Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology最新文献
The interaction between two floating vessels has been a subject of much study in recent years due to its relevance to floating liquefied natural gas (FLNG) developments. The safety and operability of these facilities are directly influenced by the wave elevation in the gap between the two vessels as well as the relative motions between the vessels. In the industry, it is common practice to use potential flow models to calculate free-surface responses under various wave conditions. Given that these numerical models are inviscid, calibration of additional damping terms are usually carried out using model tests to in order to account for the viscous dissipation on the gap hydrodynamics. However, it is known that the dissipative effects of viscosity may be nonlinear and thus, model test data obtained using one set of wave conditions may not be suitable for use in another scenario. In this paper, model experiments of two identical side-by-side barges of 280m (length) × 46m (breadth) × 16.5m (draught) under various wave excitation are described. The experiments considered a range of parameters such as gap width, wave heights, periods and wave directions. The results obtained for each set of these parameters are discussed and compared between the two types of incident waves (regular and irregular).
{"title":"Model Experiments of Floating Side-by-Side Barges","authors":"Kie Hian Chua, P. Mello, K. Nishimoto, Y. Choo","doi":"10.1115/omae2019-95238","DOIUrl":"https://doi.org/10.1115/omae2019-95238","url":null,"abstract":"\u0000 The interaction between two floating vessels has been a subject of much study in recent years due to its relevance to floating liquefied natural gas (FLNG) developments. The safety and operability of these facilities are directly influenced by the wave elevation in the gap between the two vessels as well as the relative motions between the vessels. In the industry, it is common practice to use potential flow models to calculate free-surface responses under various wave conditions. Given that these numerical models are inviscid, calibration of additional damping terms are usually carried out using model tests to in order to account for the viscous dissipation on the gap hydrodynamics. However, it is known that the dissipative effects of viscosity may be nonlinear and thus, model test data obtained using one set of wave conditions may not be suitable for use in another scenario. In this paper, model experiments of two identical side-by-side barges of 280m (length) × 46m (breadth) × 16.5m (draught) under various wave excitation are described. The experiments considered a range of parameters such as gap width, wave heights, periods and wave directions. The results obtained for each set of these parameters are discussed and compared between the two types of incident waves (regular and irregular).","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133140571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanli Tang, Qingxi Hu, Xinxin Wang, F. Zhao, Liu-yi Huang, Tao Xie
Artificial reefs (ARs) are purposely submerged in natural aquatic environments to provide additional habitat for fish. The reasonable layout of ARs on the sea floor can effectively enhance and support important marine species. This research involves a three-dimensional numerical simulation to analyze the flow effect of three types of AR layouts based on computational fluid dynamics. Through numerical simulation of the flow past the reefs, we can determine the scale of the upwelling and back-eddy flow. Based on the simulation data, the rational transverse distance between two cross-shaped artificial reefs (CSARs) is 6L (L is the length of the single reef), which is used to design the layouts of CSARs. Five indicators have been used to evaluate the flow field effect of these three layouts. According to the comparison of five indications for different layouts of CSAR, it is more reasonable to divide the AR layouts into two categories: upwelling layout and back eddy layout. Finally, the sphere of influence of the AR layouts on the fisheries resource is also discussed.
{"title":"Evaluation of Flow Field in the Layouts of Cross-Shaped Artificial Reefs","authors":"Yanli Tang, Qingxi Hu, Xinxin Wang, F. Zhao, Liu-yi Huang, Tao Xie","doi":"10.1115/omae2019-95192","DOIUrl":"https://doi.org/10.1115/omae2019-95192","url":null,"abstract":"\u0000 Artificial reefs (ARs) are purposely submerged in natural aquatic environments to provide additional habitat for fish. The reasonable layout of ARs on the sea floor can effectively enhance and support important marine species. This research involves a three-dimensional numerical simulation to analyze the flow effect of three types of AR layouts based on computational fluid dynamics. Through numerical simulation of the flow past the reefs, we can determine the scale of the upwelling and back-eddy flow. Based on the simulation data, the rational transverse distance between two cross-shaped artificial reefs (CSARs) is 6L (L is the length of the single reef), which is used to design the layouts of CSARs. Five indicators have been used to evaluate the flow field effect of these three layouts. According to the comparison of five indications for different layouts of CSAR, it is more reasonable to divide the AR layouts into two categories: upwelling layout and back eddy layout. Finally, the sphere of influence of the AR layouts on the fisheries resource is also discussed.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121859241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tabeta, K. Okamoto, Takayoshi Kato, Rikito Hisamatsu, H. Muto, A. Hino, M. Murai, S. Ito, D. Kitazawa, T. Kinoshita
In 1950’s and 1960’s, Mihama beach in Heda Bay located on western coast of Izu peninsular had been famous for the richness in shell fauna, for example, about 400 species including rare ones were collected. In 2000’s, however, the impoverishment of ecosystem function has become considerable, which led us to project the investigation on the origin and restoration. The authors carried out field survey in 2007–2008 and found that the impoverishment of Mihama is derived not from surface water but from the benthic environment. The measured water current at the site was quite small, which indicated the water exchange was very weak. It must be one of the main causes of unfavorable benthic environment. Thus environmental regeneration plans for Mihama was proposed in which the pears blocking the water current be removed. In order to assess the effect of proposed plans, simulation-based habitat evaluation was conducted. A three-dimensional hydrodynamic and sediment transport models were developed to reproduce the characteristics of currents and predict the sediment size around Mihama. For the assessment of the ecological status, HEP (Habitat Evaluation Procedure) was employed, in which one of the typical species of bivalves is chosen as a target species. Water depth, sediment size, friction velocity at the bottom, etc. were considered as the environmental factors for the target species. The suitability indices (SI) for each environmental factors were calculated by using the results of hydrodynamic and sediment transport simulations. By using the developed scheme, total habitat unit was evaluated for the proposed regeneration plans and compared to that without countermeasures. It was predicted that the removal of the piers will improve the habitat condition in the target site. Based on the proposal by the authors, a water pathway under the pier was built in 2009. The authors conducted field survey again in 2014 and confirmed that the benthic environment has been improved.
{"title":"Environmental Regeneration for a Small-Scale Beach “Heda-Mihama Project”","authors":"S. Tabeta, K. Okamoto, Takayoshi Kato, Rikito Hisamatsu, H. Muto, A. Hino, M. Murai, S. Ito, D. Kitazawa, T. Kinoshita","doi":"10.1115/omae2019-95596","DOIUrl":"https://doi.org/10.1115/omae2019-95596","url":null,"abstract":"\u0000 In 1950’s and 1960’s, Mihama beach in Heda Bay located on western coast of Izu peninsular had been famous for the richness in shell fauna, for example, about 400 species including rare ones were collected. In 2000’s, however, the impoverishment of ecosystem function has become considerable, which led us to project the investigation on the origin and restoration. The authors carried out field survey in 2007–2008 and found that the impoverishment of Mihama is derived not from surface water but from the benthic environment. The measured water current at the site was quite small, which indicated the water exchange was very weak. It must be one of the main causes of unfavorable benthic environment. Thus environmental regeneration plans for Mihama was proposed in which the pears blocking the water current be removed. In order to assess the effect of proposed plans, simulation-based habitat evaluation was conducted. A three-dimensional hydrodynamic and sediment transport models were developed to reproduce the characteristics of currents and predict the sediment size around Mihama. For the assessment of the ecological status, HEP (Habitat Evaluation Procedure) was employed, in which one of the typical species of bivalves is chosen as a target species. Water depth, sediment size, friction velocity at the bottom, etc. were considered as the environmental factors for the target species. The suitability indices (SI) for each environmental factors were calculated by using the results of hydrodynamic and sediment transport simulations. By using the developed scheme, total habitat unit was evaluated for the proposed regeneration plans and compared to that without countermeasures. It was predicted that the removal of the piers will improve the habitat condition in the target site. Based on the proposal by the authors, a water pathway under the pier was built in 2009. The authors conducted field survey again in 2014 and confirmed that the benthic environment has been improved.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128439562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Ting Hsu, Tzu-Ching Chuang, W. Hsu, K. Sharman, Ray-Yeng Yang
Sudden snap events on mooring lines and hanging cables can cause spikes in tension, resulting in reduced safety factors during extreme events. For example, the mooring system of a floating offshore wind turbine (FOWT) can be exposed to wave-induced motions making the former vulnerable to snap type impact. Suitable criteria to define snap events are still largely unclear, making current design practices overly conservative. To understand the underlying physics of snap loads on a mooring line system, this paper presents a theoretical development and an experimental parametric study of snap events. The effects of the nonlinearity of bilinear line stiffness and hydrodynamic drag force, as well as the weight of payload on snap events are investigated using the vertical hanging cable model. This cable model includes two springs in series and a payload. The bilinear spring model is designed to create nonlinear dynamic tension. A total of 108 tests were conducted in the wave tank of Tainan Hydraulic Laboratory. The excitation amplitude ranges from 0.01 to 0.04m; excitation time period ranges from 0.5 to 2s; the weight of payload ranges from 6.13 to 18.95N. The tests carried out in water are compared to those conducted in air. It is seen that the hydrodynamic drag force together with the small pretension could result in larger normalized tension ranges.
{"title":"An Experimental Study of Snap Loads on a Vertical Hanging Cable System","authors":"Wei-Ting Hsu, Tzu-Ching Chuang, W. Hsu, K. Sharman, Ray-Yeng Yang","doi":"10.1115/omae2019-96424","DOIUrl":"https://doi.org/10.1115/omae2019-96424","url":null,"abstract":"\u0000 Sudden snap events on mooring lines and hanging cables can cause spikes in tension, resulting in reduced safety factors during extreme events. For example, the mooring system of a floating offshore wind turbine (FOWT) can be exposed to wave-induced motions making the former vulnerable to snap type impact. Suitable criteria to define snap events are still largely unclear, making current design practices overly conservative.\u0000 To understand the underlying physics of snap loads on a mooring line system, this paper presents a theoretical development and an experimental parametric study of snap events. The effects of the nonlinearity of bilinear line stiffness and hydrodynamic drag force, as well as the weight of payload on snap events are investigated using the vertical hanging cable model. This cable model includes two springs in series and a payload. The bilinear spring model is designed to create nonlinear dynamic tension. A total of 108 tests were conducted in the wave tank of Tainan Hydraulic Laboratory. The excitation amplitude ranges from 0.01 to 0.04m; excitation time period ranges from 0.5 to 2s; the weight of payload ranges from 6.13 to 18.95N. The tests carried out in water are compared to those conducted in air. It is seen that the hydrodynamic drag force together with the small pretension could result in larger normalized tension ranges.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134577693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leading-edge tubercles have been investigating widely on the performance of foils in the last decade. In this study, the biomimetic tubercle design has been applied to the corner shape on a deep-draft semi-submersible. A numerical study on flow over a deep-draft semi-submersible (DDS) with a biomimetic tubercle corner shape was carried out to investigate the corner shape effects on the overall hydrodynamics and motion responses. The hydrodynamic performance of the biomimetic tubercle corner is compared with a traditional round corner design platform. It is demonstrated that, as the corner shape design changed, the motion responses alter drastically. In addition, the flow patterns were examined to reveal some insights into fluid physics due to the biomimetic tubercle corner design. The comprehensive numerical results showed that the three-dimensional effect, which causes spanwise flow, can be reduced by a continuous spanwise (column-wise) variation of the shear-layer separation points.
{"title":"Hydrodynamics Around a Deep-Draft Semi-Submersible With Biomimetic Tubercle Corner Design","authors":"Yibo Liang, Weichao Shi, L. Tao","doi":"10.1115/OMAE2019-95607","DOIUrl":"https://doi.org/10.1115/OMAE2019-95607","url":null,"abstract":"\u0000 Leading-edge tubercles have been investigating widely on the performance of foils in the last decade. In this study, the biomimetic tubercle design has been applied to the corner shape on a deep-draft semi-submersible. A numerical study on flow over a deep-draft semi-submersible (DDS) with a biomimetic tubercle corner shape was carried out to investigate the corner shape effects on the overall hydrodynamics and motion responses. The hydrodynamic performance of the biomimetic tubercle corner is compared with a traditional round corner design platform. It is demonstrated that, as the corner shape design changed, the motion responses alter drastically. In addition, the flow patterns were examined to reveal some insights into fluid physics due to the biomimetic tubercle corner design. The comprehensive numerical results showed that the three-dimensional effect, which causes spanwise flow, can be reduced by a continuous spanwise (column-wise) variation of the shear-layer separation points.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131245108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis tools used by the offshore industry are applied for prediction of global dynamic behaviour of the extreme floating bridge concepts being evaluated by the Norwegian Public Roads Administration (NPRA). Validation and code-code comparison of these analysis tools are of significant importance when they are applied to such new and non-traditional structures. The current paper focus on validation between numerical modelling and model tests. An end-anchored floating bridge of around 850m length is studied. A hydro-elastic global analysis model was created by considering the bridge as large radiation/diffracting floaters connected by elastic beams. The analysis has been done both in frequency and time domain, by including the hydrodynamic interaction between the pontoons or not. A systematic check of different parameters that may have impact on the analysis was carried out. The numerical results have been compared with the model tests carried out in MARINTEK (1990). The work provides validation of the current analysis tools and guidelines for future work.
{"title":"Hydroelastic Analysis and Validation of an End-Anchored Floating Bridge Under Wave and Current Loads","authors":"X. Xiang, A. Løken","doi":"10.1115/omae2019-95114","DOIUrl":"https://doi.org/10.1115/omae2019-95114","url":null,"abstract":"\u0000 Analysis tools used by the offshore industry are applied for prediction of global dynamic behaviour of the extreme floating bridge concepts being evaluated by the Norwegian Public Roads Administration (NPRA). Validation and code-code comparison of these analysis tools are of significant importance when they are applied to such new and non-traditional structures. The current paper focus on validation between numerical modelling and model tests. An end-anchored floating bridge of around 850m length is studied. A hydro-elastic global analysis model was created by considering the bridge as large radiation/diffracting floaters connected by elastic beams. The analysis has been done both in frequency and time domain, by including the hydrodynamic interaction between the pontoons or not. A systematic check of different parameters that may have impact on the analysis was carried out. The numerical results have been compared with the model tests carried out in MARINTEK (1990). The work provides validation of the current analysis tools and guidelines for future work.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116361566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taiga Kanehira, Hidemi Mutsuda, S. Draycott, D. Ingram, Y. Doi
The numerical model for circular wave basin were developed using DualSPHysics based on Smoothed Particle Hydrodynamics to generate short-crested wave. The recreation of short-crested wave was achieved using Pierson Moskowitz spectrum and cosin2s spreading function with spreading value s. It is found that this numerical tank model could successfully reproduced not only long-crested but short-crested waves using 168 hinged-flap type wave makers.
{"title":"Numerical Simulation of Multidirectional Waves With Full-Spectrum Using DualSPHysics","authors":"Taiga Kanehira, Hidemi Mutsuda, S. Draycott, D. Ingram, Y. Doi","doi":"10.1115/omae2019-96405","DOIUrl":"https://doi.org/10.1115/omae2019-96405","url":null,"abstract":"\u0000 The numerical model for circular wave basin were developed using DualSPHysics based on Smoothed Particle Hydrodynamics to generate short-crested wave. The recreation of short-crested wave was achieved using Pierson Moskowitz spectrum and cosin2s spreading function with spreading value s. It is found that this numerical tank model could successfully reproduced not only long-crested but short-crested waves using 168 hinged-flap type wave makers.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132317587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Being able to give real time on-board advice, without depending on extensive sets of measured data, is the ultimate goal of the digital twin concept. Ideally, the models used in a digital twin only rely on current in-service data, although they have been built using simulated and possibly some measured data. Working with just the 6-DOF motions of a ship, can the local sea state reliably be estimated using the digital twin concept? Does a general model exist to do so, without the need to measure or simulate the particular ship? In this paper, we discuss how simulations of an advancing ship, subjected to various sea states, can be used to estimate the relative wave direction from in-service motion measurements of the corresponding ship. Various types of neural networks are used and evaluated with simulated data and measured data. In order to study the generalization power of the neural networks, a range of ships has been simulated, with varying lengths, drafts and geometries. Neural networks have been trained on selections of the ships in this extended training set and evaluated on the remaining ships. Results show that the developed neural networks give a remarkable performance in simulation data. Furthermore, generalization over geometry is very good, opening the door to train a general model for estimating sea state characteristics. Using the same model for in-service measurements does not perform well enough yet and further research is required. The paper will include discussion on possible causes for this performance gap and some promising ideas for future work.
{"title":"Ship As a Wave Buoy: Using Simulated Data to Train Neural Networks for Real Time Estimation of Relative Wave Direction","authors":"B. Mak, B. Düz","doi":"10.1115/omae2019-96225","DOIUrl":"https://doi.org/10.1115/omae2019-96225","url":null,"abstract":"\u0000 Being able to give real time on-board advice, without depending on extensive sets of measured data, is the ultimate goal of the digital twin concept. Ideally, the models used in a digital twin only rely on current in-service data, although they have been built using simulated and possibly some measured data. Working with just the 6-DOF motions of a ship, can the local sea state reliably be estimated using the digital twin concept? Does a general model exist to do so, without the need to measure or simulate the particular ship?\u0000 In this paper, we discuss how simulations of an advancing ship, subjected to various sea states, can be used to estimate the relative wave direction from in-service motion measurements of the corresponding ship. Various types of neural networks are used and evaluated with simulated data and measured data. In order to study the generalization power of the neural networks, a range of ships has been simulated, with varying lengths, drafts and geometries. Neural networks have been trained on selections of the ships in this extended training set and evaluated on the remaining ships.\u0000 Results show that the developed neural networks give a remarkable performance in simulation data. Furthermore, generalization over geometry is very good, opening the door to train a general model for estimating sea state characteristics. Using the same model for in-service measurements does not perform well enough yet and further research is required. The paper will include discussion on possible causes for this performance gap and some promising ideas for future work.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133160454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Adcock, Xingya Feng, Tianning Tang, T. V. D. Bremer, S. Day, S. Dai, Ye Li, Zhiliang Lin, Wentao Xu, P. Taylor
Many ocean engineering problems involve bound harmonics which are slaved to some underlying assumed close to linear time series. When analyzing signals we often want to remove the bound harmonics so as to “linearise” the data or to extract individual bound harmonic components so that they may be studied. For even moderately broadbanded systems filtering in the frequency domain is not sufficient to separate components as they overlap in frequency. One way to overcome this difficulty is to use input signals with the same linear envelope but with different phases and then use simple addition and subtraction of the resulting signals to extract different harmonics. This approach has been established for the analysis of wave groups. In this paper we examine whether this approach can be used on random time series as well. We analyse random wave time series of wave elevation from the towing tank in Shanghai Jiao Tong University and force measurements on a cylinder taken in the Kelvin tank at the University of Strathclyde.
{"title":"Application of Phase Decomposition to the Analysis of Random Time Series From Wave Basin Tests","authors":"T. Adcock, Xingya Feng, Tianning Tang, T. V. D. Bremer, S. Day, S. Dai, Ye Li, Zhiliang Lin, Wentao Xu, P. Taylor","doi":"10.1115/OMAE2019-95172","DOIUrl":"https://doi.org/10.1115/OMAE2019-95172","url":null,"abstract":"\u0000 Many ocean engineering problems involve bound harmonics which are slaved to some underlying assumed close to linear time series. When analyzing signals we often want to remove the bound harmonics so as to “linearise” the data or to extract individual bound harmonic components so that they may be studied. For even moderately broadbanded systems filtering in the frequency domain is not sufficient to separate components as they overlap in frequency. One way to overcome this difficulty is to use input signals with the same linear envelope but with different phases and then use simple addition and subtraction of the resulting signals to extract different harmonics. This approach has been established for the analysis of wave groups. In this paper we examine whether this approach can be used on random time series as well. We analyse random wave time series of wave elevation from the towing tank in Shanghai Jiao Tong University and force measurements on a cylinder taken in the Kelvin tank at the University of Strathclyde.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125433471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jialin Han, Sota Kanno, Akito Mochizuki, D. Kitazawa, Teruo Maeda, H. Itakura
A series of cabin-suspended ships, named Wave Harmonizer, has been developed since 2008. The model ship consists of cabin part, hull part and conjunction part which is mounted in-between the cabin and the hull. The possibility and feasibility of introducing suspensions into small vessels are investigated. Effectiveness evaluations are made in two aspects: motion reduction of the cabin and wave energy harvesting through the oscillating cabin. According to the research results obtained in 2015 and 2016, it was found that the deck of the cabin may bear obvious inclination while weights were loading or unloading from it. Moreover, in relative long waves, the effectiveness of the motion reduction of the skyhook controller was insufficient. To solve those problems, an attitude control strategy is proposed. It is adopted as an outer-loop of the existing controller. Inclination sensors are employed to collect the rotational angle of the cabin in terms of pitch and roll. After finishing the design and construction of the double-loop control system, open loop tests are carried out in dry and wet conditions. The chain mechanism of the ship is investigated. Then a bench test is operated to validate the control concept and performance of the double-loop control system. Finally, tank tests are implemented to examine the inclination reduction of the cabin at regular head waves. In this paper, the development of the double-loop control system is described, experimental results are demonstrated with respect to the heave and pitch motion reduction of the cabin at the condition of with/without the outer control loop. It shows that the inclination reduction at the loading/unloading condition and the walking-on-deck condition are significant. However, in waves the effectiveness is not clearly verified. It suggests that the influence of the apparent gravity on the inclination measurement in waves should be investigated and solutions to accurately detect the inclination of the cabin should be sought.
{"title":"Study on Attitude Control of a Cabin-Suspended Catamaran by Using a Double-Loop Control System","authors":"Jialin Han, Sota Kanno, Akito Mochizuki, D. Kitazawa, Teruo Maeda, H. Itakura","doi":"10.1115/omae2019-95827","DOIUrl":"https://doi.org/10.1115/omae2019-95827","url":null,"abstract":"\u0000 A series of cabin-suspended ships, named Wave Harmonizer, has been developed since 2008. The model ship consists of cabin part, hull part and conjunction part which is mounted in-between the cabin and the hull. The possibility and feasibility of introducing suspensions into small vessels are investigated. Effectiveness evaluations are made in two aspects: motion reduction of the cabin and wave energy harvesting through the oscillating cabin. According to the research results obtained in 2015 and 2016, it was found that the deck of the cabin may bear obvious inclination while weights were loading or unloading from it. Moreover, in relative long waves, the effectiveness of the motion reduction of the skyhook controller was insufficient. To solve those problems, an attitude control strategy is proposed. It is adopted as an outer-loop of the existing controller. Inclination sensors are employed to collect the rotational angle of the cabin in terms of pitch and roll. After finishing the design and construction of the double-loop control system, open loop tests are carried out in dry and wet conditions. The chain mechanism of the ship is investigated. Then a bench test is operated to validate the control concept and performance of the double-loop control system. Finally, tank tests are implemented to examine the inclination reduction of the cabin at regular head waves. In this paper, the development of the double-loop control system is described, experimental results are demonstrated with respect to the heave and pitch motion reduction of the cabin at the condition of with/without the outer control loop. It shows that the inclination reduction at the loading/unloading condition and the walking-on-deck condition are significant. However, in waves the effectiveness is not clearly verified. It suggests that the influence of the apparent gravity on the inclination measurement in waves should be investigated and solutions to accurately detect the inclination of the cabin should be sought.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122373078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}