首页 > 最新文献

AIChE Journal最新文献

英文 中文
Mixed polymer fragment membranes on large‐area tubes for high‐performance H 2 purification 混合聚合物碎片膜在大面积管上的高性能氢气净化
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2026-01-07 DOI: 10.1002/aic.70220
Puxin Shi, Liping Luan, Bo Zhang, Islam Mohammad Mahfuzul, Zhi Wang, Xinlei Liu
High‐performance H 2 /CO 2 separation with good scalability is needed in industry. Here, we fabricated mixed polymer fragment membranes on alumina tubes. The synergistic control of monomer diffusion rate promoted the formation of H 2 selective channels, thereby elevating the H 2 /CO 2 separation performance. The membranes, each with an area of 37.7 cm 2 , demonstrated a high H 2 /CO 2 selectivity of 22.5 (with a corresponding H 2 permeance of 209 GPU) at 150°C and 2 bar, high pressure resistance (H 2 permeance and H 2 /CO 2 selectivity were 212 GPU and 11.1 at 200°C and 10 bar, respectively), and good reproducibility. Furthermore, we studied the effects of sweep gas, permeate pressure, reuse of substrates, and H 2 O and H 2 S contaminants on membrane performance, pointing out that the membranes can be well adapted to industrial relevant conditions. In addition, a two‐stage membrane system was designed to produce high concentration H 2 with a good yield.
工业中需要具有良好可扩展性的高性能H 2 /CO 2分离。我们在氧化铝管上制备了混合聚合物碎片膜。单体扩散速率的协同控制促进了h2选择性通道的形成,从而提高了h2 / co2的分离性能。该膜的面积为37.7 cm2,在150°C和2 bar条件下具有22.5的h2 / co2选择性(对应的h2透过率为209 GPU),耐高压(在200°C和10 bar条件下,h2透过率和h2 / co2选择性分别为212 GPU和11.1 GPU),并且具有良好的重复性。此外,我们还研究了扫气、渗透压力、底物再利用以及h2o和h2s污染物对膜性能的影响,指出该膜可以很好地适应工业相关条件。此外,设计了一种两级膜系统,以产生高浓度的h2,收率高。
{"title":"Mixed polymer fragment membranes on large‐area tubes for high‐performance H 2 purification","authors":"Puxin Shi, Liping Luan, Bo Zhang, Islam Mohammad Mahfuzul, Zhi Wang, Xinlei Liu","doi":"10.1002/aic.70220","DOIUrl":"https://doi.org/10.1002/aic.70220","url":null,"abstract":"High‐performance H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> separation with good scalability is needed in industry. Here, we fabricated mixed polymer fragment membranes on alumina tubes. The synergistic control of monomer diffusion rate promoted the formation of H <jats:sub>2</jats:sub> selective channels, thereby elevating the H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> separation performance. The membranes, each with an area of 37.7 cm <jats:sup>2</jats:sup> , demonstrated a high H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> selectivity of 22.5 (with a corresponding H <jats:sub>2</jats:sub> permeance of 209 GPU) at 150°C and 2 bar, high pressure resistance (H <jats:sub>2</jats:sub> permeance and H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> selectivity were 212 GPU and 11.1 at 200°C and 10 bar, respectively), and good reproducibility. Furthermore, we studied the effects of sweep gas, permeate pressure, reuse of substrates, and H <jats:sub>2</jats:sub> O and H <jats:sub>2</jats:sub> S contaminants on membrane performance, pointing out that the membranes can be well adapted to industrial relevant conditions. In addition, a two‐stage membrane system was designed to produce high concentration H <jats:sub>2</jats:sub> with a good yield.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"87 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction intensification in triphase enzyme electrode: In silico design of interfacial microenvironment 三相酶电极反应强化:界面微环境的硅设计
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2026-01-07 DOI: 10.1002/aic.70210
Jing Li, Siyu Zou, Xinjian Feng, Jie Xiao
This study introduces an enzyme electrode structure featuring a special three-dimensional (3D) triphase interface which is constructed by penetrating concentric cylindrical pillars with porous walls into the enzyme layer. This approach substantially increases the effective surface area for both oxygen supply and <span data-altimg="/cms/asset/619f583d-670a-48b4-ad4b-c9238ba7e002/aic70210-math-0001.png"></span><mjx-container ctxtmenu_counter="1" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/aic70210-math-0001.png"><mjx-semantics><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-role="implicit" data-semantic-speech="normal upper H 2 normal upper O 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator" style="margin-left: 0.056em; margin-right: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00011541:media:aic70210:aic70210-math-0001" display="inline" location="graphic/aic70210-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow data-semantic-="" data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic-role="implicit" data-semantic-speech="normal upper H 2 normal upper O 2" data-semantic-type="infixop"><msub data-semantic-="" data-semantic-children="0,1" data-semantic-
本研究介绍了一种具有特殊三维(3D)三相界面的酶电极结构,该结构是通过将具有多孔壁的同心圆柱形柱穿透酶层来构建的。这种方法大大增加了供氧和H2²O2 $$ {mathrm{H}}_2{mathrm{O}}_2 $$消耗的有效表面积,从而提高了酶和电化学级联反应效率(即酶电极的关键性能指标)。采用数值模拟方法探讨了界面结构与级联反应效率之间的定量关系。本文设计的新型三维三相酶电极的反应动力学比二维三相界面酶电极的反应动力学高60倍以上,比传统液固两相界面酶电极的反应动力学高1432倍以上。本研究结果有望为下一代高效酶电极的开发提供理论基础。
{"title":"Reaction intensification in triphase enzyme electrode: In silico design of interfacial microenvironment","authors":"Jing Li, Siyu Zou, Xinjian Feng, Jie Xiao","doi":"10.1002/aic.70210","DOIUrl":"https://doi.org/10.1002/aic.70210","url":null,"abstract":"This study introduces an enzyme electrode structure featuring a special three-dimensional (3D) triphase interface which is constructed by penetrating concentric cylindrical pillars with porous walls into the enzyme layer. This approach substantially increases the effective surface area for both oxygen supply and &lt;span data-altimg=\"/cms/asset/619f583d-670a-48b4-ad4b-c9238ba7e002/aic70210-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/aic70210-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper H 2 normal upper O 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00011541:media:aic70210:aic70210-math-0001\" display=\"inline\" location=\"graphic/aic70210-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper H 2 normal upper O 2\" data-semantic-type=\"infixop\"&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"47 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flash joule‐heating technology for material manufacturing, processing, and emerging applications 闪光焦耳加热技术用于材料制造、加工和新兴应用
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2026-01-07 DOI: 10.1002/aic.70215
Xiaoxi Yuan, Chaohui Yan, Shaochen Zhang, Yuqi Yang, Shengtai Zhou, Peng Huang, Dong Xia
Flash Joule‐heating (FJH) technology emerges as a transformative advancement in electrothermal processing with minimal carbon footprint, which leverages high‐intensity electrical pulses to rapidly heat conductive materials to extreme temperatures (often exceeding 3000 K), inducing dramatic structural transformations through non‐equilibrium pathways, thus displaying feasibility across various application scenarios. Noteworthily, FJH technology has evolved from a laboratory practice to a cornerstone of sustainable materials engineering, witnessing ever‐growing researching interests. Thus, a holistic and timely summary of the recent progress and development of FJH technology is of crucial importance to deepen the understandings and update the remaining difficulties in each application that need to be resolved. While challenges still remain on inhibiting the scaled production upon the deployment of FJH, as such, this review proposes perspectives and strategies to help address key unresolved challenges ghosting FJH technology, in order to make the quick landing of FJH‐led industrial revolution and production.
闪现焦耳加热(FJH)技术是电热加工的革命性进步,其碳足迹最小,利用高强度电脉冲将导电材料快速加热到极端温度(通常超过3000 K),通过非平衡途径诱导剧烈的结构转变,从而在各种应用场景中显示可行性。值得注意的是,FJH技术已经从实验室实践发展成为可持续材料工程的基石,见证了不断增长的研究兴趣。因此,全面及时地总结FJH技术的最新进展和发展,对于加深理解和更新每个应用中需要解决的剩余困难至关重要。尽管在FJH的部署过程中,限制规模化生产的挑战仍然存在,因此,本文提出了一些观点和策略,以帮助解决FJH技术尚未解决的关键挑战,从而使FJH主导的工业革命和生产快速落地。
{"title":"Flash joule‐heating technology for material manufacturing, processing, and emerging applications","authors":"Xiaoxi Yuan, Chaohui Yan, Shaochen Zhang, Yuqi Yang, Shengtai Zhou, Peng Huang, Dong Xia","doi":"10.1002/aic.70215","DOIUrl":"https://doi.org/10.1002/aic.70215","url":null,"abstract":"Flash Joule‐heating (FJH) technology emerges as a transformative advancement in electrothermal processing with minimal carbon footprint, which leverages high‐intensity electrical pulses to rapidly heat conductive materials to extreme temperatures (often exceeding 3000 K), inducing dramatic structural transformations through non‐equilibrium pathways, thus displaying feasibility across various application scenarios. Noteworthily, FJH technology has evolved from a laboratory practice to a cornerstone of sustainable materials engineering, witnessing ever‐growing researching interests. Thus, a holistic and timely summary of the recent progress and development of FJH technology is of crucial importance to deepen the understandings and update the remaining difficulties in each application that need to be resolved. While challenges still remain on inhibiting the scaled production upon the deployment of FJH, as such, this review proposes perspectives and strategies to help address key unresolved challenges ghosting FJH technology, in order to make the quick landing of FJH‐led industrial revolution and production.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"167 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into tautomerism-induced crystal growth self-inhibition informed by kinetics modeling 通过动力学模型了解互变异构诱导晶体生长的自抑制机制
IF 4 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2026-01-06 DOI: 10.1002/aic.70175
Xiang Kang, Ruiyu De, Shuqian Xia, Weiwei Tang, Junbo Gong

Mechanistic understanding of tautomer, a new class of modifiers, that affects crystal shape and growth kinetics is crucial to tailoring the property of tautomeric crystalline materials but remains elusive. Herein, we investigated this effect through a combination of kinetics modeling and experimental validation. Accounting for both tautomeric thermodynamics and inter-conversion kinetics, we developed mechanistic expressions that consider the tautomerism-induced growth self-inhibition process. Our approach enables us to calculate the influence of various operational conditions on growth kinetics and to predict the dominant factors of growth self-inhibition by tautomers. Tautomers were found primarily to suppress crystal growth by reducing the driving force under mass-transfer growth regime. However, the inhibitory effect shifts to a more complex synergistic action of step pinning and kink blocking mechanisms with interfacial tautomer inter-conversions under surface-integration limited growth regime. Finally, the effectiveness of our developed kinetics model was further experimentally validated using two urate salts as model systems.

互变异构体是一类影响晶体形状和生长动力学的新型改性剂,对其机理的理解对于调整互变异构体晶体材料的性能至关重要,但仍然难以捉摸。在这里,我们通过动力学建模和实验验证相结合来研究这种效应。考虑到互变异构热力学和相互转化动力学,我们开发了考虑互变异构诱导生长自抑制过程的机制表达式。我们的方法使我们能够计算各种操作条件对生长动力学的影响,并预测互变异构体生长自我抑制的主要因素。发现互变异构体主要通过降低传质生长机制下的驱动力来抑制晶体生长。然而,在表面整合有限生长机制下,抑制作用转变为更复杂的台阶钉钉和扭结阻断机制与界面互变异构体相互转化的协同作用。最后,用两种尿酸盐作为模型系统进一步验证了我们开发的动力学模型的有效性。
{"title":"Mechanistic insights into tautomerism-induced crystal growth self-inhibition informed by kinetics modeling","authors":"Xiang Kang,&nbsp;Ruiyu De,&nbsp;Shuqian Xia,&nbsp;Weiwei Tang,&nbsp;Junbo Gong","doi":"10.1002/aic.70175","DOIUrl":"10.1002/aic.70175","url":null,"abstract":"<p>Mechanistic understanding of tautomer, a new class of modifiers, that affects crystal shape and growth kinetics is crucial to tailoring the property of tautomeric crystalline materials but remains elusive. Herein, we investigated this effect through a combination of kinetics modeling and experimental validation. Accounting for both tautomeric thermodynamics and inter-conversion kinetics, we developed mechanistic expressions that consider the tautomerism-induced growth self-inhibition process. Our approach enables us to calculate the influence of various operational conditions on growth kinetics and to predict the dominant factors of growth self-inhibition by tautomers. Tautomers were found primarily to suppress crystal growth by reducing the driving force under mass-transfer growth regime. However, the inhibitory effect shifts to a more complex synergistic action of step pinning and kink blocking mechanisms with interfacial tautomer inter-conversions under surface-integration limited growth regime. Finally, the effectiveness of our developed kinetics model was further experimentally validated using two urate salts as model systems.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"72 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid‐energy driven decarbonization transition in cement production: Process modeling and techno‐economic analysis 水泥生产中混合能源驱动的脱碳转型:过程建模和技术经济分析
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2026-01-05 DOI: 10.1002/aic.70207
Wenxu Sun, Liang Teng, Yimin Xuan, Jingrui Liu, Yupeng Lu
As a major contributor to global CO 2 emissions, the cement industry is under unprecedented existential pressure from market contraction and stringent carbon regulations, escalating the need for cost‐effective CO 2 reduction solutions. In response, this study proposes a “Green Loop Cement Plant” concept based on a hybrid‐energy driven cement CO 2 capture and utilization (HE‐CCCU) system. Process modeling and techno‐economic analysis demonstrate that by integrating tail‐end calcium looping with in situ dry reforming of methane, the HE‐CCCU system can achieve a 90% reduction in CO 2 emissions and avoid carbon taxes of 38.73 $/t clinker , with an estimated payback time of 8.01 years. Through hybrid‐energy driven co‐production of syngas and electricity, annual performance evaluations indicate an average daily net income of 241.35 $/t clinker under real solar irradiance and dynamic electricity pricing scenarios. These findings facilitate the decarbonization and techno‐economic transition of cement manufacturing while offering a new pathway for renewable energy deployment in the industrial sector.
作为全球二氧化碳排放的主要贡献者,水泥行业正面临着前所未有的生存压力,来自市场萎缩和严格的碳法规,对具有成本效益的二氧化碳减排解决方案的需求不断上升。为此,本研究提出了一个基于混合能源驱动的水泥二氧化碳捕获和利用(HE - CCCU)系统的“绿色循环水泥厂”概念。过程建模和技术经济分析表明,通过将末端钙环法与甲烷原位干重整相结合,HE - CCCU系统可以减少90%的二氧化碳排放,避免38.73美元/吨熟料的碳税,预计投资回收期为8.01年。通过混合能源驱动的合成气和电力联合生产,年度绩效评估表明,在真实太阳辐照度和动态电价情景下,熟料的平均日净收入为241.35美元/吨。这些发现促进了水泥制造业的脱碳和技术经济转型,同时为工业部门的可再生能源部署提供了新的途径。
{"title":"Hybrid‐energy driven decarbonization transition in cement production: Process modeling and techno‐economic analysis","authors":"Wenxu Sun, Liang Teng, Yimin Xuan, Jingrui Liu, Yupeng Lu","doi":"10.1002/aic.70207","DOIUrl":"https://doi.org/10.1002/aic.70207","url":null,"abstract":"As a major contributor to global CO <jats:sub>2</jats:sub> emissions, the cement industry is under unprecedented existential pressure from market contraction and stringent carbon regulations, escalating the need for cost‐effective CO <jats:sub>2</jats:sub> reduction solutions. In response, this study proposes a “Green Loop Cement Plant” concept based on a hybrid‐energy driven cement CO <jats:sub>2</jats:sub> capture and utilization (HE‐CCCU) system. Process modeling and techno‐economic analysis demonstrate that by integrating tail‐end calcium looping with <jats:italic>in situ</jats:italic> dry reforming of methane, the HE‐CCCU system can achieve a 90% reduction in CO <jats:sub>2</jats:sub> emissions and avoid carbon taxes of 38.73 $/t <jats:sub>clinker</jats:sub> , with an estimated payback time of 8.01 years. Through hybrid‐energy driven co‐production of syngas and electricity, annual performance evaluations indicate an average daily net income of 241.35 $/t <jats:sub>clinker</jats:sub> under real solar irradiance and dynamic electricity pricing scenarios. These findings facilitate the decarbonization and techno‐economic transition of cement manufacturing while offering a new pathway for renewable energy deployment in the industrial sector.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"32 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curved boron nitride surface enables active and stable propane oxidative dehydrogenation 弯曲的氮化硼表面使丙烷氧化脱氢活性稳定
IF 4 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2025-12-28 DOI: 10.1002/aic.70139
Jinshu Tian, Chi Wang, Liwei Xia, Ni Ouyang, Juncheng Wu, Qilong Feng, Mingwu Tan, Yukun Zhou, Zhongting Hu, Yong Wang, Xiaonian Li, Yihan Zhu

Boron nitride (BN) has a two-dimensional covalent structure and offers a catalytic platform for highly selective oxidative dehydrogenation of propane (ODHP). However, the limited structural tunability of pristine BN restricts its activity and stability under harsh conditions. Here, we demonstrate that highly curved BN surfaces in small-diameter multiwalled BN nanotubes promote ODHP activity via B-O sites at nitrogen vacancies, achieving over 20% propane conversion at 520°C. These nanotubes are synthesized via a metal-free millisecond carbon thermal shock method, avoiding oxidative degradation. The resulting catalyst withstands temperatures up to 600°C, and the local B-O/H environment impedes oxygen and water intrusion, ensuring stability over 100 h through multiple reaction cycles.

氮化硼(BN)具有二维共价结构,为丙烷(ODHP)的高选择性氧化脱氢提供了催化平台。然而,原始BN有限的结构可调性限制了其在恶劣条件下的活性和稳定性。在这里,我们证明了小直径多壁BN纳米管中的高弯曲BN表面通过氮空位的B - O位点促进odp活性,在520°C下实现了超过20%的丙烷转化率。这些纳米管是通过无金属毫秒碳热冲击法合成的,避免了氧化降解。所得催化剂可承受高达600°C的温度,并且局部的B‐O/H环境可以阻止氧气和水的侵入,通过多个反应循环确保超过100小时的稳定性。
{"title":"Curved boron nitride surface enables active and stable propane oxidative dehydrogenation","authors":"Jinshu Tian,&nbsp;Chi Wang,&nbsp;Liwei Xia,&nbsp;Ni Ouyang,&nbsp;Juncheng Wu,&nbsp;Qilong Feng,&nbsp;Mingwu Tan,&nbsp;Yukun Zhou,&nbsp;Zhongting Hu,&nbsp;Yong Wang,&nbsp;Xiaonian Li,&nbsp;Yihan Zhu","doi":"10.1002/aic.70139","DOIUrl":"10.1002/aic.70139","url":null,"abstract":"<p>Boron nitride (BN) has a two-dimensional covalent structure and offers a catalytic platform for highly selective oxidative dehydrogenation of propane (ODHP). However, the limited structural tunability of pristine BN restricts its activity and stability under harsh conditions. Here, we demonstrate that highly curved BN surfaces in small-diameter multiwalled BN nanotubes promote ODHP activity via B-O sites at nitrogen vacancies, achieving over 20% propane conversion at 520°C. These nanotubes are synthesized via a metal-free millisecond carbon thermal shock method, avoiding oxidative degradation. The resulting catalyst withstands temperatures up to 600°C, and the local B-O/H environment impedes oxygen and water intrusion, ensuring stability over 100 h through multiple reaction cycles.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"72 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145847153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rh-based high-entropy alloy nanoclusters unlock superior hydroformylation performance through multi-site synergy Rh基高熵合金纳米团簇通过多位点协同作用解锁了优越的氢甲酰化性能
IF 4 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2025-12-25 DOI: 10.1002/aic.70177
Yuan Shu, Xicai Tian, Meiyu Shi, Zequn Zhang, Pengfei Zhang, Zhenghong Luo

Rh-metal clusters, characterized by an ultrahigh surface-to-volume ratio approaching 100%, serve as pivotal active centers in hydroformylation. However, such Rh clusters containing numerous Rh–Rh metallic bonds typically exhibit limited selectivity for oxygenated products. Herein, we report the architectural engineering of high-entropy-alloy Rh nanoclusters (Rh-HEACs) confined within MCM-41 mesopores, achieving a remarkable styrene turnover frequency (TOF) of 7377.0 h−1, 3-fold over that of RhMg@MCM-41 (2675.0 h−1). The Rh-HEA architecture not only reduces the surface density of Rh–Rh assemblies but also modifies adsorption behavior through its distinctive electronic configuration. Specifically, the interfacial coupling among Rh, Cu, Co, Zn, and Mg induces electron transfer from the transition metals to Rh centers. This unique electronic structure weakens CO binding while preserving styrene affinity, optimizing reaction pathways. Our findings convincingly demonstrate that HEA nanoclusters bridge the critical performance gap between heterogeneous and homogeneous Rh-based catalytic systems in hydroformylation applications.

铑金属簇具有接近100%的超高表面体积比,是氢甲酰化过程中关键的活性中心。然而,这种含有大量Rh - Rh金属键的Rh簇通常对氧化产物表现出有限的选择性。在此,我们报道了高熵合金Rh纳米团簇(Rh - HEACs)在MCM - 41介孔内的结构工程,实现了显著的苯乙烯周转率(TOF),为7377.0 h−1,是RhMg@MCM - 41 (2675.0 h−1)的3倍。Rh - HEA结构不仅降低了Rh - Rh组件的表面密度,而且通过其独特的电子结构改变了吸附行为。具体来说,Rh、Cu、Co、Zn和Mg之间的界面耦合诱导了电子从过渡金属向Rh中心的转移。这种独特的电子结构在保持苯乙烯亲和力的同时减弱了CO的结合,优化了反应途径。我们的研究结果令人信服地证明,HEA纳米团簇在氢甲酰化应用中弥合了异质和均相Rh基催化体系之间的关键性能差距。
{"title":"Rh-based high-entropy alloy nanoclusters unlock superior hydroformylation performance through multi-site synergy","authors":"Yuan Shu,&nbsp;Xicai Tian,&nbsp;Meiyu Shi,&nbsp;Zequn Zhang,&nbsp;Pengfei Zhang,&nbsp;Zhenghong Luo","doi":"10.1002/aic.70177","DOIUrl":"10.1002/aic.70177","url":null,"abstract":"<p>Rh-metal clusters, characterized by an ultrahigh surface-to-volume ratio approaching 100%, serve as pivotal active centers in hydroformylation. However, such Rh clusters containing numerous Rh–Rh metallic bonds typically exhibit limited selectivity for oxygenated products. Herein, we report the architectural engineering of high-entropy-alloy Rh nanoclusters (Rh-HEACs) confined within MCM-41 mesopores, achieving a remarkable styrene turnover frequency (TOF) of 7377.0 h<sup>−1</sup>, 3-fold over that of RhMg@MCM-41 (2675.0 h<sup>−1</sup>). The Rh-HEA architecture not only reduces the surface density of Rh–Rh assemblies but also modifies adsorption behavior through its distinctive electronic configuration. Specifically, the interfacial coupling among Rh, Cu, Co, Zn, and Mg induces electron transfer from the transition metals to Rh centers. This unique electronic structure weakens CO binding while preserving styrene affinity, optimizing reaction pathways. Our findings convincingly demonstrate that HEA nanoclusters bridge the critical performance gap between heterogeneous and homogeneous Rh-based catalytic systems in hydroformylation applications.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"72 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145830020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review of porous adsorbents for air separation: From fundamental insights to rational adsorbent design 空气分离用多孔吸附剂的评述:从基本见解到合理的吸附剂设计
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2025-12-24 DOI: 10.1002/aic.70203
Tianqi Wang, Daisong Chen, Tianyi Zhang, Boyu Zhang, Ruiqiang Wang, Zhengdong Liu, Mei Hong, Youssef Belmabkhout, Qinfen Gu, Jin Shang
Air separation via selective adsorption using porous adsorbents offers energy‐efficient alternatives to cryogenic distillation for producing high‐purity O 2 and N 2 . Adsorbent efficacy depends on balancing selectivity, durability, and performance consistency across varying conditions. This comprehensive review critically discusses the design and development of advanced porous adsorbents, including zeolites, metal–organic frameworks, and carbon molecular sieves, among other adsorbents, for air separation applications. We analyze their adsorption mechanisms, structure‐performance relationships, and operational challenges such as moisture sensitivity, regeneration energy demands, and long‐term stability under dynamic conditions. Recent advances enhance selectivity and capacity, but limitations persist in practical applications. By integrating mechanistic insights with performance benchmarks, this work identifies underexplored opportunities in molecular‐level material design to guide next‐generation adsorbents. This critical review bridges fundamental discoveries with adsorbent engineering, offering a roadmap to develop robust and effective adsorbents with the potential to replace energy‐intensive cryogenic methods across various scales.
利用多孔吸附剂进行选择性吸附的空气分离,为生产高纯度的o2和n2提供了高效节能的替代方法。吸附剂的功效取决于在不同条件下平衡选择性、耐久性和性能一致性。这篇综合综述批判性地讨论了先进多孔吸附剂的设计和开发,包括沸石、金属有机框架和碳分子筛,以及其他用于空气分离的吸附剂。我们分析了它们的吸附机理、结构-性能关系以及操作挑战,如湿度敏感性、再生能源需求和动态条件下的长期稳定性。最近的进展提高了选择性和容量,但在实际应用中仍然存在局限性。通过将机理见解与性能基准相结合,这项工作确定了分子水平材料设计中未被充分开发的机会,以指导下一代吸附剂。这篇重要的综述将吸附剂工程的基本发现联系起来,为开发强大而有效的吸附剂提供了路线图,这些吸附剂有可能取代各种规模的能源密集型低温方法。
{"title":"A critical review of porous adsorbents for air separation: From fundamental insights to rational adsorbent design","authors":"Tianqi Wang, Daisong Chen, Tianyi Zhang, Boyu Zhang, Ruiqiang Wang, Zhengdong Liu, Mei Hong, Youssef Belmabkhout, Qinfen Gu, Jin Shang","doi":"10.1002/aic.70203","DOIUrl":"https://doi.org/10.1002/aic.70203","url":null,"abstract":"Air separation via selective adsorption using porous adsorbents offers energy‐efficient alternatives to cryogenic distillation for producing high‐purity O <jats:sub>2</jats:sub> and N <jats:sub>2</jats:sub> . Adsorbent efficacy depends on balancing selectivity, durability, and performance consistency across varying conditions. This comprehensive review critically discusses the design and development of advanced porous adsorbents, including zeolites, metal–organic frameworks, and carbon molecular sieves, among other adsorbents, for air separation applications. We analyze their adsorption mechanisms, structure‐performance relationships, and operational challenges such as moisture sensitivity, regeneration energy demands, and long‐term stability under dynamic conditions. Recent advances enhance selectivity and capacity, but limitations persist in practical applications. By integrating mechanistic insights with performance benchmarks, this work identifies underexplored opportunities in molecular‐level material design to guide next‐generation adsorbents. This critical review bridges fundamental discoveries with adsorbent engineering, offering a roadmap to develop robust and effective adsorbents with the potential to replace energy‐intensive cryogenic methods across various scales.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the states of polyamines in confined spaces and their impacts on the CO 2 adsorption/diffusion process 揭示了多胺在密闭空间中的状态及其对co2吸附/扩散过程的影响
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2025-12-22 DOI: 10.1002/aic.70202
Tong Zhou, Yunxia Wen, Zhinan Wu, Bei Liu, Yaohao Bi, Xihan Ma, Zhixuan Du, Xin Feng, Xiaohua Lu, Tuo Ji, Jiahua Zhu
The existing state of macromolecular amines in the confined space and their impacts on the kinetic and thermodynamic performance is the frontier issue in the research field of sorbent‐based CO 2 capture. This work studied the amine state in the confined space and the corresponding effects on CO 2 diffusion. The results demonstrated that amine molecules with different molecular weights exhibited two distinct loading states, namely the “spreading” and “stacking” states. By establishing a diffusion model based on the non‐equilibrium thermodynamics theory (NeTD), it was demonstrated that only when the CO 2 intramolecular diffusion and intrapore diffusion in polyethyleneimine were matched, the overall diffusion resistance would be the lowest. This study provides a pathway to understanding the amine molecules in the molded sorbents, which facilitate the advancement of sorbent‐based CO 2 capture in the scale‐up process and guide the design of molded amine sorbents with low mass transfer resistance and high working capacity.
高分子胺在密闭空间中的存在状态及其对吸附剂co2捕集动力学和热力学性能的影响是吸附剂捕集co2研究领域的前沿问题。本文研究了密闭空间内的胺态及其对co2扩散的影响。结果表明,不同分子量的胺分子表现出两种不同的负载状态,即“铺展”状态和“堆积”状态。通过建立基于非平衡热力学理论(NeTD)的扩散模型,证明了只有当CO 2在聚亚胺中的分子内扩散和孔内扩散相匹配时,整体扩散阻力才会最低。该研究为进一步了解吸附剂中的胺类分子提供了一条途径,有助于在规模化过程中推进基于吸附剂的co2捕集,并指导低传质阻力和高工作容量的胺类吸附剂的设计。
{"title":"Unveiling the states of polyamines in confined spaces and their impacts on the CO 2 adsorption/diffusion process","authors":"Tong Zhou, Yunxia Wen, Zhinan Wu, Bei Liu, Yaohao Bi, Xihan Ma, Zhixuan Du, Xin Feng, Xiaohua Lu, Tuo Ji, Jiahua Zhu","doi":"10.1002/aic.70202","DOIUrl":"https://doi.org/10.1002/aic.70202","url":null,"abstract":"The existing state of macromolecular amines in the confined space and their impacts on the kinetic and thermodynamic performance is the frontier issue in the research field of sorbent‐based CO <jats:sub>2</jats:sub> capture. This work studied the amine state in the confined space and the corresponding effects on CO <jats:sub>2</jats:sub> diffusion. The results demonstrated that amine molecules with different molecular weights exhibited two distinct loading states, namely the “spreading” and “stacking” states. By establishing a diffusion model based on the non‐equilibrium thermodynamics theory (NeTD), it was demonstrated that only when the CO <jats:sub>2</jats:sub> intramolecular diffusion and intrapore diffusion in polyethyleneimine were matched, the overall diffusion resistance would be the lowest. This study provides a pathway to understanding the amine molecules in the molded sorbents, which facilitate the advancement of sorbent‐based CO <jats:sub>2</jats:sub> capture in the scale‐up process and guide the design of molded amine sorbents with low mass transfer resistance and high working capacity.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145801316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable and aqueous‐phase fabrication of engineered porous polymers with dual Lewis base sites for uranium extraction 可扩展和水相制备具有双路易斯碱基的工程多孔聚合物用于铀提取
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2025-12-22 DOI: 10.1002/aic.70199
Yafeng Liu, Shan Ni, Yue Zhao, Wang Yao, Wenjie Wang, Jianrong Zeng, Huizhou Liu, Liangrong Yang
Effective uranium recovery from wastewater is of significance for the uranium resources utilization and the environmental protection. Herein, the rationally engineered porous organic polymer (POP‐FD) with dual Lewis base sites is fabricated via an aqueous‐phase and scalable method, which achieves synergistic coordination and structural modulation. The decorated dual Lewis base sites can offer a favorable coordinative binding microenvironment. The constructed hierarchical porous channel and interfacial hydrophilic microenvironment can improve the accessibility of Lewis base sites and the diffusion of uranyl ions. Consequently, POP‐FD possesses a saturation U(VI) adsorption uptake of 977.51 mg g −1 within approximately 20 min. The recovery performance remains nearly 95% after scaled‐up synthesis, and POP‐FD delivers excellent selectivity over various metal ions (S.F. = 29–3844) and U(VI) adsorption capacity (316.81 mg g −1 ) in actual leach tailing wastewater. This study offers a promising microenvironment modulation strategy of POPs for green, high‐efficiency, and economic uranium extraction.
从废水中有效回收铀对铀资源利用和环境保护具有重要意义。本文通过水相和可扩展方法制备了具有双刘易斯碱基的合理工程多孔有机聚合物(POP‐FD),实现了协同配合和结构调制。修饰后的双Lewis碱基可以提供良好的协同结合微环境。层状多孔通道的构建和界面亲水微环境的形成提高了Lewis碱基的可达性和铀酰离子的扩散。因此,POP‐FD在大约20分钟内具有977.51 mg g - 1的饱和U(VI)吸附量。放大合成后,POP‐FD对各种金属离子(S.F. = 29-3844)和U(VI)的吸附量(316.81 mg g - 1)均有良好的选择性,回收率接近95%。该研究为绿色、高效、经济的铀矿开采提供了一种有前景的持久性有机污染物微环境调节策略。
{"title":"Scalable and aqueous‐phase fabrication of engineered porous polymers with dual Lewis base sites for uranium extraction","authors":"Yafeng Liu, Shan Ni, Yue Zhao, Wang Yao, Wenjie Wang, Jianrong Zeng, Huizhou Liu, Liangrong Yang","doi":"10.1002/aic.70199","DOIUrl":"https://doi.org/10.1002/aic.70199","url":null,"abstract":"Effective uranium recovery from wastewater is of significance for the uranium resources utilization and the environmental protection. Herein, the rationally engineered porous organic polymer (POP‐FD) with dual Lewis base sites is fabricated via an aqueous‐phase and scalable method, which achieves synergistic coordination and structural modulation. The decorated dual Lewis base sites can offer a favorable coordinative binding microenvironment. The constructed hierarchical porous channel and interfacial hydrophilic microenvironment can improve the accessibility of Lewis base sites and the diffusion of uranyl ions. Consequently, POP‐FD possesses a saturation U(VI) adsorption uptake of 977.51 mg g <jats:sup>−1</jats:sup> within approximately 20 min. The recovery performance remains nearly 95% after scaled‐up synthesis, and POP‐FD delivers excellent selectivity over various metal ions (S.F. = 29–3844) and U(VI) adsorption capacity (316.81 mg g <jats:sup>−1</jats:sup> ) in actual leach tailing wastewater. This study offers a promising microenvironment modulation strategy of POPs for green, high‐efficiency, and economic uranium extraction.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145801313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AIChE Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1