The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing “typical” trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
{"title":"The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae","authors":"Pin Huan, Baozhong Liu","doi":"10.1111/ede.12456","DOIUrl":"10.1111/ede.12456","url":null,"abstract":"<p>The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing “typical” trochophore larvae. In recent years, we developed a potential model system using the patellogastropod <i>Lottia peitaihoensis</i> (= <i>Lottia goshimai</i>). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein–protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's “mystery of mysteries,” this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
{"title":"Speciation and development","authors":"Asher D. Cutter","doi":"10.1111/ede.12454","DOIUrl":"10.1111/ede.12454","url":null,"abstract":"<p>Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve <i>cis</i>- and <i>trans</i>-acting gene regulatory change, protein–protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's “mystery of mysteries,” this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grigorii N. Markevich, Nadezhda S. Pavlova, Daria V. Kapitanova, Evgeny V. Esin
Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.
{"title":"Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism","authors":"Grigorii N. Markevich, Nadezhda S. Pavlova, Daria V. Kapitanova, Evgeny V. Esin","doi":"10.1111/ede.12453","DOIUrl":"10.1111/ede.12453","url":null,"abstract":"<p>Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.
{"title":"Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments","authors":"Michael J. Wade, Sonia E. Sultan","doi":"10.1111/ede.12452","DOIUrl":"10.1111/ede.12452","url":null,"abstract":"<p>Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9911371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We compare and contrast two theoretical perspectives on adaptive evolution—the orthodox Modern Synthesis perspective, and the nascent Agential Perspective. To do so, we develop the idea from Rasmus Grønfeldt Winther of a ‘countermap’, as a means for comparing the respective ontologies of different scientific perspectives. We conclude that the modern Synthesis perspective achieves an impressively comprehensive view of a universal set of dynamical properties of populations, but at the considerable cost of radically distorting the nature of the biological processes that contribute to evolution. For its part, the Agential Perspective offers the prospect of representing the biological processes of evolution with much greater fidelity, but at the expense of generality. Trade-offs of this sort are endemic to science, and inevitable. Recognizing them helps us to avoid the pitfalls of ‘illicit reification’, i.e. the mistake of interpreting a feature of a scientific perspective as a feature of the non-perspectival world. We argue that much of the traditional Modern Synthesis representation of the biology of evolution commits this illicit reification.
{"title":"The agential perspective: Countermapping the modern synthesis","authors":"Denis M. Walsh, Gregory Rupik","doi":"10.1111/ede.12448","DOIUrl":"10.1111/ede.12448","url":null,"abstract":"<p>We compare and contrast two theoretical perspectives on adaptive evolution—the orthodox Modern Synthesis perspective, and the nascent Agential Perspective. To do so, we develop the idea from Rasmus Grønfeldt Winther of a ‘countermap’, as a means for comparing the respective ontologies of different scientific perspectives. We conclude that the modern Synthesis perspective achieves an impressively comprehensive view of a universal set of dynamical properties of populations, but at the considerable cost of radically distorting the nature of the biological processes that contribute to evolution. For its part, the Agential Perspective offers the prospect of representing the biological processes of evolution with much greater fidelity, but at the expense of generality. Trade-offs of this sort are endemic to science, and inevitable. Recognizing them helps us to avoid the pitfalls of ‘illicit reification’, i.e. the mistake of interpreting a feature of a scientific perspective as a feature of the non-perspectival world. We argue that much of the traditional Modern Synthesis representation of the biology of evolution commits this illicit reification.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
What is a biological individual? How are biological individuals individuated? How can we tell how many individuals there are in a given assemblage of biological entities? The individuation and differentiation of biological individuals are central to the scientific understanding of living beings. I propose a novel criterion of biological individuality according to which biological individuals are autonomous agents. First, I articulate an ecological–dynamical account of natural agency according to which, agency is the gross dynamical capacity of a goal‐directed system to bias its repertoire to respond to its conditions as affordances. Then, I argue that agents or agential dynamical systems can be agentially dependent on, or agentially autonomous from, other agents and that this agential dependence/autonomy can be symmetrical or asymmetrical, strong or weak. Biological individuals, I propose, are all and only those agential dynamical systems that are strongly agentially autonomous. So, to determine how many individuals there are in a given multiagent aggregate, such as multicellular organism, a colony, symbiosis, or a swarm, we first have to identify how many agential dynamical systems there are, and then what their relations of agential dependence/autonomy are. I argue that this criterion is adequate to the extent that it vindicates the paradigmatic cases, and explains why the paradigmatic cases are paradigmatic, and why the problematic cases are problematic. Finally, I argue for the importance of distinguishing between agential and causal dependence and show the relevance of agential autonomy for understanding the explanatory structure of evolutionary developmental biology.
{"title":"Agential autonomy and biological individuality","authors":"Fermin C. Fulda","doi":"10.1111/ede.12450","DOIUrl":"10.1111/ede.12450","url":null,"abstract":"What is a biological individual? How are biological individuals individuated? How can we tell how many individuals there are in a given assemblage of biological entities? The individuation and differentiation of biological individuals are central to the scientific understanding of living beings. I propose a novel criterion of biological individuality according to which biological individuals are autonomous agents. First, I articulate an ecological–dynamical account of natural agency according to which, agency is the gross dynamical capacity of a goal‐directed system to bias its repertoire to respond to its conditions as affordances. Then, I argue that agents or agential dynamical systems can be agentially dependent on, or agentially autonomous from, other agents and that this agential dependence/autonomy can be symmetrical or asymmetrical, strong or weak. Biological individuals, I propose, are all and only those agential dynamical systems that are strongly agentially autonomous. So, to determine how many individuals there are in a given multiagent aggregate, such as multicellular organism, a colony, symbiosis, or a swarm, we first have to identify how many agential dynamical systems there are, and then what their relations of agential dependence/autonomy are. I argue that this criterion is adequate to the extent that it vindicates the paradigmatic cases, and explains why the paradigmatic cases are paradigmatic, and why the problematic cases are problematic. Finally, I argue for the importance of distinguishing between agential and causal dependence and show the relevance of agential autonomy for understanding the explanatory structure of evolutionary developmental biology.","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12450","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism–environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.
{"title":"A data-driven framework to model the organism–environment system","authors":"Lisandro Milocco, Tobias Uller","doi":"10.1111/ede.12449","DOIUrl":"10.1111/ede.12449","url":null,"abstract":"<p>Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of <i>inputs</i> and <i>outputs</i>. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism–environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12449","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9579410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnese Lanzetti, Roberto Portela-Miguez, Vincent Fernandez, Anjali Goswami
Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry—the relationship between skull shape and size during growth—can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.
{"title":"Testing heterochrony: Connecting skull shape ontogeny and evolution of feeding adaptations in baleen whales","authors":"Agnese Lanzetti, Roberto Portela-Miguez, Vincent Fernandez, Anjali Goswami","doi":"10.1111/ede.12447","DOIUrl":"10.1111/ede.12447","url":null,"abstract":"<p>Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry—the relationship between skull shape and size during growth—can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12447","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10602215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While niche construction theory and developmental approaches to evolution have brought to the front the active role of organisms as ecological and developmental agents, respectively, the role of agents in reproduction has been widely neglected by organismal perspectives of evolution. This paper addresses this problem by proposing an agential view of reproduction and shows that such a perspective has implications for the explanation of the origin of modes of reproduction, the evolvability of reproductive modes, and the coevolution between reproduction and social behavior. After introducing the two prevalent views of agency in evolutionary biology, namely those of organismal agency and selective agency, I contrast these two perspectives as applied to the evolution of animal reproduction. Taking eutherian pregnancy as a case study, I wonder whether organismal approaches to agency forged in the frame of niche construction and developmental plasticity theories can account for the goal-directed activities involved in reproductive processes. I conclude that the agential role of organisms in reproduction is irreducible to developmental and ecological agency, and that reproductive goals need to be included into our definitions of organismal agency. I then explore the evolutionary consequences of endorsing an agential approach to reproduction, showing how such an approach might illuminate our understanding of the evolutionary origination and developmental evolvability of reproductive modes. Finally, I analyze recent studies on the coevolution between viviparity and social behavior in vertebrates to suggest that an agential notion of reproduction can provide unforeseen links between developmental and ecological agency.
{"title":"Agency in Reproduction","authors":"Laura Nuño de la Rosa","doi":"10.1111/ede.12440","DOIUrl":"10.1111/ede.12440","url":null,"abstract":"<p>While niche construction theory and developmental approaches to evolution have brought to the front the active role of organisms as ecological and developmental agents, respectively, the role of agents in reproduction has been widely neglected by organismal perspectives of evolution. This paper addresses this problem by proposing an agential view of reproduction and shows that such a perspective has implications for the explanation of the origin of modes of reproduction, the evolvability of reproductive modes, and the coevolution between reproduction and social behavior. After introducing the two prevalent views of agency in evolutionary biology, namely those of organismal agency and selective agency, I contrast these two perspectives as applied to the evolution of animal reproduction. Taking eutherian pregnancy as a case study, I wonder whether organismal approaches to agency forged in the frame of niche construction and developmental plasticity theories can account for the goal-directed activities involved in reproductive processes. I conclude that the agential role of organisms in reproduction is irreducible to developmental and ecological agency, and that reproductive goals need to be included into our definitions of organismal agency. I then explore the evolutionary consequences of endorsing an agential approach to reproduction, showing how such an approach might illuminate our understanding of the evolutionary origination and developmental evolvability of reproductive modes. Finally, I analyze recent studies on the coevolution between viviparity and social behavior in vertebrates to suggest that an agential notion of reproduction can provide unforeseen links between developmental and ecological agency.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}