Kateřina Burkartová, Antonín Hlaváček, Sergej Skoblia, Lukáš Falteisek
Microbial biostalactites and streamers commonly grow at iron seepages in abandoned mines worldwide. This study addresses the diversity and composition of these simple prokaryotic communities, which thrive in pH ranges from 2.4 to 6.6 across six different mines. Our analysis of 85 communities reveals that a pH of approximately 3.2 is a critical threshold where alpha and beta diversity change discretely. Below this pH, the average number of ASVs per sample is 2.91 times lower than above this boundary. Autotrophs, heterotrophs, and symbionts of eukaryotes originate from nearly non-overlapping species pools in the two habitat types that differ only in pH. Communities below pH 3.2 further divide into two distinct groups, differing in diversity, taxonomic, and functional composition. Both types of communities coexist within the same stalactites, likely corresponding to zones where the capillary structure of the stalactite is either perfused or clogged. These findings indicate that microbial community structure can be significantly influenced by the intricate spatial organization of the ecosystem, rather than solely by measurable environmental parameters.
{"title":"Distinct microbial communities supported by iron oxidation","authors":"Kateřina Burkartová, Antonín Hlaváček, Sergej Skoblia, Lukáš Falteisek","doi":"10.1111/1462-2920.16706","DOIUrl":"10.1111/1462-2920.16706","url":null,"abstract":"<p>Microbial biostalactites and streamers commonly grow at iron seepages in abandoned mines worldwide. This study addresses the diversity and composition of these simple prokaryotic communities, which thrive in pH ranges from 2.4 to 6.6 across six different mines. Our analysis of 85 communities reveals that a pH of approximately 3.2 is a critical threshold where alpha and beta diversity change discretely. Below this pH, the average number of ASVs per sample is 2.91 times lower than above this boundary. Autotrophs, heterotrophs, and symbionts of eukaryotes originate from nearly non-overlapping species pools in the two habitat types that differ only in pH. Communities below pH 3.2 further divide into two distinct groups, differing in diversity, taxonomic, and functional composition. Both types of communities coexist within the same stalactites, likely corresponding to zones where the capillary structure of the stalactite is either perfused or clogged. These findings indicate that microbial community structure can be significantly influenced by the intricate spatial organization of the ecosystem, rather than solely by measurable environmental parameters.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16706","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salma Mukhtar, M. Amine Hassani, Tracy Zarrillo, Zhouqi Cui, George W. Sundin, Quan Zeng
Flowers serve as hubs for biotic interactions with pollinators and microbes, which can significantly impact plant reproduction and health. Previous studies have shown that the flower microbiota undergoes dynamic assembly processes during anthesis. However, the influence of foraging pollinators on the assembly and dispersal of the flower microbiota and the transmission of plant pathogens remains poorly understood. In this study, we used insect exclusion netting to investigate the role of pollinators in the assembly of the microbiota on apple stigma and the transmission of the fire blight pathogen Erwinia amylovora. We found that excluding pollinators had a minor impact on the community diversity and composition of the apple stigma microbiota, while the flower's developmental stage had a strong influence. Additionally, pollinator exclusion altered bacterial dispersal and the relative abundance of different bacterial species, including E. amylovora, suggesting that pollinators play a role in transmitting plant pathogens. Using a reporter system, we demonstrated that bumble bees can transmit the fire blight pathogen from an infected flower under controlled growth conditions. Our study highlights the importance of intrinsic and pollinator-independent microbes as sources of inoculum for the stigma microbiota and underscores the role of foraging pollinators in vectoring plant pathogens.
{"title":"The role of foraging pollinators in assembling the flower microbiota and transmitting the fire blight pathogen Erwinia amylovora","authors":"Salma Mukhtar, M. Amine Hassani, Tracy Zarrillo, Zhouqi Cui, George W. Sundin, Quan Zeng","doi":"10.1111/1462-2920.16702","DOIUrl":"10.1111/1462-2920.16702","url":null,"abstract":"<p>Flowers serve as hubs for biotic interactions with pollinators and microbes, which can significantly impact plant reproduction and health. Previous studies have shown that the flower microbiota undergoes dynamic assembly processes during anthesis. However, the influence of foraging pollinators on the assembly and dispersal of the flower microbiota and the transmission of plant pathogens remains poorly understood. In this study, we used insect exclusion netting to investigate the role of pollinators in the assembly of the microbiota on apple stigma and the transmission of the fire blight pathogen <i>Erwinia amylovora</i>. We found that excluding pollinators had a minor impact on the community diversity and composition of the apple stigma microbiota, while the flower's developmental stage had a strong influence. Additionally, pollinator exclusion altered bacterial dispersal and the relative abundance of different bacterial species, including <i>E. amylovora</i>, suggesting that pollinators play a role in transmitting plant pathogens. Using a reporter system, we demonstrated that bumble bees can transmit the fire blight pathogen from an infected flower under controlled growth conditions. Our study highlights the importance of intrinsic and pollinator-independent microbes as sources of inoculum for the stigma microbiota and underscores the role of foraging pollinators in vectoring plant pathogens.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related Umbilicaria phaea (North American; two gradients) and Umbilicaria pustulata (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in U. phaea and 138 SNPs in U. pustulata were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing U. phaea has a higher recombination rate than the primarily asexually reproducing U. pustulata. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.
地衣可以承受水合-干燥周期等波动的环境条件。许多物种分布在不同的气候带,这表明它们在种群水平上适应了冰冻和干旱等条件。在此,我们旨在了解气候如何影响地衣化真菌的种群基因组模式。我们沿海拔梯度分析了密切相关的 Umbilicaria phaea(北美;两个梯度)和 Umbilicaria pustulata(欧洲;三个梯度)的种群结构。所有梯度都显示出明显的基因组断裂,将种群分为低海拔(地中海地区)和高海拔(寒温带地区)。在梯度两端的 U. phaea 和 U. pustulata 中,共有 3301 个 SNPs 和 138 个 SNPs 趋于固定。物种之间的差异可能是由于重组率的不同:有性生殖的 U. phaea 比主要无性生殖的 U. pustulata 有更高的重组率。克林分析显示,所有梯度的等位基因频率都在大约 0°C 时发生转变,这与地中海和寒温带之间的过渡相吻合,表明冰冻是种群分化的一个强大驱动力。基因组扫描进一步证实了与温度有关的选择目标。两种真菌总体上表现出相似的分化模式,但不同的等位基因表明它们对冷冻的适应性趋同。我们的研究结果丰富了我们对与温度和气候相关的真菌基因组功能、真菌种群基因组学以及物种对环境异质性的反应的认识。
{"title":"Genome-wide differentiation corresponds to climatic niches in two species of lichen-forming fungi","authors":"Edgar L. Y. Wong, Henrique F. Valim, Imke Schmitt","doi":"10.1111/1462-2920.16703","DOIUrl":"10.1111/1462-2920.16703","url":null,"abstract":"<p>Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related <i>Umbilicaria phaea</i> (North American; two gradients) and <i>Umbilicaria pustulata</i> (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in <i>U. phaea</i> and 138 SNPs in <i>U. pustulata</i> were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing <i>U. phaea</i> has a higher recombination rate than the primarily asexually reproducing <i>U. pustulata</i>. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Zheng, Britt-Marie Wilén, Ola Öberg, Torsten Wik, Oskar Modin
Geosmin and 2-methylisoborneol (MIB) are known to cause taste-and-odour problems in recirculating aquaculture systems (RAS). Both geosmin and MIB are microbial metabolites belonging to terpenoids. Precursors for terpenoids are biosynthesized via the methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways. We carried out a metagenomic analysis of 50 samples from five RAS to investigate terpenoid biosynthesis and metabolic potential for geosmin and MIB production in RAS microbiomes. A total of 1008 metagenome-assembled genomes (MAGs) representing 26 bacterial and three archaeal phyla were recovered. Although most archaea are thought to use the MVA pathway for terpenoid precursor biosynthesis, an Iainarchaeota archaeal MAG is shown to harbour a complete set of genes encoding the MEP pathway but lacking genes associated with the MVA pathway. In this study, a total of 16 MAGs affiliated with five bacterial phyla (Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexota, and Myxococcota) were identified as possessing potential geosmin or MIB synthases. These putative taste and odour producers were diverse, many were taxonomically unidentified at the genus or species level, and their relative abundance differed between the investigated RAS farms. The metagenomic study of the RAS microbiomes revealed a previously unknown phylogenetic diversity of the potential to produce geosmin and MIB.
{"title":"Metagenomics reveal the potential for geosmin and 2-methylisoborneol production across multiple bacterial phyla in recirculating aquaculture systems","authors":"Dan Zheng, Britt-Marie Wilén, Ola Öberg, Torsten Wik, Oskar Modin","doi":"10.1111/1462-2920.16696","DOIUrl":"10.1111/1462-2920.16696","url":null,"abstract":"<p>Geosmin and 2-methylisoborneol (MIB) are known to cause taste-and-odour problems in recirculating aquaculture systems (RAS). Both geosmin and MIB are microbial metabolites belonging to terpenoids. Precursors for terpenoids are biosynthesized via the methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways. We carried out a metagenomic analysis of 50 samples from five RAS to investigate terpenoid biosynthesis and metabolic potential for geosmin and MIB production in RAS microbiomes. A total of 1008 metagenome-assembled genomes (MAGs) representing 26 bacterial and three archaeal phyla were recovered. Although most archaea are thought to use the MVA pathway for terpenoid precursor biosynthesis, an <i>Iainarchaeota</i> archaeal MAG is shown to harbour a complete set of genes encoding the MEP pathway but lacking genes associated with the MVA pathway. In this study, a total of 16 MAGs affiliated with five bacterial phyla (<i>Acidobacteriota</i>, <i>Actinobacteriota</i>, <i>Bacteroidota</i>, <i>Chloroflexota</i>, and <i>Myxococcota</i>) were identified as possessing potential geosmin or MIB synthases. These putative taste and odour producers were diverse, many were taxonomically unidentified at the genus or species level, and their relative abundance differed between the investigated RAS farms. The metagenomic study of the RAS microbiomes revealed a previously unknown phylogenetic diversity of the potential to produce geosmin and MIB.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16696","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adeline Loyau, Rayan Bouchali, Hugo Sentenac, Dirk S. Schmeller
Microbial assemblages naturally living on the skin are an integral part of immunity. In amphibians, this skin microbiota may hold a mitigation solution against the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the panzootic disease chytridiomycosis. We used 16S rRNA gene metabarcoding to test the adaptive microbiome hypothesis. We compared the community composition, richness, and putative Bd-inhibitory function of the skin microbiome of three amphibian host species in the Pyrenees, as well as three species in Taiwan, in both Bd-positive and negative mountain populations. In both geographical regions, the amphibian host species played a decisive role in shaping the microbial assemblage and putative anti-Bd properties. In the Pyrenees, the species most susceptible to chytridiomycosis, Alytes obstetricans, had the lowest relative abundances of putative protective bacteria. In Bd-positive and negative sites, individuals had different skin microbiomes, with all anuran species showing increased relative abundances of potential anti-Bd bacteria, while the Taiwanese caudata Hynobius sonani showed the opposite pattern. Our results suggest that, in response to exposure to the pathogen, the skin microbiota shifted to a defensive state with increased anti-Bd function, which may contribute to promoting disease resistance, as proposed by the adaptive microbiome hypothesis.
{"title":"The commensal skin microbiome of amphibian mountain populations and its association with the pathogen Batrachochytrium dendrobatidis","authors":"Adeline Loyau, Rayan Bouchali, Hugo Sentenac, Dirk S. Schmeller","doi":"10.1111/1462-2920.16699","DOIUrl":"10.1111/1462-2920.16699","url":null,"abstract":"<p>Microbial assemblages naturally living on the skin are an integral part of immunity. In amphibians, this skin microbiota may hold a mitigation solution against the fungal pathogen <i>Batrachochytrium dendrobatidis</i> (Bd), which causes the panzootic disease chytridiomycosis. We used 16S rRNA gene metabarcoding to test the adaptive microbiome hypothesis. We compared the community composition, richness, and putative Bd-inhibitory function of the skin microbiome of three amphibian host species in the Pyrenees, as well as three species in Taiwan, in both Bd-positive and negative mountain populations. In both geographical regions, the amphibian host species played a decisive role in shaping the microbial assemblage and putative anti-Bd properties. In the Pyrenees, the species most susceptible to chytridiomycosis, <i>Alytes obstetricans</i>, had the lowest relative abundances of putative protective bacteria. In Bd-positive and negative sites, individuals had different skin microbiomes, with all anuran species showing increased relative abundances of potential anti-Bd bacteria, while the Taiwanese caudata <i>Hynobius sonani</i> showed the opposite pattern. Our results suggest that, in response to exposure to the pathogen, the skin microbiota shifted to a defensive state with increased anti-Bd function, which may contribute to promoting disease resistance, as proposed by the adaptive microbiome hypothesis.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16699","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanhui Kong, Rui Zhang, Stéphane Blain, Ingrid Obernosterer
Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that Rhodobacteraceae had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as Flavobacteriaceae (Zn), Nitrincolaceae (Ni and W) and Thioglobaceae (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.
{"title":"Seasonal dynamics in microbial trace metals transporters during phytoplankton blooms in the Southern Ocean","authors":"Yanhui Kong, Rui Zhang, Stéphane Blain, Ingrid Obernosterer","doi":"10.1111/1462-2920.16695","DOIUrl":"10.1111/1462-2920.16695","url":null,"abstract":"<p>Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that <i>Rhodobacteraceae</i> had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as <i>Flavobacteriaceae</i> (Zn), <i>Nitrincolaceae</i> (Ni and W) and <i>Thioglobaceae</i> (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16695","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyue Gu, Perran A. Ross, Qiong Yang, Alex Gill, Paul A. Umina, Ary A. Hoffmann
There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.
{"title":"Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids","authors":"Xinyue Gu, Perran A. Ross, Qiong Yang, Alex Gill, Paul A. Umina, Ary A. Hoffmann","doi":"10.1111/1462-2920.16704","DOIUrl":"10.1111/1462-2920.16704","url":null,"abstract":"<p>There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (<i>Myzus persicae</i>), bird cherry-oat aphid (<i>Rhopalosiphum padi</i>), and Russian wheat aphid (<i>Diuraphis noxia</i>). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Zhong, Anhuai Lu, Hailiang Dong, Shan Huang, Liang Shi, Yanan Shen, Yangjian Cheng, Yiran Dong, Xiangzhen Li, Jie Xu, Jinren Ni, Michael F. Hochella Jr, Juan Liu
Sulphate-reducing microorganisms, or SRMs, are crucial to organic decomposition, the sulphur cycle, and the formation of pyrite. Despite their low energy-yielding metabolism and intense competition with other microorganisms, their ability to thrive in natural habitats often lacking sufficient substrates remains an enigma. This study delves into how Desulfovibrio desulfuricans G20, a representative SRM, utilizes photoelectrons from extracellular sphalerite (ZnS), a semiconducting mineral that often coexists with SRMs, for its metabolism and energy production. Batch experiments with sphalerite reveal that the initial rate and extent of sulphate reduction by G20 increased by 3.6 and 3.2 times respectively under light conditions compared to darkness, when lactate was not added. Analyses of microbial photoelectrochemical, transcriptomic, and metabolomic data suggest that in the absence of lactate, G20 extracts photoelectrons from extracellular sphalerite through cytochromes, nanowires, and electron shuttles. Genes encoding movement and biofilm formation are upregulated, suggesting that G20 might sense redox potential gradients and migrate towards sphalerite to acquire photoelectrons. This process enhances the intracellular electron transfer activity, sulphur metabolism, and ATP production of G20, which becomes dominant under conditions of carbon starvation and extends cell viability in such environments. This mechanism could be a vital strategy for SRMs to survive in energy-limited environments and contribute to sulphur cycling.
{"title":"Photoelectron-promoted metabolism of sulphate-reducing microorganisms in substrate-depleted environments","authors":"Chao Zhong, Anhuai Lu, Hailiang Dong, Shan Huang, Liang Shi, Yanan Shen, Yangjian Cheng, Yiran Dong, Xiangzhen Li, Jie Xu, Jinren Ni, Michael F. Hochella Jr, Juan Liu","doi":"10.1111/1462-2920.16683","DOIUrl":"10.1111/1462-2920.16683","url":null,"abstract":"<p>Sulphate-reducing microorganisms, or SRMs, are crucial to organic decomposition, the sulphur cycle, and the formation of pyrite. Despite their low energy-yielding metabolism and intense competition with other microorganisms, their ability to thrive in natural habitats often lacking sufficient substrates remains an enigma. This study delves into how <i>Desulfovibrio desulfuricans</i> G20, a representative SRM, utilizes photoelectrons from extracellular sphalerite (ZnS), a semiconducting mineral that often coexists with SRMs, for its metabolism and energy production. Batch experiments with sphalerite reveal that the initial rate and extent of sulphate reduction by G20 increased by 3.6 and 3.2 times respectively under light conditions compared to darkness, when lactate was not added. Analyses of microbial photoelectrochemical, transcriptomic, and metabolomic data suggest that in the absence of lactate, G20 extracts photoelectrons from extracellular sphalerite through cytochromes, nanowires, and electron shuttles. Genes encoding movement and biofilm formation are upregulated, suggesting that G20 might sense redox potential gradients and migrate towards sphalerite to acquire photoelectrons. This process enhances the intracellular electron transfer activity, sulphur metabolism, and ATP production of G20, which becomes dominant under conditions of carbon starvation and extends cell viability in such environments. This mechanism could be a vital strategy for SRMs to survive in energy-limited environments and contribute to sulphur cycling.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee-Jeong Cha, Dominic J. Glover, Douglas S. Clark
Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen Methanocaldococcus jannaschii, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of M. jannaschii. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.
{"title":"The filamentous γ-prefoldin chaperone is not essential for growth and thermal adaptation in Methanocaldococcus jannaschii","authors":"Hee-Jeong Cha, Dominic J. Glover, Douglas S. Clark","doi":"10.1111/1462-2920.16705","DOIUrl":"10.1111/1462-2920.16705","url":null,"abstract":"<p>Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen <i>Methanocaldococcus jannaschii</i>, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of <i>M. jannaschii</i>. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinming Xu, Adele Pioppi, Heiko T. Kiesewalter, Mikael Lenz Strube, Ákos T. Kovács
Bacillus subtilis is ubiquitously and broadly distributed in various environments but is mostly isolated from soil. Given that B. subtilis is known as a plant growth-promoting rhizobacterium in agriculture, we aimed to describe the natural distribution of this species and uncover how biotic and abiotic factors affect its distribution. When comparing different soils, we discovered that B. subtilis group species are most abundant in grasslands but can rarely be isolated from forest soil, even if the soil sample sites are situated in proximity. Differential analysis revealed that spore-forming bacteria exhibited enrichments in the grassland, suggesting niche overlap or synergistic interactions leading to the proliferation of certain Bacillus species in grassland environments. Network analysis further revealed that Bacillus and other Bacillota established a densely interconnected hub module in the grassland, characterised by positive associations indicating co-occurrence, a pattern not observed in the forest soil. Speculating that this difference was driven by abiotic factors, we combined amplicon sequencing with physico-chemical analysis of soil samples and found multiple chemical variables, mainly pH, to affect microbial composition. Our study pinpoints the factors that influence B. subtilis abundance in natural soils and, therefore, offers insights for designing B. subtilis-based biocontrol products in agricultural settings.
{"title":"Disentangling the factors defining Bacillus subtilis group species abundance in natural soils","authors":"Xinming Xu, Adele Pioppi, Heiko T. Kiesewalter, Mikael Lenz Strube, Ákos T. Kovács","doi":"10.1111/1462-2920.16693","DOIUrl":"10.1111/1462-2920.16693","url":null,"abstract":"<p><i>Bacillus subtilis</i> is ubiquitously and broadly distributed in various environments but is mostly isolated from soil. Given that <i>B. subtilis</i> is known as a plant growth-promoting rhizobacterium in agriculture, we aimed to describe the natural distribution of this species and uncover how biotic and abiotic factors affect its distribution. When comparing different soils, we discovered that <i>B. subtilis</i> group species are most abundant in grasslands but can rarely be isolated from forest soil, even if the soil sample sites are situated in proximity. Differential analysis revealed that spore-forming bacteria exhibited enrichments in the grassland, suggesting niche overlap or synergistic interactions leading to the proliferation of certain <i>Bacillus</i> species in grassland environments. Network analysis further revealed that <i>Bacillus</i> and other <i>Bacillota</i> established a densely interconnected hub module in the grassland, characterised by positive associations indicating co-occurrence, a pattern not observed in the forest soil. Speculating that this difference was driven by abiotic factors, we combined amplicon sequencing with physico-chemical analysis of soil samples and found multiple chemical variables, mainly pH, to affect microbial composition. Our study pinpoints the factors that influence <i>B. subtilis</i> abundance in natural soils and, therefore, offers insights for designing <i>B. subtilis</i>-based biocontrol products in agricultural settings.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 9","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}