首页 > 最新文献

Evolution & Development最新文献

英文 中文
Breaking the constraint on the number of cervical vertebrae in mammals: On homeotic transformations in lorises and pottos 打破哺乳动物颈椎数目的限制:关于懒猴和马铃薯的同型变异
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-10-31 DOI: 10.1111/ede.12424
Frietson Galis, Tom J. M. Van Dooren, Alexandra A. E. van der Geer

Mammals almost always have seven cervical vertebrae. The strong evolutionary constraint on changes in this number has been broken in sloths and manatees. We have proposed that the extremely low activity and metabolic rates of these species relax the stabilizing selection against changes in the cervical count. Our hypothesis is that strong stabilizing selection in other mammals is largely indirect and due to associated pleiotropic effects, including juvenile cancers. Additional direct selection can occur due to biomechanical problems (thoracic outlet syndrome). Low metabolic and activity rates are thought to diminish these direct and indirect effects. To test this hypothesis within the primates, we have compared the number of cervical vertebrae of three lorisid species with particularly low activity and metabolic rates with those of more active primate species, including with their phylogenetically closest active relatives, the galagids (bushbabies). In support of our hypothesis, we found that 37.6% of the lorisid specimens had an abnormal cervical count, which is a higher percentage than in the other nine primate families, in which the incidence varied from zero to 2.2%. We conclude that our data support the importance of internal selection in constraining evolvability and of a relaxed stabilizing selection for increasing evolvability. Additionally, we discuss that there is no support for a role of the muscularized diaphragm in the evolutionary constraint.

哺乳动物几乎都有7根颈椎。在树懒和海牛身上,这个数量变化的强大进化限制已经被打破。我们提出,这些物种极低的活性和代谢率放松了对宫颈计数变化的稳定选择。我们的假设是,其他哺乳动物的强稳定选择在很大程度上是间接的,并且是由于相关的多效性效应,包括幼年癌症。由于生物力学问题(胸廓出口综合征),可以发生额外的直接选择。低代谢率和活动率被认为减少了这些直接和间接的影响。为了在灵长类动物中验证这一假设,我们将三种活动和代谢率特别低的猴足类动物的颈椎数量与那些更活跃的灵长类动物的颈椎数量进行了比较,包括它们在系统发育上最接近的活动亲戚,加拉奇(灌木宝宝)。为了支持我们的假设,我们发现37.6%的猴类标本宫颈计数异常,这一比例高于其他9个灵长类科,其发生率从0到2.2%不等。我们的结论是,我们的数据支持内部选择在限制可进化性和放松稳定选择增加可进化性的重要性。此外,我们还讨论了没有证据支持肌化横膈膜在进化约束中的作用。
{"title":"Breaking the constraint on the number of cervical vertebrae in mammals: On homeotic transformations in lorises and pottos","authors":"Frietson Galis,&nbsp;Tom J. M. Van Dooren,&nbsp;Alexandra A. E. van der Geer","doi":"10.1111/ede.12424","DOIUrl":"10.1111/ede.12424","url":null,"abstract":"<p>Mammals almost always have seven cervical vertebrae. The strong evolutionary constraint on changes in this number has been broken in sloths and manatees. We have proposed that the extremely low activity and metabolic rates of these species relax the stabilizing selection against changes in the cervical count. Our hypothesis is that strong stabilizing selection in other mammals is largely indirect and due to associated pleiotropic effects, including juvenile cancers. Additional direct selection can occur due to biomechanical problems (thoracic outlet syndrome). Low metabolic and activity rates are thought to diminish these direct and indirect effects. To test this hypothesis within the primates, we have compared the number of cervical vertebrae of three lorisid species with particularly low activity and metabolic rates with those of more active primate species, including with their phylogenetically closest active relatives, the galagids (bushbabies). In support of our hypothesis, we found that 37.6% of the lorisid specimens had an abnormal cervical count, which is a higher percentage than in the other nine primate families, in which the incidence varied from zero to 2.2%. We conclude that our data support the importance of internal selection in constraining evolvability and of a relaxed stabilizing selection for increasing evolvability. Additionally, we discuss that there is no support for a role of the muscularized diaphragm in the evolutionary constraint.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 6","pages":"196-210"},"PeriodicalIF":2.9,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/97/EDE-24-.PMC9788262.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertebrate cranial evolution: Contributions and conflict from the fossil record 脊椎动物颅骨进化:来自化石记录的贡献与冲突
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-10-29 DOI: 10.1111/ede.12422
Zerina Johanson

In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.

在现代脊椎动物中,颅面骨骼是复杂的,包括神经头盖骨、皮肤头盖骨和外颅(及其衍生物)的软骨和骨骼,容纳一系列感觉结构,如眼睛、鼻腔和前庭声学胶囊,外颅包括鳃弓,用于呼吸和进食。众所周知,骨骼来源于神经嵴和中胚层,而感觉元素来源于外胚层增厚的基板。最近的研究表明,神经嵴和基板具有脊椎动物以外的进化史,而脊椎动物化石记录允许理解这些不同特征的进化顺序。茎类脊椎动物如Metaspriggina walcotti (Burgess页岩,中寒武纪)具有眼睛、一对鼻囊和发育良好的鳃弓,后者来源于现存脊椎动物的颅神经嵴,表明基板和神经嵴的进化时间超过5亿年前。从那时起,脊椎动物的颅面骨骼已经进化,包括不同类型的骨,潜在的神经嵴或中胚层起源。颅面骨骼的一个有问题的部分与鼻器官的进化有关,有证据表明成对和不成对的鼻囊都是脊椎动物的原始状态。
{"title":"Vertebrate cranial evolution: Contributions and conflict from the fossil record","authors":"Zerina Johanson","doi":"10.1111/ede.12422","DOIUrl":"10.1111/ede.12422","url":null,"abstract":"<p>In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as <i>Metaspriggina walcotti</i> (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 1","pages":"119-133"},"PeriodicalIF":2.9,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9280226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asynchronized cell division in embryo-like fossils from the Ediacaran Zhenba microfossil assemblage 埃迪卡拉纪镇坝微化石组合中胚胎样化石的不同步细胞分裂
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-10-25 DOI: 10.1111/ede.12423
Yuan Zhang, Xingliang Zhang, Cong Liu

Ediacaran embryo-like spherical fossils exhibit diverse cell adhesion patterns resembling partial cleavage-stage embryos of living animals. Two three-celled specimens characterized by a pair of small cells overlying a large cell have been recovered from the Ediacaran Zhenba microfossil assemblage. Their cell adhesion pattern is highly comparable to a phenomenon reported from the Weng'an biota that was interpreted as fossil embryos undergoing discoidal cleavage. However, our specimens contain fewer cells and thus probably represent developmental precursors of the Weng'an counterparts. Additionally, new material shows several anatomical features that are inconsistent with an embryo interpretation, including (1) an unusually large volume of “blastomeres,” (2) a putative nucleus preserved within the large “yolk cell,” and (3) completely separated cells. Collectively, the Zhenba embryo-like specimens permit a reconstruction of the consecutive developmental sequence from single-celled individuals to the three-celled individuals, leading us to interpret the newly found specimens as products of abnormal development of Ediacaran embryo-like organisms whose affinity remains unresolved.

埃迪卡拉类胚胎球形化石表现出不同的细胞粘附模式,类似于活体动物的部分卵裂期胚胎。从埃迪卡拉纪镇坝微化石组合中发现了两个以一对小细胞覆盖在一个大细胞上为特征的三细胞标本。它们的细胞粘附模式与翁安生物群报道的一种现象高度相似,这种现象被解释为化石胚胎正在经历盘状分裂。然而,我们的标本含有较少的细胞,因此可能代表了瓮安同类的发育前体。此外,新材料显示了几个与胚胎解释不一致的解剖学特征,包括:(1)异常大的“卵裂球”,(2)在大的“卵黄细胞”内保存着一个假定的细胞核,(3)完全分离的细胞。总的来说,真巴胚胎样标本允许重建从单细胞个体到三细胞个体的连续发育序列,这使我们将新发现的标本解释为埃迪卡拉纪胚胎样生物异常发育的产物,其亲和力尚未确定。
{"title":"Asynchronized cell division in embryo-like fossils from the Ediacaran Zhenba microfossil assemblage","authors":"Yuan Zhang,&nbsp;Xingliang Zhang,&nbsp;Cong Liu","doi":"10.1111/ede.12423","DOIUrl":"10.1111/ede.12423","url":null,"abstract":"<p>Ediacaran embryo-like spherical fossils exhibit diverse cell adhesion patterns resembling partial cleavage-stage embryos of living animals. Two three-celled specimens characterized by a pair of small cells overlying a large cell have been recovered from the Ediacaran Zhenba microfossil assemblage. Their cell adhesion pattern is highly comparable to a phenomenon reported from the Weng'an biota that was interpreted as fossil embryos undergoing discoidal cleavage. However, our specimens contain fewer cells and thus probably represent developmental precursors of the Weng'an counterparts. Additionally, new material shows several anatomical features that are inconsistent with an embryo interpretation, including (1) an unusually large volume of “blastomeres,” (2) a putative nucleus preserved within the large “yolk cell,” and (3) completely separated cells. Collectively, the Zhenba embryo-like specimens permit a reconstruction of the consecutive developmental sequence from single-celled individuals to the three-celled individuals, leading us to interpret the newly found specimens as products of abnormal development of Ediacaran embryo-like organisms whose affinity remains unresolved.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 6","pages":"189-195"},"PeriodicalIF":2.9,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40587165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic Plasticity & Evolution: Causes, Consequences, Controversies  David W. Pfennig (ed). xxxi + 404 pp., index. Evolutionary Cell Biology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2021. $230 (hardback); Open Access (pdf). 表型可塑性和进化:原因,后果,争议。Xxxi + 404页,索引。进化细胞生物学。博卡拉顿,佛罗里达州:CRC出版社,泰勒和弗朗西斯集团,2021年。230美元(精装);开放存取(pdf)。
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-10-18 DOI: 10.1111/ede.12420
Alan C. Love, Günter P. Wagner
{"title":"Phenotypic Plasticity & Evolution: Causes, Consequences, Controversies  David W. Pfennig (ed). xxxi + 404 pp., index. Evolutionary Cell Biology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2021. $230 (hardback); Open Access (pdf).","authors":"Alan C. Love,&nbsp;Günter P. Wagner","doi":"10.1111/ede.12420","DOIUrl":"10.1111/ede.12420","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 6","pages":"173-176"},"PeriodicalIF":2.9,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116070947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms 爬行动物颞骨区形态多样性的形成:潜在发育机制的综述
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-10-17 DOI: 10.1111/ede.12419
Masayoshi Tokita, Hiromu Sato

Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.

爬行动物的头骨形态是高度多样化的,根据颞孔的数量和位置大致分为三类:无肢类、突触类和双肢类。根据最近的系统发育分析,时间孔在羊膜动物中独立进化了两次,一次在新孔动物中,一次在底孔动物中。虽然四足动物颞骨开窗进化的功能方面已经得到了很好的研究,但很少有研究调查颞骨颅骨区域模式差异的发育机制。为了确定这些机制可能是什么,我们首先通过比较具有代表性的现存爬行动物物种的胚胎颅骨成骨来研究五种颞骨是如何发育的。在个体发育过程中,颞骨生长速度和生长方向的差异可能决定了颞骨颅骨区域的形态。接下来,我们比较了代表性爬行动物胚胎颞区两个关键成骨基因Runx2和Msx2的组织发生模式和表达。我们的比较分析表明,形成颞孔的区域的胚胎组织学状况预测了成人颞颅骨的形态,而成骨间充质前体细胞中Runx2和Msx2表达的调控修饰可能参与了爬行动物颞颅骨区域形态多样性的产生。
{"title":"Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms","authors":"Masayoshi Tokita,&nbsp;Hiromu Sato","doi":"10.1111/ede.12419","DOIUrl":"10.1111/ede.12419","url":null,"abstract":"<p>Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, <i>Runx2</i> and <i>Msx2</i>, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of <i>Runx2</i> and <i>Msx2</i> expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 1","pages":"15-31"},"PeriodicalIF":2.9,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Issue information – TOC & Editorial and Subscription Page 发行信息- TOC &编辑和订阅页
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-09-21 DOI: 10.1111/ede.12384
{"title":"Issue information – TOC & Editorial and Subscription Page","authors":"","doi":"10.1111/ede.12384","DOIUrl":"10.1111/ede.12384","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 5","pages":"125-126"},"PeriodicalIF":2.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42704222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes 三叶虫头部的模块化与假设的眼睛的节段起源一致
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-09-16 DOI: 10.1111/ede.12418
Ernesto E. Vargas-Parra, Melanie J. Hopkins

The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.

三叶虫的头部由多个融合的节段组成,具有多种功能。然而,三叶虫头部的潜在组织,以及模式是否在三叶虫中保守,仍然不清楚。将头部建模为由不同的模块或子单元组成,从而具有半独立进化的潜力,可以揭示组织的潜在模式。基于节肢动物比较发育生物学的模块化组织假说采用几何形态计量学进行了评估。对奥陶系两种三叶虫Calyptaulax annulata (Phacopida)和Cloacaspis senilis (Olenida sensu Adrain, 2011)颅骨的二维(半)地标数据进行了分析。利用协方差比(covariance ratio, CR)比较了假设模块内的协方差与模块之间的协方差,并利用从协方差比中得出的效应大小度量来比较不同模型的拟合。当将眼睛作为一个独立的模块时,确定的环棘猴最佳模块假设将眼睛和头部最前部区域整合为一个模块。最好的模块化假设是更复杂的,但眼睛仍然主要与头部的前部密切相关。对于这两个物种的所有其他得到充分支持的模型来说,后者也是如此。这些结果可以解释为早期节肢动物在整个发育过程中保留的最前眼段的发育信号,尽管可能存在与功能需求相关的选择压力。
{"title":"Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes","authors":"Ernesto E. Vargas-Parra,&nbsp;Melanie J. Hopkins","doi":"10.1111/ede.12418","DOIUrl":"10.1111/ede.12418","url":null,"abstract":"<p>The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, <i>Calyptaulax annulata</i> (Phacopida) and <i>Cloacaspis senilis</i> (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for <i>C. annulata</i> shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for <i>C. senilis</i> are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 6","pages":"177-188"},"PeriodicalIF":2.9,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/e8/EDE-24-.PMC9786538.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Issue information – TOC & Editorial and Subscription Page 发行信息- TOC &编辑和订阅页
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-08-31 DOI: 10.1111/ede.12413
{"title":"Issue information – TOC & Editorial and Subscription Page","authors":"","doi":"10.1111/ede.12413","DOIUrl":"10.1111/ede.12413","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 3-4","pages":"77-78"},"PeriodicalIF":2.9,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45864109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the therian face through complete loss of the premaxilla 通过前上颌骨的完全丧失,兽类面部的进化
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-08-26 DOI: 10.1111/ede.12417
Hiroki Higashiyama, Daisuke Koyabu, Hiroki Kurihara

The anatomical framework of the jawbones is highly conserved among most of the Osteichthyes, including the tetrapods. However, our recent study suggested that the premaxilla, the rostralmost upper jaw bone, was rearranged during the evolution of therian mammals, being replaced by the septomaxilla at least in the lateral part. In the present study, to understand more about the process of evolution from the ancestral upper jaw to the therian face, we re-examined the development of the therian premaxilla (incisive bone). By comparing mouse, bat, goat, and cattle fetuses, we confirmed that the therian premaxilla has dual developmental origins, the lateral body and the palatine process. This dual development is widely conserved among the therian mammals. Cell-lineage-tracing experiments using Dlx1-CreERT2 mice revealed that the palatine process arises in the ventral part of the premandibular domain, where the nasopalatine nerve distributes, whereas the lateral body develops from the maxillary prominence in the domain of the maxillary nerve. Through comparative analysis using various tetrapods, we concluded that the palatine process should not be considered part of the ancestral premaxilla. It rather corresponds to the anterior region of the vomerine bone of nonmammalian tetrapods. Thus, the present findings indicate that the true premaxilla was completely lost during the evolution of the therian mammals, resulting in the establishment of the unique therian face as an evolutionary novelty. Reconsideration of the homological framework of the cranial skeleton based on the topographical relationships of the ossification center during embryonic development is warranted.

颌骨的解剖结构在大多数骨鱼目动物中是高度保守的,包括四足动物。然而,我们最近的研究表明,在兽类哺乳动物的进化过程中,前颌骨(即近上颌的前颌骨)被重新排列,至少在侧面被中隔腋窝所取代。在本研究中,为了更深入地了解从祖先上颚到兽类面部的进化过程,我们重新研究了兽类前上颌骨(尖锐骨)的发育。通过比较小鼠、蝙蝠、山羊和牛的胎儿,我们证实了兽类的前上颌骨具有双重发育起源,即外侧体和腭突。这种双重发育在兽类哺乳动物中广泛保存。利用Dlx1-CreERT2小鼠进行的细胞谱系追踪实验显示,腭突起源于鼻腭神经分布的下颌前区域的腹侧部分,而侧体则起源于上颌神经区域的上颌突。通过对各种四足动物的比较分析,我们得出结论,腭突不应该被认为是祖先前上颌骨的一部分。它与非哺乳动物四足动物的前侧骨相当。因此,目前的研究结果表明,真正的前触须在兽类哺乳动物的进化过程中完全消失了,导致独特的兽类面孔作为一种进化新颖性的建立。基于胚胎发育期间骨化中心的地形关系,重新考虑颅骨的同源框架是有必要的。
{"title":"Evolution of the therian face through complete loss of the premaxilla","authors":"Hiroki Higashiyama,&nbsp;Daisuke Koyabu,&nbsp;Hiroki Kurihara","doi":"10.1111/ede.12417","DOIUrl":"10.1111/ede.12417","url":null,"abstract":"<p>The anatomical framework of the jawbones is highly conserved among most of the Osteichthyes, including the tetrapods. However, our recent study suggested that the premaxilla, the rostralmost upper jaw bone, was rearranged during the evolution of therian mammals, being replaced by the septomaxilla at least in the lateral part. In the present study, to understand more about the process of evolution from the ancestral upper jaw to the therian face, we re-examined the development of the therian premaxilla (incisive bone). By comparing mouse, bat, goat, and cattle fetuses, we confirmed that the therian premaxilla has dual developmental origins, the lateral body and the palatine process. This dual development is widely conserved among the therian mammals. Cell-lineage-tracing experiments using <i>Dlx1</i>-CreER<sup>T2</sup> mice revealed that the palatine process arises in the ventral part of the premandibular domain, where the nasopalatine nerve distributes, whereas the lateral body develops from the maxillary prominence in the domain of the maxillary nerve. Through comparative analysis using various tetrapods, we concluded that the palatine process should not be considered part of the ancestral premaxilla. It rather corresponds to the anterior region of the vomerine bone of nonmammalian tetrapods. Thus, the present findings indicate that the true premaxilla was completely lost during the evolution of the therian mammals, resulting in the establishment of the unique therian face as an evolutionary novelty. Reconsideration of the homological framework of the cranial skeleton based on the topographical relationships of the ossification center during embryonic development is warranted.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 1","pages":"103-118"},"PeriodicalIF":2.9,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10712130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Burrowing constrains patterns of skull shape evolution in wrasses 挖洞限制了濑鱼颅骨形状的进化模式
IF 2.9 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2022-08-15 DOI: 10.1111/ede.12415
Kory M. Evans, Olivier Larouche, JoJo L. West, Samantha M. Gartner, Mark W. Westneat

The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.

行为专门化和生态专门化的进化对表型进化的速度和模式有显著的影响。头部先挖洞已经被证明对许多脊椎动物和无脊椎动物分类群的头部和身体形状施加了强大的选择压力。在濑鱼中,挖洞行为已经独立进化了多次,通常用于觅食和躲避捕食者的行为。虽然最近的研究已经研究了与这种行为相关的运动学和体型形态学,但迄今为止还没有研究研究了这种进化支系中挖洞对表型多样化模式的宏观进化意义。本文采用三维几何形态计量学和系统发育比较方法研究了化石隆头鱼及其近缘种颅骨形态的进化。我们测试了穴居和非穴居wrass之间的头骨形状差异,并评估了穴居wrass之间形状收敛的假设。我们还量化了挖洞和非挖洞濑鱼之间的头骨形状进化速度,以测试挖洞是否限制或加速了这一进化支系的头骨形状进化速度。我们发现,虽然穴居和非穴居的濑鱼表现出相似程度的形态差异,但对于穴居的濑鱼来说,积累这种差异所需的时间几乎是前者的两倍。此外,虽然群体之间的差异是均匀匹配的,但我们发现大多数穴居物种被限制在一个特定的形状空间区域,大多数物种的头部比许多非穴居物种更窄。这些结果表明,头先挖洞通过潜在地限制可以执行这种行为的表型范围,限制了濑鱼颅骨形状多样化的模式。
{"title":"Burrowing constrains patterns of skull shape evolution in wrasses","authors":"Kory M. Evans,&nbsp;Olivier Larouche,&nbsp;JoJo L. West,&nbsp;Samantha M. Gartner,&nbsp;Mark W. Westneat","doi":"10.1111/ede.12415","DOIUrl":"10.1111/ede.12415","url":null,"abstract":"<p>The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 1","pages":"73-84"},"PeriodicalIF":2.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10769663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Evolution & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1