首页 > 最新文献

Environmental microbiology最新文献

英文 中文
Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph 一种多功能海洋铁氧化化学自养型生物的蛋白质组学比较
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-11 DOI: 10.1111/1462-2920.16632
Roman A. Barco, N. Merino, B. Lam, B. Budnik, M. Kaplan, F. Wu, J. P. Amend, K. H. Nealson, D. Emerson

This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.

本研究进行了比较蛋白质组分析,以确定海洋细菌 Ghiorsea bivora 中化学溶解自养铁氧化生物学功能的潜在遗传标记。迄今为止,这是Zetaproteobacteria类细菌中唯一非强制性铁氧化的特征物种,为研究蛋白质表达差异提供了一个独特的机会,以确定在中性pH下参与铁氧化的关键基因。在铁氧化和氢氧化条件下,共鉴定出 1000 多种蛋白质,并在两种处理中发现了不同表达的蛋白质。值得注意的是,发现了一个在铁氧化过程中上调的基因簇。该基因簇包含的编码细胞色素的基因与已知的铁氧化酶 Cyc2 具有序列相似性。有趣的是,这些在细菌和古细菌中都保留下来的细胞色素并没有表现出 Cyc2 典型的 β 管状结构。该细胞色素团可能编码一种生物纳米线状跨膜复合体,其中包含多种氧化还原蛋白,横跨内膜、周质、外膜和细胞外空间。反转录-PCR定量分析证实,在铁氧化条件下,与该复合物相关的关键基因上调。电微生物学方法进一步证实了这些发现,该方法证明了在阴极电位的三电极系统中 G. bivora 产生的负电流。这项研究为化学自养铁氧化的生物功能提供了重要见解。
{"title":"Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph","authors":"Roman A. Barco,&nbsp;N. Merino,&nbsp;B. Lam,&nbsp;B. Budnik,&nbsp;M. Kaplan,&nbsp;F. Wu,&nbsp;J. P. Amend,&nbsp;K. H. Nealson,&nbsp;D. Emerson","doi":"10.1111/1462-2920.16632","DOIUrl":"10.1111/1462-2920.16632","url":null,"abstract":"<p>This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium <i>Ghiorsea bivora</i>. To date, this is the only characterized species in the class <i>Zetaproteobacteria</i> that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by <i>G. bivora</i> in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and characterization of a phage collection against Pseudomonas putida 针对假单胞菌(Pseudomonas putida)的噬菌体集的分离和特征描述。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-11 DOI: 10.1111/1462-2920.16671
Age Brauer, Sirli Rosendahl, Anu Kängsep, Alicja Cecylia Lewańczyk, Roger Rikberg, Rita Hõrak, Hedvig Tamman

The environmental bacterium, Pseudomonas putida, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For P. putida to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, P. putida KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental P. putida Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for P. putida infection. Furthermore, we show that cryptic prophages present in the P. putida chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin–antitoxin systems do not play a role in the phage defence of P. putida. This research provides valuable insights into the interactions between P. putida and bacteriophages, which could have significant implications for biotechnological and environmental applications.

环境细菌普氏假单胞菌(Pseudomonas putida)具有广泛的代谢途径。这使它在生物技术生产中作为细胞工厂,以及在生物修复战略中降解各种芳香污染物方面大有可为。为了使 P. putida 在其生存环境中繁衍生息,它必须能够抵御噬菌体带来的持续威胁。有趣的是,到目前为止,只有少数噬菌体从常用的实验室菌株 P. putida KT2440 中分离出来,而且还没有噬菌体防御机制的特征。在本研究中,我们展示了一个新的《爱沙尼亚环境普氏菌噬菌体集》(或称 CEPEST)。该收集包括 67 个双链 DNA 噬菌体,隶属于 22 个噬菌体种和 9 个噬菌体属。我们的研究结果表明,CEPEST 收集的大多数噬菌体在较低温度下更具传染性,宿主范围较窄,并且需要完整的脂多糖才能感染普氏菌。此外,我们还发现腐生菌染色体中的隐性噬菌体对许多噬菌体的感染具有很强的保护作用。然而,染色体毒素-抗毒素系统并没有在腐生菌的噬菌体防御中发挥作用。这项研究为了解腐生菌与噬菌体之间的相互作用提供了有价值的见解,可能对生物技术和环境应用产生重大影响。
{"title":"Isolation and characterization of a phage collection against Pseudomonas putida","authors":"Age Brauer,&nbsp;Sirli Rosendahl,&nbsp;Anu Kängsep,&nbsp;Alicja Cecylia Lewańczyk,&nbsp;Roger Rikberg,&nbsp;Rita Hõrak,&nbsp;Hedvig Tamman","doi":"10.1111/1462-2920.16671","DOIUrl":"10.1111/1462-2920.16671","url":null,"abstract":"<p>The environmental bacterium, <i>Pseudomonas putida</i>, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For <i>P. putida</i> to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, <i>P. putida</i> KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental <i>P. putida</i> Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for <i>P. putida</i> infection. Furthermore, we show that cryptic prophages present in the <i>P. putida</i> chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin–antitoxin systems do not play a role in the phage defence of <i>P. putida</i>. This research provides valuable insights into the interactions between <i>P. putida</i> and bacteriophages, which could have significant implications for biotechnological and environmental applications.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16671","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential response of bacteria and fungi to drought on the decomposition of Sarcocornia fruticosa woody stems in a saline stream 细菌和真菌对干旱对盐碱地溪流中马尾松木质茎分解的不同反应。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-07 DOI: 10.1111/1462-2920.16661
Anna Doménech-Pascual, Lorena Carrasco-Barea, Frederic Gich, Judit Boadella, Zeus Freixinos Campillo, Rosa Gómez Cerezo, Andrea Butturini, Anna M. Romaní

Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.

内陆盐碱生态系统承受着多重压力(如高辐射、盐度、缺水),这可能会损害生态系统的基本功能,如有机物分解。在这里,我们研究了干旱对盐碱流域不同生境中马尾藻木质茎的微生物定殖和分解的影响:在干燥的洪泛平原、浸没在河道中以及在海岸线上(先浸没,后浮出水面)。出乎意料的是,沉水茎的重量损失并没有增加,而不同生境的分解过程却各不相同。在冲积平原上,主要是真菌和高纤维素分解活性;在淹没条件下,主要是多样化的细菌群落和高木质素分解活性;而在海岸线上,酶活性与淹没条件相同,但真菌群落与干燥条件相似。结果表明,不同的压力因素驱动着不同的降解路径:在干燥条件下,强烈缺水和光降解;在潮湿条件下,高盐度和氧气减少。这表明真菌对干旱的抵抗力更强,而细菌对盐度的抵抗力更强。总之,在盐碱流域,多种压力因素的变化对细菌和真菌及其在植物物质分解中的作用产生了不同的环境过滤作用,影响了碳循环和微生物之间的相互作用。
{"title":"Differential response of bacteria and fungi to drought on the decomposition of Sarcocornia fruticosa woody stems in a saline stream","authors":"Anna Doménech-Pascual,&nbsp;Lorena Carrasco-Barea,&nbsp;Frederic Gich,&nbsp;Judit Boadella,&nbsp;Zeus Freixinos Campillo,&nbsp;Rosa Gómez Cerezo,&nbsp;Andrea Butturini,&nbsp;Anna M. Romaní","doi":"10.1111/1462-2920.16661","DOIUrl":"10.1111/1462-2920.16661","url":null,"abstract":"<p>Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of <i>Sarcocornia fruticosa</i> woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16661","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polyethylene surrogate for microbial community enrichment and characterization 用于微生物群落富集和特征描述的聚乙烯替代物。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-06 DOI: 10.1111/1462-2920.16658
Bilge Bahar Camur, Natalia Calixto Mancipe, Brett M. Barney

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.

塑料污染是一个巨大且日益严重的问题,已经渗透到环境中,影响到全球食物网的方方面面。由于几十年来塑料的广泛应用,塑料和微塑料已经扩散到土壤、水体甚至大气中。塑料包括各种具有不同性质和化学特征的材料,其中聚乙烯是最主要的部分。聚乙烯也是一种持久性极强的化合物,光降解或生物降解速度缓慢。在这项研究中,我们开发了一种方法来分离能够生物降解聚乙烯替代物的微生物群落。通过这种方法,我们可以在更短的时间内研究潜在的聚乙烯降解。利用这种方法,我们富集了几个能在几周内降解聚乙烯代用品的微生物群落。我们还发现了一些特定的细菌菌株,它们具有较强的降解与聚乙烯类似的化合物的能力。我们介绍了这种方法、四个不同群落的可变性和功效,以及这些群落中的关键菌株。这种方法可作为研究聚乙烯生物降解的一种简单、适用的工具。
{"title":"A polyethylene surrogate for microbial community enrichment and characterization","authors":"Bilge Bahar Camur,&nbsp;Natalia Calixto Mancipe,&nbsp;Brett M. Barney","doi":"10.1111/1462-2920.16658","DOIUrl":"10.1111/1462-2920.16658","url":null,"abstract":"<p>Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16658","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The community of root fungi is associated with the growth rate of Norway spruce (Picea abies) 根部真菌群落与挪威云杉(Picea abies)的生长速度有关。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-05 DOI: 10.1111/1462-2920.16662
Leena Hamberg, Jarno Vanhatalo, Sannakajsa Velmala, Andy F. S. Taylor, John MacKay, Sébastien Caron, Fred O. Asiegbu, Risto Sievänen, Pasi Raumonen, Tuija Hytönen, Taina Pennanen

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.

我们的研究深入探讨了挪威云杉插条中根系相关真菌、基因表达和植物形态之间的关系,这些插条既来自生长缓慢的树木,也来自生长迅速的树木。我们发现不定根的基因表达模式与生长表型之间没有明显的联系,这表明两种表型对真菌共生体的接受能力没有本质区别。有趣的是,来自生长缓慢的亲本树木的树苗表现出更丰富的外生菌根物种和更大的根系。一些通常存在于成熟云杉上的外生菌根物种在生长缓慢的云杉树苗上更为普遍。麦角菌根真菌 Hyaloscypha hepaticola 与快速生长的云杉树苗有更紧密的联系。此外,生长缓慢的云杉树苗有更多的子囊菌类群和自由生活的吸液真菌。树苗茎的地上部分显示出一些表型差异;与生长缓慢组的树苗相比,快速生长表型的树苗分枝更长,但茎上的轮纹更少。总之,在挪威云杉幼苗中观察到的根相关真菌和表型特征可能会对其长期生长速度产生影响。这表明,云杉与真菌之间的早期相互作用可能会影响它们的生长轨迹。
{"title":"The community of root fungi is associated with the growth rate of Norway spruce (Picea abies)","authors":"Leena Hamberg,&nbsp;Jarno Vanhatalo,&nbsp;Sannakajsa Velmala,&nbsp;Andy F. S. Taylor,&nbsp;John MacKay,&nbsp;Sébastien Caron,&nbsp;Fred O. Asiegbu,&nbsp;Risto Sievänen,&nbsp;Pasi Raumonen,&nbsp;Tuija Hytönen,&nbsp;Taina Pennanen","doi":"10.1111/1462-2920.16662","DOIUrl":"10.1111/1462-2920.16662","url":null,"abstract":"<p>Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, <i>Hyaloscypha hepaticola</i>, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16662","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local environment shapes milk microbiomes while evolutionary history constrains milk macronutrients in captive cercopithecine primates 当地环境塑造了乳汁微生物群,而进化史则制约了圈养崖猴灵长类动物乳汁中的宏量营养素。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-03 DOI: 10.1111/1462-2920.16664
Sally L. Bornbusch, Hannah E. Shinnerl, Lindsey Gentry, Mia M. Keady, Virginia Glick, Carly R. Muletz-Wolz, Michael L. Power

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.

牛奶是一种复杂的生化液体,其中包括宏量营养素和微生物群,众所周知,它们共同促进了婴儿的生长,介导了婴儿微生物群的定植,并促进了免疫系统的发育。研究不同宿主类群中塑造牛奶微生物群和牛奶营养素相互作用的因素,对于解决牛奶环境的进化问题至关重要。我们采用一种比较方法,对饲养在三个设施中、管理条件相似的四个嵴猴灵长类物种进行了比较,检验了当地环境(饲养设施)和宿主物种各自对牛奶(a)宏量营养素(脂肪、糖和蛋白质)、(b)微生物组(16S rRNA)和(c)预测微生物功能的影响。我们发现,牛奶中的主要营养成分是根据宿主的种类来构建的,而牛奶微生物组和预测的功能则主要受当地环境的影响,其次才是宿主的种类。在两个不同设施中的猕猴(Macaca mulatta)的乳汁微生物组与在不同设施中的同种猕猴更相似。我们发现了类似的、由设施驱动的微生物功能模式,这些功能与生理和免疫调节有关,表明牛奶微生物组可能会影响婴儿的健康和发育。这些结果为了解牛奶的复杂性及其在不同物种和环境中对婴儿的潜在影响提供了新的视角。
{"title":"Local environment shapes milk microbiomes while evolutionary history constrains milk macronutrients in captive cercopithecine primates","authors":"Sally L. Bornbusch,&nbsp;Hannah E. Shinnerl,&nbsp;Lindsey Gentry,&nbsp;Mia M. Keady,&nbsp;Virginia Glick,&nbsp;Carly R. Muletz-Wolz,&nbsp;Michael L. Power","doi":"10.1111/1462-2920.16664","DOIUrl":"10.1111/1462-2920.16664","url":null,"abstract":"<p>Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (<i>Macaca mulatta</i>) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal and spatial dynamics within the fungal microbiome of grape fermentation 葡萄发酵过程中真菌微生物群的时空动态变化
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-01 DOI: 10.1111/1462-2920.16660
Cristobal A. Onetto, Chris M. Ward, Steven Van Den Heuvel, Laura Hale, Kathleen Cuijvers, Anthony R. Borneman

Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.

在 6 年时间里,我们对自发葡萄发酵进行了广泛调查,研究了 14 个不同葡萄种植地区的 3105 个真菌微生物组。我们对这些发酵的生物多样性进行的调查显示,少数高度丰富的菌属构成了最初葡萄汁微生物组的核心。与之前的研究一致,我们发现原产地对微生物多样性模式的影响最大。我们还发现,某些类群始终与特定的地理位置和葡萄品种相关联,尽管这些类群在我们的数据集中只占总体多样性的一小部分。通过无监督聚类和降维分析,我们确定了三种独特的群落类型,每种类型都表现出关键菌属丰度的变化。当我们将这些菌属投影到全球分支上时,发现微生物群落在这三种广泛的群落类型之间过渡。我们进一步研究了整个发酵过程中的微生物群落组成。我们的观察结果表明,最初的微生物群落组成可以预测发酵早期阶段的多样性。值得注意的是,Hanseniaspora uvarum 是大量样本中最主要的非酵母菌物种。
{"title":"Temporal and spatial dynamics within the fungal microbiome of grape fermentation","authors":"Cristobal A. Onetto,&nbsp;Chris M. Ward,&nbsp;Steven Van Den Heuvel,&nbsp;Laura Hale,&nbsp;Kathleen Cuijvers,&nbsp;Anthony R. Borneman","doi":"10.1111/1462-2920.16660","DOIUrl":"10.1111/1462-2920.16660","url":null,"abstract":"<p>Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, <i>Hanseniaspora uvarum</i> emerged as the primary non-<i>Saccharomyces</i> species within this large collection of samples.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens 大型藻类真核微生物组的组成显示了新的系统发育多样性和卵菌病原体的广泛宿主谱。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-31 DOI: 10.1111/1462-2920.16656
Natalia Timanikova, Kyle Fletcher, Jon-Wong Han, Pieter van West, Steve Woodward, Gwang-Hoon Kim, Frithjof C. Küpper, Marius Wenzel

Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.

海藻是海洋生态系统的重要组成部分,在水产养殖以及作为生物燃料、食品和药用化合物来源方面具有新的潜力。然而,对自然和工业海藻种群的一个日益公认的威胁是感染寄生单细胞真核生物,这些寄生单细胞真核生物来自研究相对较少的卵菌系。在这里,我们研究了从极地(巴芬岛)、寒温带(福克兰群岛)和热带(阿森松岛)收集的各种棕色、红色和绿色海洋大型藻类的真核细胞,重点是卵菌纲和密切相关的硅藻类群。通过 18S rRNA 基因扩增子测序,我们发现真核生物群具有意想不到的遗传和分类多样性,真核生物群的组成与地理位置之间存在密切的联系,并且有证据表明真核生物群结构与大型藻类系统发育关系(系统共生)之间存在联系。然而,真核生物群中的卵菌部分显示出不同的多样性和结构模式,与地理位置的关联性要弱得多,也没有共生关系的证据。我们介绍了最常见的卵菌Eurychasma dicksonii的几种新的单倍型,并首次报告了这种重要病原体的世界性分布和无宿主特异性。这表明大型藻类卵菌病原体具有丰富的多样性,并突出表明这些病原体可能是通性病原体,对各种环境条件具有很强的适应性。
{"title":"Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens","authors":"Natalia Timanikova,&nbsp;Kyle Fletcher,&nbsp;Jon-Wong Han,&nbsp;Pieter van West,&nbsp;Steve Woodward,&nbsp;Gwang-Hoon Kim,&nbsp;Frithjof C. Küpper,&nbsp;Marius Wenzel","doi":"10.1111/1462-2920.16656","DOIUrl":"10.1111/1462-2920.16656","url":null,"abstract":"<p>Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete <i>Eurychasma dicksonii</i> and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome and floral associations of a wild bee using biodiversity survey collections 利用生物多样性调查采集的野生蜜蜂的微生物组和花卉关联。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-30 DOI: 10.1111/1462-2920.16657
Phuong N. Nguyen, Farida Samad-zada, Katherine D. Chau, Sandra M. Rehan

The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.

蜜蜂的健康状况可以通过其微生物组来评估,微生物组是一种生物标志物,表明蜜蜂群落中存在有益和有害微生物。本研究介绍了双色汗蜂(Agapostemon virescens)成蜂角质层上细菌、真菌和植物组成的特征。研究人员在双色汗蜂栖息地的北部范围内使用了各种方法收集这些蜜蜂,如盘式诱捕器、蓝色叶片诱捕器和扫网。研究人员采用非破坏性方法从这些野生蜜蜂的整个针状标本中提取 DNA。然后对 16S rRNA、ITS 和 rbcL 区域进行元标码。研究发现,采集方法会影响某些微生物和植物类群的检测。在各种采集方法中,扫网样本的真菌阿尔法多样性最低。然而,细菌或真菌贝塔多样性的微小差异表明,没有一种方法明显优于其他方法。因此,多种技术的结合可以满足更广泛的微生物检测需要。研究还揭示了细菌、真菌和植物多样性的地区差异。A. virescens的核心微生物组包括两种细菌、三种真菌和一种植物协会,所有这些都是在其他野生蜜蜂中经常检测到的。这些核心微生物在不同的采集方法和采集地点保持一致。对不同物种和地貌的野生蜜蜂微生物组的进一步广泛研究将有助于发现授粉者健康与其环境之间的重要关系。
{"title":"Microbiome and floral associations of a wild bee using biodiversity survey collections","authors":"Phuong N. Nguyen,&nbsp;Farida Samad-zada,&nbsp;Katherine D. Chau,&nbsp;Sandra M. Rehan","doi":"10.1111/1462-2920.16657","DOIUrl":"10.1111/1462-2920.16657","url":null,"abstract":"<p>The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (<i>Agapostemon virescens</i>). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of <i>A. virescens</i> comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversity of the banana Fusarium wilt pathogen in Cuba and across Latin America and the Caribbean 古巴以及整个拉丁美洲和加勒比地区香蕉镰刀菌枯萎病病原体的遗传多样性。
IF 5.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-23 DOI: 10.1111/1462-2920.16636
Einar Martínez-de la Parte, Luis Pérez-Vicente, David E. Torres, Anouk van Westerhoven, Harold J. G. Meijer, Michael F. Seidl, Gert H. J. Kema

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.

香蕉镰刀菌枯萎病(FWB)是一种严重的植物病害,导致全球香蕉生产遭受重大损失。它仍然是古巴香蕉种植的一个主要问题。香蕉枯萎病是由土壤传播的 Fusarium oxysporum 复合菌种引起的。然而,古巴香蕉所感染的镰刀菌种之间的遗传多样性在很大程度上仍未得到探索。在我们的全面调查中,我们检查了古巴所有生产区有症状的香蕉植株,收集了 170 个镰刀菌分离株。通过基因分型测序和全基因组比较,我们研究了这些分离株的遗传多样性,并将其与全球镰刀菌样本进行了比较。值得注意的是,在 14 个省的 Bluggoe 烹饪香蕉和 Pisang Awak 亚群中观察到了典型的 FWB 症状。我们的系统发育分析表明,F. purpurascens、F. phialophorum 和 F. tardichlamydosporum 是古巴 FWB 的罪魁祸首,其中 F. tardichlamydosporum 在种群中占主导地位。此外,我们还发现了五到七个不同的基因群,其中 F. tardichlamydosporum 分离物至少形成了两个亚群。这一发现强调了造成美洲 FWB 的镰刀菌属的高度遗传多样性。我们的研究揭示了古巴以及更广泛的拉丁美洲和加勒比地区的 FWB 病原体的种群遗传结构和多样性。
{"title":"Genetic diversity of the banana Fusarium wilt pathogen in Cuba and across Latin America and the Caribbean","authors":"Einar Martínez-de la Parte,&nbsp;Luis Pérez-Vicente,&nbsp;David E. Torres,&nbsp;Anouk van Westerhoven,&nbsp;Harold J. G. Meijer,&nbsp;Michael F. Seidl,&nbsp;Gert H. J. Kema","doi":"10.1111/1462-2920.16636","DOIUrl":"10.1111/1462-2920.16636","url":null,"abstract":"<p>Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne <i>Fusarium oxysporum</i> species complex. However, the genetic diversity among <i>Fusarium</i> species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 <i>Fusarium</i> isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global <i>Fusarium</i> panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that <i>F. purpurascens</i>, <i>F. phialophorum</i>, and <i>F. tardichlamydosporum</i> are responsible for FWB in Cuba, with <i>F. tardichlamydosporum</i> dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with <i>F. tardichlamydosporum</i> isolates forming at least two subgroups. This finding underscores the high genetic diversity of <i>Fusarium</i> spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1