首页 > 最新文献

Evolution & Development最新文献

英文 中文
Asynchronized cell division in embryo-like fossils from the Ediacaran Zhenba microfossil assemblage 埃迪卡拉纪镇坝微化石组合中胚胎样化石的不同步细胞分裂
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-10-25 DOI: 10.1111/ede.12423
Yuan Zhang, Xingliang Zhang, Cong Liu

Ediacaran embryo-like spherical fossils exhibit diverse cell adhesion patterns resembling partial cleavage-stage embryos of living animals. Two three-celled specimens characterized by a pair of small cells overlying a large cell have been recovered from the Ediacaran Zhenba microfossil assemblage. Their cell adhesion pattern is highly comparable to a phenomenon reported from the Weng'an biota that was interpreted as fossil embryos undergoing discoidal cleavage. However, our specimens contain fewer cells and thus probably represent developmental precursors of the Weng'an counterparts. Additionally, new material shows several anatomical features that are inconsistent with an embryo interpretation, including (1) an unusually large volume of “blastomeres,” (2) a putative nucleus preserved within the large “yolk cell,” and (3) completely separated cells. Collectively, the Zhenba embryo-like specimens permit a reconstruction of the consecutive developmental sequence from single-celled individuals to the three-celled individuals, leading us to interpret the newly found specimens as products of abnormal development of Ediacaran embryo-like organisms whose affinity remains unresolved.

埃迪卡拉类胚胎球形化石表现出不同的细胞粘附模式,类似于活体动物的部分卵裂期胚胎。从埃迪卡拉纪镇坝微化石组合中发现了两个以一对小细胞覆盖在一个大细胞上为特征的三细胞标本。它们的细胞粘附模式与翁安生物群报道的一种现象高度相似,这种现象被解释为化石胚胎正在经历盘状分裂。然而,我们的标本含有较少的细胞,因此可能代表了瓮安同类的发育前体。此外,新材料显示了几个与胚胎解释不一致的解剖学特征,包括:(1)异常大的“卵裂球”,(2)在大的“卵黄细胞”内保存着一个假定的细胞核,(3)完全分离的细胞。总的来说,真巴胚胎样标本允许重建从单细胞个体到三细胞个体的连续发育序列,这使我们将新发现的标本解释为埃迪卡拉纪胚胎样生物异常发育的产物,其亲和力尚未确定。
{"title":"Asynchronized cell division in embryo-like fossils from the Ediacaran Zhenba microfossil assemblage","authors":"Yuan Zhang,&nbsp;Xingliang Zhang,&nbsp;Cong Liu","doi":"10.1111/ede.12423","DOIUrl":"10.1111/ede.12423","url":null,"abstract":"<p>Ediacaran embryo-like spherical fossils exhibit diverse cell adhesion patterns resembling partial cleavage-stage embryos of living animals. Two three-celled specimens characterized by a pair of small cells overlying a large cell have been recovered from the Ediacaran Zhenba microfossil assemblage. Their cell adhesion pattern is highly comparable to a phenomenon reported from the Weng'an biota that was interpreted as fossil embryos undergoing discoidal cleavage. However, our specimens contain fewer cells and thus probably represent developmental precursors of the Weng'an counterparts. Additionally, new material shows several anatomical features that are inconsistent with an embryo interpretation, including (1) an unusually large volume of “blastomeres,” (2) a putative nucleus preserved within the large “yolk cell,” and (3) completely separated cells. Collectively, the Zhenba embryo-like specimens permit a reconstruction of the consecutive developmental sequence from single-celled individuals to the three-celled individuals, leading us to interpret the newly found specimens as products of abnormal development of Ediacaran embryo-like organisms whose affinity remains unresolved.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40587165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic Plasticity & Evolution: Causes, Consequences, Controversies  David W. Pfennig (ed). xxxi + 404 pp., index. Evolutionary Cell Biology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2021. $230 (hardback); Open Access (pdf). 表型可塑性和进化:原因,后果,争议。Xxxi + 404页,索引。进化细胞生物学。博卡拉顿,佛罗里达州:CRC出版社,泰勒和弗朗西斯集团,2021年。230美元(精装);开放存取(pdf)。
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-10-18 DOI: 10.1111/ede.12420
Alan C. Love, Günter P. Wagner
{"title":"Phenotypic Plasticity & Evolution: Causes, Consequences, Controversies  David W. Pfennig (ed). xxxi + 404 pp., index. Evolutionary Cell Biology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2021. $230 (hardback); Open Access (pdf).","authors":"Alan C. Love,&nbsp;Günter P. Wagner","doi":"10.1111/ede.12420","DOIUrl":"10.1111/ede.12420","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116070947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms 爬行动物颞骨区形态多样性的形成:潜在发育机制的综述
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-10-17 DOI: 10.1111/ede.12419
Masayoshi Tokita, Hiromu Sato

Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.

爬行动物的头骨形态是高度多样化的,根据颞孔的数量和位置大致分为三类:无肢类、突触类和双肢类。根据最近的系统发育分析,时间孔在羊膜动物中独立进化了两次,一次在新孔动物中,一次在底孔动物中。虽然四足动物颞骨开窗进化的功能方面已经得到了很好的研究,但很少有研究调查颞骨颅骨区域模式差异的发育机制。为了确定这些机制可能是什么,我们首先通过比较具有代表性的现存爬行动物物种的胚胎颅骨成骨来研究五种颞骨是如何发育的。在个体发育过程中,颞骨生长速度和生长方向的差异可能决定了颞骨颅骨区域的形态。接下来,我们比较了代表性爬行动物胚胎颞区两个关键成骨基因Runx2和Msx2的组织发生模式和表达。我们的比较分析表明,形成颞孔的区域的胚胎组织学状况预测了成人颞颅骨的形态,而成骨间充质前体细胞中Runx2和Msx2表达的调控修饰可能参与了爬行动物颞颅骨区域形态多样性的产生。
{"title":"Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms","authors":"Masayoshi Tokita,&nbsp;Hiromu Sato","doi":"10.1111/ede.12419","DOIUrl":"10.1111/ede.12419","url":null,"abstract":"<p>Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, <i>Runx2</i> and <i>Msx2</i>, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of <i>Runx2</i> and <i>Msx2</i> expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Issue information – TOC & Editorial and Subscription Page 发行信息- TOC &编辑和订阅页
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-09-21 DOI: 10.1111/ede.12384
{"title":"Issue information – TOC & Editorial and Subscription Page","authors":"","doi":"10.1111/ede.12384","DOIUrl":"10.1111/ede.12384","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42704222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes 三叶虫头部的模块化与假设的眼睛的节段起源一致
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-09-16 DOI: 10.1111/ede.12418
Ernesto E. Vargas-Parra, Melanie J. Hopkins

The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.

三叶虫的头部由多个融合的节段组成,具有多种功能。然而,三叶虫头部的潜在组织,以及模式是否在三叶虫中保守,仍然不清楚。将头部建模为由不同的模块或子单元组成,从而具有半独立进化的潜力,可以揭示组织的潜在模式。基于节肢动物比较发育生物学的模块化组织假说采用几何形态计量学进行了评估。对奥陶系两种三叶虫Calyptaulax annulata (Phacopida)和Cloacaspis senilis (Olenida sensu Adrain, 2011)颅骨的二维(半)地标数据进行了分析。利用协方差比(covariance ratio, CR)比较了假设模块内的协方差与模块之间的协方差,并利用从协方差比中得出的效应大小度量来比较不同模型的拟合。当将眼睛作为一个独立的模块时,确定的环棘猴最佳模块假设将眼睛和头部最前部区域整合为一个模块。最好的模块化假设是更复杂的,但眼睛仍然主要与头部的前部密切相关。对于这两个物种的所有其他得到充分支持的模型来说,后者也是如此。这些结果可以解释为早期节肢动物在整个发育过程中保留的最前眼段的发育信号,尽管可能存在与功能需求相关的选择压力。
{"title":"Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes","authors":"Ernesto E. Vargas-Parra,&nbsp;Melanie J. Hopkins","doi":"10.1111/ede.12418","DOIUrl":"10.1111/ede.12418","url":null,"abstract":"<p>The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, <i>Calyptaulax annulata</i> (Phacopida) and <i>Cloacaspis senilis</i> (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for <i>C. annulata</i> shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for <i>C. senilis</i> are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/e8/EDE-24-.PMC9786538.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Issue information – TOC & Editorial and Subscription Page 发行信息- TOC &编辑和订阅页
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-31 DOI: 10.1111/ede.12413
{"title":"Issue information – TOC & Editorial and Subscription Page","authors":"","doi":"10.1111/ede.12413","DOIUrl":"10.1111/ede.12413","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45864109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the therian face through complete loss of the premaxilla 通过前上颌骨的完全丧失,兽类面部的进化
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-26 DOI: 10.1111/ede.12417
Hiroki Higashiyama, Daisuke Koyabu, Hiroki Kurihara

The anatomical framework of the jawbones is highly conserved among most of the Osteichthyes, including the tetrapods. However, our recent study suggested that the premaxilla, the rostralmost upper jaw bone, was rearranged during the evolution of therian mammals, being replaced by the septomaxilla at least in the lateral part. In the present study, to understand more about the process of evolution from the ancestral upper jaw to the therian face, we re-examined the development of the therian premaxilla (incisive bone). By comparing mouse, bat, goat, and cattle fetuses, we confirmed that the therian premaxilla has dual developmental origins, the lateral body and the palatine process. This dual development is widely conserved among the therian mammals. Cell-lineage-tracing experiments using Dlx1-CreERT2 mice revealed that the palatine process arises in the ventral part of the premandibular domain, where the nasopalatine nerve distributes, whereas the lateral body develops from the maxillary prominence in the domain of the maxillary nerve. Through comparative analysis using various tetrapods, we concluded that the palatine process should not be considered part of the ancestral premaxilla. It rather corresponds to the anterior region of the vomerine bone of nonmammalian tetrapods. Thus, the present findings indicate that the true premaxilla was completely lost during the evolution of the therian mammals, resulting in the establishment of the unique therian face as an evolutionary novelty. Reconsideration of the homological framework of the cranial skeleton based on the topographical relationships of the ossification center during embryonic development is warranted.

颌骨的解剖结构在大多数骨鱼目动物中是高度保守的,包括四足动物。然而,我们最近的研究表明,在兽类哺乳动物的进化过程中,前颌骨(即近上颌的前颌骨)被重新排列,至少在侧面被中隔腋窝所取代。在本研究中,为了更深入地了解从祖先上颚到兽类面部的进化过程,我们重新研究了兽类前上颌骨(尖锐骨)的发育。通过比较小鼠、蝙蝠、山羊和牛的胎儿,我们证实了兽类的前上颌骨具有双重发育起源,即外侧体和腭突。这种双重发育在兽类哺乳动物中广泛保存。利用Dlx1-CreERT2小鼠进行的细胞谱系追踪实验显示,腭突起源于鼻腭神经分布的下颌前区域的腹侧部分,而侧体则起源于上颌神经区域的上颌突。通过对各种四足动物的比较分析,我们得出结论,腭突不应该被认为是祖先前上颌骨的一部分。它与非哺乳动物四足动物的前侧骨相当。因此,目前的研究结果表明,真正的前触须在兽类哺乳动物的进化过程中完全消失了,导致独特的兽类面孔作为一种进化新颖性的建立。基于胚胎发育期间骨化中心的地形关系,重新考虑颅骨的同源框架是有必要的。
{"title":"Evolution of the therian face through complete loss of the premaxilla","authors":"Hiroki Higashiyama,&nbsp;Daisuke Koyabu,&nbsp;Hiroki Kurihara","doi":"10.1111/ede.12417","DOIUrl":"10.1111/ede.12417","url":null,"abstract":"<p>The anatomical framework of the jawbones is highly conserved among most of the Osteichthyes, including the tetrapods. However, our recent study suggested that the premaxilla, the rostralmost upper jaw bone, was rearranged during the evolution of therian mammals, being replaced by the septomaxilla at least in the lateral part. In the present study, to understand more about the process of evolution from the ancestral upper jaw to the therian face, we re-examined the development of the therian premaxilla (incisive bone). By comparing mouse, bat, goat, and cattle fetuses, we confirmed that the therian premaxilla has dual developmental origins, the lateral body and the palatine process. This dual development is widely conserved among the therian mammals. Cell-lineage-tracing experiments using <i>Dlx1</i>-CreER<sup>T2</sup> mice revealed that the palatine process arises in the ventral part of the premandibular domain, where the nasopalatine nerve distributes, whereas the lateral body develops from the maxillary prominence in the domain of the maxillary nerve. Through comparative analysis using various tetrapods, we concluded that the palatine process should not be considered part of the ancestral premaxilla. It rather corresponds to the anterior region of the vomerine bone of nonmammalian tetrapods. Thus, the present findings indicate that the true premaxilla was completely lost during the evolution of the therian mammals, resulting in the establishment of the unique therian face as an evolutionary novelty. Reconsideration of the homological framework of the cranial skeleton based on the topographical relationships of the ossification center during embryonic development is warranted.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10712130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Burrowing constrains patterns of skull shape evolution in wrasses 挖洞限制了濑鱼颅骨形状的进化模式
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-15 DOI: 10.1111/ede.12415
Kory M. Evans, Olivier Larouche, JoJo L. West, Samantha M. Gartner, Mark W. Westneat

The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.

行为专门化和生态专门化的进化对表型进化的速度和模式有显著的影响。头部先挖洞已经被证明对许多脊椎动物和无脊椎动物分类群的头部和身体形状施加了强大的选择压力。在濑鱼中,挖洞行为已经独立进化了多次,通常用于觅食和躲避捕食者的行为。虽然最近的研究已经研究了与这种行为相关的运动学和体型形态学,但迄今为止还没有研究研究了这种进化支系中挖洞对表型多样化模式的宏观进化意义。本文采用三维几何形态计量学和系统发育比较方法研究了化石隆头鱼及其近缘种颅骨形态的进化。我们测试了穴居和非穴居wrass之间的头骨形状差异,并评估了穴居wrass之间形状收敛的假设。我们还量化了挖洞和非挖洞濑鱼之间的头骨形状进化速度,以测试挖洞是否限制或加速了这一进化支系的头骨形状进化速度。我们发现,虽然穴居和非穴居的濑鱼表现出相似程度的形态差异,但对于穴居的濑鱼来说,积累这种差异所需的时间几乎是前者的两倍。此外,虽然群体之间的差异是均匀匹配的,但我们发现大多数穴居物种被限制在一个特定的形状空间区域,大多数物种的头部比许多非穴居物种更窄。这些结果表明,头先挖洞通过潜在地限制可以执行这种行为的表型范围,限制了濑鱼颅骨形状多样化的模式。
{"title":"Burrowing constrains patterns of skull shape evolution in wrasses","authors":"Kory M. Evans,&nbsp;Olivier Larouche,&nbsp;JoJo L. West,&nbsp;Samantha M. Gartner,&nbsp;Mark W. Westneat","doi":"10.1111/ede.12415","DOIUrl":"10.1111/ede.12415","url":null,"abstract":"<p>The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10769663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Within-individual leaf allometry and the evolution of leaf morphology: A multilevel analysis of leaf allometry in temperate Viburnum (Adoxaceae) species 单株内叶片异速生长与叶片形态演化:温带豆荚科植物叶片异速生长的多层次分析
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-15 DOI: 10.1111/ede.12414
Marina M. Strelin, Pamela K. Diggle

A critical issue in evolutionary biology is understanding the relationship between macroevolutionary patterns of diversity and the origin of variation at the organismal level. Among-individual allometry, the relationship between the size and shape of a structure among organisms at a fixed developmental stage, is often similar to evolutionary allometry, the relationship between the size and shape of a structure among populations or species, and the genetic and developmental process that underlie allometric relationships at both levels are thought to influence evolutionary diversification. Metameric organisms present an additional level of allometry: the relationship between the size and shape of structures within individuals. We propose that within-individual allometry is also related to evolutionary diversification among metameric organisms. We explore this idea in temperate deciduous Viburnum (Adoxaceae) species that bear two types of leaves, that is, preformed and neoformed leaves, with contrasting patterns of development. Examination of within-individual, among-individual, among-population, and among-species allometry of leaf shape in both leaf types showed that the slopes of all allometric relationships were significantly different from isometry, and their sign was consistent across allometric hierarchies. Although the allometric slope of preformed leaves was constant across allometry levels, the allometric slope of neoformed leaves became increasingly steeper. We suggest that allometric variation underlying evolutionary diversification in metameric organisms may manifest among individuals and also among their repeated structures. Moreover, structures with contrasting patterns of development within metameric organisms can experience different degrees of developmental constraint, and this can in turn affect morphological diversification.

进化生物学的一个关键问题是理解多样性的宏观进化模式与有机体水平上的变异起源之间的关系。个体间异速生长是指处于固定发育阶段的生物之间结构的大小和形状之间的关系,通常类似于进化异速生长,即种群或物种之间结构的大小和形状之间的关系,以及在这两个水平上的异速生长关系基础上的遗传和发育过程被认为影响进化多样化。异速生物表现出额外的异速:个体内部结构的大小和形状之间的关系。我们认为,个体内异速也与异长生物之间的进化多样化有关。我们在温带落叶Viburnum (Adoxaceae)物种中探索了这一想法,这些物种具有两种类型的叶片,即预成型叶片和新生叶片,具有不同的发育模式。对两种叶型叶片形状异速变化的个体内、个体间、种群间和种间分析表明,各异速变化关系的斜率均与等距变化有显著差异,且其符号在各异速变化等级间一致。在不同的异速生长水平上,预成型叶片的异速生长斜率是恒定的,而新生叶片的异速生长斜率则越来越陡。我们认为,异速变异可能在个体之间以及它们的重复结构中表现出来。此外,在异长生物中,具有不同发育模式的结构可以经历不同程度的发育限制,这反过来会影响形态多样化。
{"title":"Within-individual leaf allometry and the evolution of leaf morphology: A multilevel analysis of leaf allometry in temperate Viburnum (Adoxaceae) species","authors":"Marina M. Strelin,&nbsp;Pamela K. Diggle","doi":"10.1111/ede.12414","DOIUrl":"10.1111/ede.12414","url":null,"abstract":"<p>A critical issue in evolutionary biology is understanding the relationship between macroevolutionary patterns of diversity and the origin of variation at the organismal level. Among-individual allometry, the relationship between the size and shape of a structure among organisms at a fixed developmental stage, is often similar to evolutionary allometry, the relationship between the size and shape of a structure among populations or species, and the genetic and developmental process that underlie allometric relationships at both levels are thought to influence evolutionary diversification. Metameric organisms present an additional level of allometry: the relationship between the size and shape of structures within individuals. We propose that within-individual allometry is also related to evolutionary diversification among metameric organisms. We explore this idea in temperate deciduous <i>Viburnum</i> (Adoxaceae) species that bear two types of leaves, that is, preformed and neoformed leaves, with contrasting patterns of development. Examination of within-individual, among-individual, among-population, and among-species allometry of leaf shape in both leaf types showed that the slopes of all allometric relationships were significantly different from isometry, and their sign was consistent across allometric hierarchies. Although the allometric slope of preformed leaves was constant across allometry levels, the allometric slope of neoformed leaves became increasingly steeper. We suggest that allometric variation underlying evolutionary diversification in metameric organisms may manifest among individuals and also among their repeated structures. Moreover, structures with contrasting patterns of development within metameric organisms can experience different degrees of developmental constraint, and this can in turn affect morphological diversification.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40701511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes 比较个体发生和转录组学分析揭示了慈鲷鱼的颜色模式差异
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-15 DOI: 10.1111/ede.12416
Claudius F. Kratochwil, Yipeng Liang, Jan Gerwin, Paolo Franchini, Axel Meyer

Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, agouti-related-peptide 2 (agrp2), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify agrp2 to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that agrp2 is associated with the loss of the nonstereotypic oblique stripe of Mylochromis mola. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair Haplochromis sauvagei and Pundamilia nyererei, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences—that most importantly also do not include agrp2—are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.

条纹图案是反复进化的颜色图案的一个显著例子。在非洲慈鲷的适应性辐射中,条纹独立进化了几次。在此之前,有人认为单一基因agouti-相关肽2 (agp2)的调控进化解释了这一性状的进化稳定性。在这里,我们使用比较转录组学方法,对维多利亚湖和马拉维湖的两个主要分支(姆布纳和非姆布纳谱系)的代表(成年)条纹和非条纹鲷鱼进行了比较。我们发现,在所有两两比较中,agrp2是差异表达的,重申了它与条纹模式分化的关联。因此,我们也提供证据表明,agp2与Mylochromis mola的非定型斜条纹的丧失有关。互补的个体发育数据提供了对条纹模式以及垂直条形模式的发展的见解,这两种模式都是在胚胎后发育的。最后,利用维多利亚湖物种对Haplochromis sauvagei和Pundamilia nyererei,我们研究了黑色和非黑色区域的差异,以确定有助于条纹形成的其他基因。表达差异——最重要的是不包括agp2——出奇的小。这表明,至少在这对物种中,条纹表型可能是由更微妙的转录组差异或没有转录相关的细胞变化的组合引起的。综上所述,我们的综合分析突出了不同颜色图案的慈鲷之间的个体发生和成体转录组差异,为进一步研究其多样化的机制基础奠定了基础。
{"title":"Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes","authors":"Claudius F. Kratochwil,&nbsp;Yipeng Liang,&nbsp;Jan Gerwin,&nbsp;Paolo Franchini,&nbsp;Axel Meyer","doi":"10.1111/ede.12416","DOIUrl":"10.1111/ede.12416","url":null,"abstract":"<p>Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, <i>agouti-related-peptide 2</i> (<i>agrp2</i>), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify <i>agrp2</i> to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that <i>agrp2</i> is associated with the loss of the nonstereotypic oblique stripe of <i>Mylochromis mola</i>. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair <i>Haplochromis sauvagei</i> and <i>Pundamilia nyererei</i>, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences—that most importantly also do not include <i>agrp2</i>—are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40701516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Evolution & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1