Florine Degrune, Kenneth Dumack, Masahiro Ryo, Gina Garland, Sana Romdhane, Aurélien Saghaï, Samiran Banerjee, Anna Edlinger, Chantal Herzog, David S. Pescador, Pablo García-Palacios, Anna Maria Fiore-Donno, Michael Bonkowski, Sara Hallin, Marcel G. A. van der Heijden, Fernando T. Maestre, Laurent Philippot, Michael Glemnitz, Klaus Sieling, Matthias C. Rillig
Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.
{"title":"The impact of fungi on soil protist communities in European cereal croplands","authors":"Florine Degrune, Kenneth Dumack, Masahiro Ryo, Gina Garland, Sana Romdhane, Aurélien Saghaï, Samiran Banerjee, Anna Edlinger, Chantal Herzog, David S. Pescador, Pablo García-Palacios, Anna Maria Fiore-Donno, Michael Bonkowski, Sara Hallin, Marcel G. A. van der Heijden, Fernando T. Maestre, Laurent Philippot, Michael Glemnitz, Klaus Sieling, Matthias C. Rillig","doi":"10.1111/1462-2920.16673","DOIUrl":"10.1111/1462-2920.16673","url":null,"abstract":"<p>Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16673","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage–host interactions.
{"title":"Determinants in the phage life cycle: The dynamic nature of ssDNA phage FLiP and host interactions under varying environmental conditions and growth phases","authors":"Kati Mäkelä, Elina Laanto, Lotta-Riina Sundberg","doi":"10.1111/1462-2920.16670","DOIUrl":"10.1111/1462-2920.16670","url":null,"abstract":"<p>The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used <i>Finnlakevirus</i> FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three <i>Flavobacterium</i> host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage–host interactions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16670","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}