <i>Fusarium oxysporum</i> species complex. However, the genetic diversity among <i>Fusarium</i> species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 <i>Fusarium</i> isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global <i>Fusarium</i> panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that <i>F. purpurascens</i>, <i>F. phialophorum</i>, and <i>F. tardichlamydosporum</i> are responsible for FWB in Cuba, with <i>F. tardichlamydosporum</i> dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with <i>F. tardichlamydosporum</i> isolates forming at least two subgroups. This finding underscores the high genetic diversity of <i>Fusarium</i> spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Preventing multiresistance: New insights for managing fungal adaptation” 防止多重抗性:管理真菌适应性的新见解"。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-23 DOI: 10.1111/1462-2920.16641

Ballu, A., Ugazio, C., Duplaix, C., Noly, A., Wullschleger, J., Torriani, S.F.F., Dérédec A., Carpentier F., Walker A.S. (2024) Preventing multi-resistance: new insights for managing fungal adaptation. Environmental Microbiology, 26(4), e16614. Available from: https://doi.org/10.1111/1462-2920.16614

In the title, the text “Preventing multi-resistance: New insights for managing fungal adaptation” was incorrect. This should have read: “Preventing multiple resistance above all: New insights for managing fungal adaptation.”

This has been corrected in the online version of the article.

We apologize for this error.

Ballu, A., Ugazio, C., Duplaix, C., Noly, A., Wullschleger, J., Torriani, S.F.F., Dérédec A., Carpentier F., Walker A.S. (2024) Preventing multi-resistance: new insights for managing fungal adaptation.Environmental Microbiology, 26(4), e16614.可从以下网址获取: https://doi.org/10.1111/1462-2920.16614In 标题、正文 "Preventing multi-resistance:管理真菌适应性的新见解 "有误。应改为"防止多重抗性:文章的网络版已对此进行了更正,我们对此表示歉意。
{"title":"Correction to “Preventing multiresistance: New insights for managing fungal adaptation”","authors":"","doi":"10.1111/1462-2920.16641","DOIUrl":"10.1111/1462-2920.16641","url":null,"abstract":"<p>Ballu, A., Ugazio, C., Duplaix, C., Noly, A., Wullschleger, J., Torriani, S.F.F., Dérédec A., Carpentier F., Walker A.S. (2024) Preventing multi-resistance: new insights for managing fungal adaptation. <i>Environmental Microbiology</i>, 26(4), e16614. Available from: https://doi.org/10.1111/1462-2920.16614</p><p>In the title, the text “Preventing multi-resistance: New insights for managing fungal adaptation” was incorrect. This should have read: “Preventing multiple resistance above all: New insights for managing fungal adaptation.”</p><p>This has been corrected in the online version of the article.</p><p>We apologize for this error.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prophages carrying Zot toxins on different Vibrio genomes: A comprehensive assessment using multilayer networks 不同弧菌基因组上携带 Zot 毒素的噬菌体:利用多层网络进行综合评估。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-23 DOI: 10.1111/1462-2920.16654
Esteban F. Soto, Melissa Alegría, Felipe Sepúlveda, Katherine García, Gastón Higuera, Daniel Castillo, Francisco E. Fontúrbel, Roberto Bastías

Vibrios, a group of bacteria that are among the most abundant in marine environments, include several species such as Vibrio cholerae and Vibrio parahaemolyticus, which can be pathogenic to humans. Some species of Vibrio contain prophages within their genomes. These prophages can carry genes that code for toxins, such as the zonula occludens toxin (Zot), which contribute to bacterial virulence. Understanding the association between different Vibrio species, prophages and Zot genes can provide insights into their ecological interactions. In this study, we evaluated 4619 Vibrio genomes from 127 species to detect the presence of prophages carrying the Zot toxin. We found 2030 potential prophages with zot-like genes in 43 Vibrio species, showing a non-random association within a primarily modular interaction network. Some prophages, such as CTX or Vf33, were associated with specific species. In contrast, prophages phiVCY and VfO3K6 were found in 28 and 20 Vibrio species, respectively. We also identified six clusters of Zot-like sequences in prophages, with the ZOT2 cluster being the most frequent, present in 34 Vibrio species. This analysis helps to understand the distribution patterns of zot-containing prophages across Vibrio genomes and the potential routes of Zot-like toxin dissemination.

弧菌是一类在海洋环境中数量最多的细菌,包括霍乱弧菌和副溶血性弧菌等几个可对人类致病的物种。有些弧菌的基因组中含有噬菌体。这些噬菌体可携带编码毒素的基因,例如带状闭塞毒素(Zot),这有助于增强细菌的毒性。了解不同弧菌种类、噬菌体和 Zot 基因之间的关联,有助于深入了解它们之间的生态相互作用。在这项研究中,我们评估了来自 127 个弧菌物种的 4619 个基因组,以检测是否存在携带 Zot 毒素的噬菌体。我们在 43 个弧菌物种中发现了 2030 个带有 Zot 类基因的潜在噬菌体,这表明在一个主要是模块化的相互作用网络中存在非随机的关联。一些噬菌体(如 CTX 或 Vf33)与特定物种相关。相反,噬菌体 phiVCY 和 VfO3K6 则分别出现在 28 和 20 个弧菌物种中。我们还在噬菌体中发现了六个 Zot 样序列群,其中 ZOT2 群最常见,存在于 34 个弧菌物种中。这项分析有助于了解含 Zot 的噬菌体在弧菌基因组中的分布模式以及 Zot 类毒素的潜在传播途径。
{"title":"Prophages carrying Zot toxins on different Vibrio genomes: A comprehensive assessment using multilayer networks","authors":"Esteban F. Soto,&nbsp;Melissa Alegría,&nbsp;Felipe Sepúlveda,&nbsp;Katherine García,&nbsp;Gastón Higuera,&nbsp;Daniel Castillo,&nbsp;Francisco E. Fontúrbel,&nbsp;Roberto Bastías","doi":"10.1111/1462-2920.16654","DOIUrl":"10.1111/1462-2920.16654","url":null,"abstract":"<p>Vibrios, a group of bacteria that are among the most abundant in marine environments, include several species such as <i>Vibrio cholerae</i> and <i>Vibrio parahaemolyticus</i>, which can be pathogenic to humans. Some species of <i>Vibrio</i> contain prophages within their genomes. These prophages can carry genes that code for toxins, such as the zonula occludens toxin (Zot), which contribute to bacterial virulence. Understanding the association between different <i>Vibrio</i> species, prophages and Zot genes can provide insights into their ecological interactions. In this study, we evaluated 4619 <i>Vibrio</i> genomes from 127 species to detect the presence of prophages carrying the Zot toxin. We found 2030 potential prophages with <i>zot</i>-like genes in 43 <i>Vibrio</i> species, showing a non-random association within a primarily modular interaction network. Some prophages, such as CTX or Vf33, were associated with specific species. In contrast, prophages phiVCY and VfO3K6 were found in 28 and 20 <i>Vibrio</i> species, respectively. We also identified six clusters of Zot-like sequences in prophages, with the ZOT2 cluster being the most frequent, present in 34 <i>Vibrio</i> species. This analysis helps to understand the distribution patterns of <i>zot</i>-containing prophages across Vibrio genomes and the potential routes of Zot-like toxin dissemination.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome analysis and description of Tunturibacter gen. nov. expands the diversity of Terriglobia in tundra soils Tunturibacter gen. nov. 的基因组分析和描述扩大了苔原土壤中 Terriglobia 的多样性。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-22 DOI: 10.1111/1462-2920.16640
Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof, Max M. Häggblom

Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.

北极苔原生态系统温度升高,导致土壤有机物质的微生物呼吸速率加快,从而释放出二氧化碳和甲烷。要了解这种微生物活动的影响,就必须更好地描述北极土壤中微生物群落的多样性。我们的目标是完善我们对 Terriglobia 系统发育多样性的理解,这是酸性杆菌门中一个常见但难以捉摸的群体。这将有助于我们将这种多样性与碳和氮利用模式的变化联系起来。我们使用长读数牛津纳米孔 MinION 序列与元基因组短读数序列相结合来组装完整的酸性杆菌群基因组。这使我们能够建立多焦点系统进化和注释泛基因组标记,以区分来自几种苔原土壤分离物的酸性杆菌菌株。我们发现了一个系统发育群,其中包含以前与地衣埃德拉弗氏菌(Edaphobacter lichenicola)相关的四个新物种。我们得出结论,该聚类代表了一个新属,并将其命名为 Tunturibacter。我们描述了四个新物种:Tunturibacter lichenicola comb.nov.、Tunturibacter empetritectus sp.nov.、Tunturibacter gelidoferens sp.nov.和 Tunturibacter psychrotolerans sp.nov.。我们希望通过发现Terriglobia中的新物种和新菌株,并提高其系统发育定位的准确性,来加深我们对这一复杂门类的理解,并揭示极地土壤中微生物群落的形成机制。
{"title":"Genome analysis and description of Tunturibacter gen. nov. expands the diversity of Terriglobia in tundra soils","authors":"Adriana Messyasz,&nbsp;Minna K. Männistö,&nbsp;Lee J. Kerkhof,&nbsp;Max M. Häggblom","doi":"10.1111/1462-2920.16640","DOIUrl":"10.1111/1462-2920.16640","url":null,"abstract":"<p>Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of <i>Terriglobia</i>, a common but elusive group within the <i>Acidobacteriota</i> phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete <i>Acidobacteriota</i> genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish <i>Acidobacteriota</i> strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with <i>Edaphobacter lichenicola</i>. We conclude that this cluster represents a new genus, which we have named <i>Tunturibacter</i>. We describe four new species: <i>Tunturibacter lichenicola</i> comb. nov., <i>Tunturibacter empetritectus</i> sp. nov., <i>Tunturibacter gelidoferens</i> sp. nov., and <i>Tunturibacter psychrotolerans</i> sp. nov. By uncovering new species and strains within the <i>Terriglobia</i> and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16640","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Habitat conditions and not moss composition mediate microbial community structure in Swiss peatlands 瑞士泥炭地微生物群落结构的调节因素是栖息地条件而非苔藓成分
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-17 DOI: 10.1111/1462-2920.16631
Rachel Korn, Christian Berg, Louis-Félix Bersier, Sarah M. Gray, Gerhard G. Thallinger

Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.

泥炭地是最古老的生态系统之一,在全球范围内储存着大量的碳和淡水。然而,它们正受到人类活动的严重威胁,导致这些微妙系统中的水分、养分和温度机制发生变化。这种变化会导致大量碳流入大气,并削弱泥炭地的持水能力。泥炭地中与苔藓相关的微生物在提供这些生态系统服务方面发挥着至关重要的作用,而这些服务正受到全球变化的威胁。因此,了解影响微生物组成和功能的因素至关重要。我们的研究重点是瑞士海拔梯度上的五块泥炭地,我们对含有紫云英的沼泽地上的苔藓进行了采样。结构方程模型显示,生境条件是群落结构的主要预测因素,并直接影响其他环境变量。有趣的是,微生物的组成与当地苔藓的物种特征无关。相反,不同地点的微生物群落因酸度水平和氮可用性的不同而存在显著差异。这一发现也反映在共现网络分析中,该分析显示酸度和氮可用性的指示物种分布各不相同。因此,泥炭地保护应考虑到苔藓相关微生物群落的关键生境特征。
{"title":"Habitat conditions and not moss composition mediate microbial community structure in Swiss peatlands","authors":"Rachel Korn,&nbsp;Christian Berg,&nbsp;Louis-Félix Bersier,&nbsp;Sarah M. Gray,&nbsp;Gerhard G. Thallinger","doi":"10.1111/1462-2920.16631","DOIUrl":"https://doi.org/10.1111/1462-2920.16631","url":null,"abstract":"<p>Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing <i>Sarracenia purpurea</i>. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical steps in an environmental metaproteomics workflow 环境元蛋白质组学工作流程的关键步骤
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-17 DOI: 10.1111/1462-2920.16637
Daniel J. Nebauer, Leanne A. Pearson, Brett A. Neilan

Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.

环境元蛋白质组学是一个快速发展的领域,它能让人们深入了解微生物群落的结构、动态和代谢活动。由于该领域仍处于成熟期,缺乏统一的工作流程,因此对于非专业研究人员来说,要驾驭该领域具有挑战性。本综述旨在介绍环境元蛋白质组学的工作流程。它概述了样本采集、处理和分析的标准实践,并提供了克服土壤、淡水、海洋环境、生物膜、污泥和共生体等常见环境基质所带来的独特挑战的策略。综述还强调了元蛋白质组学样本特有的数据分析瓶颈,并为研究人员提供了获得高质量数据集的建议。文章还介绍了最近的基准研究以及专为元蛋白质组学分析而开发的软件包。文章在编写过程中没有假定读者熟悉单生物体蛋白质组学工作流程,因此蛋白质组学或质谱分析的新手也可以阅读。这本环境元蛋白质组学入门书旨在提高这一令人兴奋的技术的可及性,使研究人员有能力解决具有挑战性和雄心勃勃的研究问题。虽然它主要是为这一领域的新手提供资源,但对于希望简化元蛋白质组学实验或排除其故障的成熟研究人员来说,它也应该是有用的。
{"title":"Critical steps in an environmental metaproteomics workflow","authors":"Daniel J. Nebauer,&nbsp;Leanne A. Pearson,&nbsp;Brett A. Neilan","doi":"10.1111/1462-2920.16637","DOIUrl":"10.1111/1462-2920.16637","url":null,"abstract":"<p>Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140954337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeography and impact of nitrous oxide reducers in rivers across a broad environmental gradient on emission rates 大环境梯度河流中氧化亚氮还原剂的生物地理学及其对排放率的影响
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-16 DOI: 10.1111/1462-2920.16622
Sibo Zhang, Xinghui Xia, Leilei Yu, Shaoda Liu, Xiaokang Li, Junfeng Wang, Yue Zheng, Lanfang Han, Qian Tan, Zhifeng Yang

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.

减少一氧化二氮(N2O)的微生物群落分为两个支系:nosZI 和 nosZII。这两个支系在生态位和对陆地环境中一氧化二氮排放的影响方面存在很大差异。然而,目前我们对水生系统中 N2O 还原剂的了解还很有限。本研究调查了河流中 nosZI 型和 nosZII 型氧化亚氮还原剂的相对丰度和多样性及其对氧化亚氮排放的影响。我们的研究结果表明,河流沉积物具有很强的 N2O 还原能力,在高 N2O/NO3- 比率条件下,其生成量超过了 N2O 生成量。这项研究以及在淡水系统中进行的其他研究表明,nosZI 在河流中更多地占据微弱优势。虽然含有 nosZI 和 nosZII 的微生物在减少 N2O 排放方面至关重要,但含有 nosZII 的微生物的净贡献更为显著。这可能是因为 nir 基因与 nosZI 基因共存的频率高于与 nosZII 基因共存的频率。每个支系内部的多样性也起到了一定作用,在 N2O 浓度较高的溪流中,nosZII 物种更有可能发挥 N2O 汇的作用。总之,我们的发现为更好地了解溪流一氧化二氮还原剂的生物地理学及其对一氧化二氮排放的影响奠定了基础。
{"title":"Biogeography and impact of nitrous oxide reducers in rivers across a broad environmental gradient on emission rates","authors":"Sibo Zhang,&nbsp;Xinghui Xia,&nbsp;Leilei Yu,&nbsp;Shaoda Liu,&nbsp;Xiaokang Li,&nbsp;Junfeng Wang,&nbsp;Yue Zheng,&nbsp;Lanfang Han,&nbsp;Qian Tan,&nbsp;Zhifeng Yang","doi":"10.1111/1462-2920.16622","DOIUrl":"https://doi.org/10.1111/1462-2920.16622","url":null,"abstract":"<p>Microbial communities that reduce nitrous oxide (N<sub>2</sub>O) are divided into two clades, <i>nosZ</i>I and <i>nosZ</i>II. These clades significantly differ in their ecological niches and their implications for N<sub>2</sub>O emissions in terrestrial environments. However, our understanding of N<sub>2</sub>O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of <i>nosZ</i>I- and <i>nosZ</i>II-type N<sub>2</sub>O reducers in rivers and their impact on N<sub>2</sub>O emissions. Our findings revealed that stream sediments possess a high capacity for N<sub>2</sub>O reduction, surpassing N<sub>2</sub>O production under high N<sub>2</sub>O/NO<sub>3</sub>- ratio conditions. This study, along with others in freshwater systems, demonstrated that <i>nosZ</i>I marginally dominates more often in rivers. While microbes containing either <i>nosZ</i>I and <i>nosZ</i>II were crucial in reducing N<sub>2</sub>O emissions, the net contribution of <i>nosZ</i>II-containing microbes was more significant. This can be attributed to the <i>nir</i> gene co-occurring more frequently with the <i>nosZ</i>I gene than with the <i>nosZ</i>II gene. The diversity within each clade also played a role, with <i>nosZ</i>II species being more likely to function as N<sub>2</sub>O sinks in streams with higher N<sub>2</sub>O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N<sub>2</sub>O reducers and their effects on N<sub>2</sub>O emissions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining the impacts of salt specificity on freshwater microbial community and functional potential following salinization 研究盐化后盐的特异性对淡水微生物群落和功能潜力的影响
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-16 DOI: 10.1111/1462-2920.16628
Jonathon B. Van Gray, Paul Ayayee

The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution—MgCl2, MgSO4, NaCl, and Na2SO4—on bacterial taxonomic and functional α-, β-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.

盐污染造成的淡水系统退化是对全球淡水资源的威胁。盐化通常通过比电导率(电导率)的增加来识别,比电导率是盐浓度的代表。然而,电导率无法说明进入淡水的盐分的多样性,也无法说明这对微生物群落和功能的潜在影响。我们测试了 4 种类型的盐污染--氯化镁、硫酸镁、氯化钠和硫酸镁--对源自两个不同地区(美国内布拉斯加州[NE]和俄亥俄州[OH])溪流的细菌群落分类和功能α、β-多样性的影响。与其他盐类添加剂相比,Na2SO4 和 MgCl2 对群落多样性的影响更为明显。对分类学和功能多样性指标的仔细研究表明,群落的核心特征对诱导盐胁迫具有更强的抵抗力,而在种群和功能水平上,边缘特征更有可能根据盐的特异性表现出显著的结构变化。群落反应的不一致性突出表明,需要考虑盐渍化的组成复杂性,以准确识别盐污染事件的生态后果。
{"title":"Examining the impacts of salt specificity on freshwater microbial community and functional potential following salinization","authors":"Jonathon B. Van Gray,&nbsp;Paul Ayayee","doi":"10.1111/1462-2920.16628","DOIUrl":"https://doi.org/10.1111/1462-2920.16628","url":null,"abstract":"<p>The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution—MgCl<sub>2</sub>, MgSO<sub>4</sub>, NaCl, and Na<sub>2</sub>SO<sub>4</sub>—on bacterial taxonomic and functional α-, β-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na<sub>2</sub>SO<sub>4</sub> and MgCl<sub>2</sub> than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the role of novel carbohydrate-binding modules in laminarin interaction of multimodular proteins from marine Bacteroidota during phytoplankton blooms 揭示新型碳水化合物结合模块在浮游植物大量繁殖期间海洋类杆菌多模块蛋白与层叠蛋白相互作用中的作用
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-05-16 DOI: 10.1111/1462-2920.16624
Marie-Katherin Zühlke, Elizabeth Ficko-Blean, Daniel Bartosik, Nicolas Terrapon, Alexandra Jeudy, Murielle Jam, Fengqing Wang, Norma Welsch, Alexandra Dürwald, Laura Torres Martin, Robert Larocque, Diane Jouanneau, Tom Eisenack, François Thomas, Anke Trautwein-Schult, Hanno Teeling, Dörte Becher, Thomas Schweder, Mirjam Czjzek

Laminarin, a β(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.

层藻糖苷是一种β(1,3)-葡聚糖,是硅藻等海洋微藻的一种贮藏多糖。其丰富的数量、水溶性和简单的结构使其成为海洋细菌喜爱的底物。因此,许多海洋细菌利用碳水化合物结合模块(CBMs)作为关键部件,进化出了清除和分解层聚糖的策略。在这项研究中,我们在海洋细菌 Christiangramia forsetii KT0803T 的多模块蛋白中鉴定了两个以前未分配的结构域作为层粘蛋白结合 CBM,从而引入了新的层粘蛋白结合 CBM 家族 CBM102 和 CBM103。我们在一个表面糖蛋白结合蛋白(SGBP)中发现了四个 CBM102,并从第 16 家族(GH16_3)中发现了一个与糖苷水解酶模块相连的 CBM103。我们的分析表明,这两种模块蛋白都具有拉长的形状,其中 GH16_3 比 SGBP 表现出更大的灵活性。这种灵活性可能有助于识别和/或降解层粘菌素,而 SGBP 的限制则有助于层粘菌素与细菌表面的对接。对来自北海浮游植物藻华的细菌元基因组(MAGs)的探索表明,这两种结合层粘菌素的 CBM 家族在海洋类杆菌中都很普遍。在浮游植物藻华期间,含 CBM102 和 CBM103 蛋白的蛋白质丰度很高,这进一步强调了它们在海洋层皮素利用中的重要性。
{"title":"Unveiling the role of novel carbohydrate-binding modules in laminarin interaction of multimodular proteins from marine Bacteroidota during phytoplankton blooms","authors":"Marie-Katherin Zühlke,&nbsp;Elizabeth Ficko-Blean,&nbsp;Daniel Bartosik,&nbsp;Nicolas Terrapon,&nbsp;Alexandra Jeudy,&nbsp;Murielle Jam,&nbsp;Fengqing Wang,&nbsp;Norma Welsch,&nbsp;Alexandra Dürwald,&nbsp;Laura Torres Martin,&nbsp;Robert Larocque,&nbsp;Diane Jouanneau,&nbsp;Tom Eisenack,&nbsp;François Thomas,&nbsp;Anke Trautwein-Schult,&nbsp;Hanno Teeling,&nbsp;Dörte Becher,&nbsp;Thomas Schweder,&nbsp;Mirjam Czjzek","doi":"10.1111/1462-2920.16624","DOIUrl":"https://doi.org/10.1111/1462-2920.16624","url":null,"abstract":"<p>Laminarin, a β(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium <i>Christiangramia forsetii</i> KT0803<sup>T</sup>, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine <i>Bacteroidota</i>. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1