Pub Date : 2021-12-01DOI: 10.1080/19336934.2021.1915683
Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake
Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available Drosophila eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult Drosophila eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington Drosophila Stock Center (BDSC) including GMR-Gal4, longGMR-Gal4 and Rh1-Gal4 with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible Rh1-GSGal4 lines and compared their induced expression with an available GMR-GSGal4 line. Although both lines had significant induction of gene expression measured by luciferase activity, Rh1-GSGal4 was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while GMR-GSGal4 showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.
{"title":"Characterizing a gene expression toolkit for eye- and photoreceptor-specific expression in Drosophila.","authors":"Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake","doi":"10.1080/19336934.2021.1915683","DOIUrl":"10.1080/19336934.2021.1915683","url":null,"abstract":"<p><p>Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available <i>Drosophila</i> eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult <i>Drosophila</i> eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington <i>Drosophila</i> Stock Center (BDSC) including <i>GMR-Gal4, longGMR-Gal4</i> and <i>Rh1-Gal4</i> with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible <i>Rh1-GSGal4</i> lines and compared their induced expression with an available <i>GMR-GSGal4</i> line. Although both lines had significant induction of gene expression measured by luciferase activity, <i>Rh1-GSGal4</i> was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while <i>GMR-GSGal4</i> showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"73-88"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1915683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38908488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1080/19336934.2020.1863124
Amel Chaouch, Paul Lasko
Drosophila melanogaster has proven to be a powerful genetic model to study human disease. Approximately 75% of human disease-associated genes have homologs in the fruit fly and regulatory pathways are highly conserved in Drosophila compared to humans. Drosophila is an established model organism for the study of genetics and developmental biology related to human disease and has also made a great contribution to epigenetic research. Many key factors that regulate chromatin condensation through effects on histone post-translational modifications were first discovered in genetic screens in Drosophila. Recently, the importance of chromatin regulators in cancer progression has been uncovered, leading to a rapid expansion in the knowledge on how perturbations of chromatin can result in the pathogenesis of human cancer. In this review, we provide examples of how Drosophila melanogaster has contributed to better understanding the detrimental effects of mutant forms of histones, called 'oncohistones', that are found in different human tumours.
{"title":"<i>Drosophila melanogaster</i>: a fruitful model for oncohistones.","authors":"Amel Chaouch, Paul Lasko","doi":"10.1080/19336934.2020.1863124","DOIUrl":"https://doi.org/10.1080/19336934.2020.1863124","url":null,"abstract":"<p><p><i>Drosophila melanogaster</i> has proven to be a powerful genetic model to study human disease. Approximately 75% of human disease-associated genes have homologs in the fruit fly and regulatory pathways are highly conserved in <i>Drosophila</i> compared to humans. <i>Drosophila</i> is an established model organism for the study of genetics and developmental biology related to human disease and has also made a great contribution to epigenetic research. Many key factors that regulate chromatin condensation through effects on histone post-translational modifications were first discovered in genetic screens in <i>Drosophila</i>. Recently, the importance of chromatin regulators in cancer progression has been uncovered, leading to a rapid expansion in the knowledge on how perturbations of chromatin can result in the pathogenesis of human cancer. In this review, we provide examples of how <i>Drosophila melanogaster</i> has contributed to better understanding the detrimental effects of mutant forms of histones, called 'oncohistones', that are found in different human tumours.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"28-37"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1863124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39138005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1080/19336934.2021.1896960
Lindsey J Gray, Marla B Sokolowski, Stephen J Simpson
Evolved metabolic thriftiness in humans is a proposed contributor to the obesity epidemic. Insect models have been shown to evolve both 'metabolic thrift' in response to rearing on high-protein diets that promote leanness, and 'obesity resistance' when reared on fattening high-carbohydrate, low-protein foods. Despite the hypothesis that human obesity is caused by evolved metabolic thrift, genetic contributions to this physiological trait remain elusive. Here we conducted a pilot study to determine whether thrift and obesity resistance can arise under laboratory based 'quasi-natural selection' in the genetic model organism Drosophila melanogaster. We found that both these traits can evolve within 16 generations. Contrary to predictions from the 'thrifty genotype/phenotype' hypothesis, we found that when animals from a metabolic thrift inducing high-protein environment are mismatched to fattening high-carbohydrate foods, they did not become 'obese'. Rather, they accumulate less triglyceride than control animals, not more. We speculate that this may arise through as yet un-quantified parental effects - potentially epigenetic. This study establishes that D. melanogaster could be a useful model for elucidating the role of the trans- and inter-generational effects of diet on the genetics of metabolic traits in higher animals.
{"title":"Drosophila as a useful model for understanding the evolutionary physiology of obesity resistance and metabolic thrift.","authors":"Lindsey J Gray, Marla B Sokolowski, Stephen J Simpson","doi":"10.1080/19336934.2021.1896960","DOIUrl":"https://doi.org/10.1080/19336934.2021.1896960","url":null,"abstract":"<p><p>Evolved metabolic thriftiness in humans is a proposed contributor to the obesity epidemic. Insect models have been shown to evolve both 'metabolic thrift' in response to rearing on high-protein diets that promote leanness, and 'obesity resistance' when reared on fattening high-carbohydrate, low-protein foods. Despite the hypothesis that human obesity is caused by evolved metabolic thrift, genetic contributions to this physiological trait remain elusive. Here we conducted a pilot study to determine whether thrift and obesity resistance can arise under laboratory based 'quasi-natural selection' in the genetic model organism <i>Drosophila melanogaster</i>. We found that both these traits can evolve within 16 generations. Contrary to predictions from the 'thrifty genotype/phenotype' hypothesis, we found that when animals from a metabolic thrift inducing high-protein environment are mismatched to fattening high-carbohydrate foods, they did not become 'obese'. Rather, they accumulate less triglyceride than control animals, not more. We speculate that this may arise through as yet un-quantified parental effects - potentially epigenetic. This study establishes that <i>D. melanogaster</i> could be a useful model for elucidating the role of the trans- and inter-generational effects of diet on the genetics of metabolic traits in higher animals.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"47-59"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1896960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25475814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1080/19336934.2020.1864201
Katharine L Korunes, Russell B Myers, Ryan Hardy, Mohamed A F Noor
Drosophila pseudoobscura is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for D. pseudoobscura and closely related species D. persimilis, D. miranda, and D. lowei. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the Drosophila pseudoobscura subgroup.
假鳞翅目果蝇是研究进化遗传学和基因组学的经典模式系统。鉴于这种长期存在的兴趣,我们已经积累了许多伪胸腺果蝇和密切相关物种 D. persimilis、D. miranda 和 D. lowei 的基因组序列。为了便于探索物种内的遗传变异和物种间的比较基因组学,我们推出了 PseudoBase 数据库,该数据库通过直观的图形界面将大量公开的基因组数据与简单的可视化和查询工具结合在一起,适合在研究和教育环境中使用。数据库中的所有基因变异(SNPs 和 indels)都来自相同的工作流程,因此不同数据集之间的变异很容易进行比较。该数据库的功能包括嵌入式 JBrowse 界面、提取单个基因/区域的比对结果以及批量访问基因列表。在这里,我们将介绍 PseudoBase,并演示该资源如何帮助使用来自假鳞翅目果蝇亚群的大量基因组数据。
{"title":"PseudoBase: a genomic visualization and exploration resource for the <i>Drosophila pseudoobscura</i> subgroup.","authors":"Katharine L Korunes, Russell B Myers, Ryan Hardy, Mohamed A F Noor","doi":"10.1080/19336934.2020.1864201","DOIUrl":"10.1080/19336934.2020.1864201","url":null,"abstract":"<p><p><i>Drosophila pseudoobscura</i> is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for <i>D. pseudoobscura</i> and closely related species <i>D. persimilis, D. miranda</i>, and <i>D. lowei</i>. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the <i>Drosophila pseudoobscura</i> subgroup.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"38-44"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808432/pdf/KFLY_15_1864201.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38714228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01Epub Date: 2020-12-08DOI: 10.1080/19336934.2020.1837592
Ruijian Guo, Anna-Lena Henke, Klaus Reinhardt
Sperm quality, an important male fitness trait, is commonly compared between studies. However, few studies consider how genetic and environmental variation affect sperm quality, even in the genetic model Drosophila melanogaster. Here we show that sperm viability, the proportion of live sperm, differed across the genotypes Oregon-R, Dahomey, and Canton-S by more than 15%, and across buffers (phosphate-buffered saline (PBS), Grace's Medium and Drosophila Ringer solution) by more than 20%. In terms of genotype-buffer pair comparisons, nearly half of the comparisons would produce significant differences in sperm viability (15 in 36), or its temporal decrease in a stress medium (19 in 36). Grace's medium produced the longest-lived sperm in vitro and the smallest differences between genotypes, Drosophila Ringer Solution produced the shortest lifespan and the largest differences. Our results suggest that fly and other sperm researchers would benefit from a standardized protocol of measuring sperm viability.
{"title":"Sperm viability varies with buffer and genotype in <i>Drosophila melanogaster</i>.","authors":"Ruijian Guo, Anna-Lena Henke, Klaus Reinhardt","doi":"10.1080/19336934.2020.1837592","DOIUrl":"https://doi.org/10.1080/19336934.2020.1837592","url":null,"abstract":"<p><p>Sperm quality, an important male fitness trait, is commonly compared between studies. However, few studies consider how genetic and environmental variation affect sperm quality, even in the genetic model <i>Drosophila melanogaster</i>. Here we show that sperm viability, the proportion of live sperm, differed across the genotypes Oregon-R, Dahomey, and Canton-S by more than 15%, and across buffers (phosphate-buffered saline (PBS), Grace's Medium and <i>Drosophila</i> Ringer solution) by more than 20%. In terms of genotype-buffer pair comparisons, nearly half of the comparisons would produce significant differences in sperm viability (15 in 36), or its temporal decrease in a stress medium (19 in 36). Grace's medium produced the longest-lived sperm <i>in vitro</i> and the smallest differences between genotypes, <i>Drosophila</i> Ringer Solution produced the shortest lifespan and the largest differences. Our results suggest that fly and other sperm researchers would benefit from a standardized protocol of measuring sperm viability.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"1-7"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1837592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38583257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1080/19336934.2021.1943285
Howy Jacobs
{"title":"Dawning of the open era.","authors":"Howy Jacobs","doi":"10.1080/19336934.2021.1943285","DOIUrl":"https://doi.org/10.1080/19336934.2021.1943285","url":null,"abstract":"","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"89-90"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1943285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39161015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-01Epub Date: 2020-10-21DOI: 10.1080/19336934.2020.1832416
Kevin G Nyberg, Joseph Q Nguyen, Yong-Jae Kwon, Shelby Blythe, Greg J Beitel, Richard Carthew
Genome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of Drosophila melanogaster as well as to other Drosophila species. To address these issues, we developed a two-stage marker-assisted strategy in which embryos are injected with RNPs and pre-screened using T7EI. Using sgRNA in complex with recombinant Cas9 protein, we assayed each sgRNA for genome-cutting efficiency. We then conducted HDR using sgRNAs that efficiently cut target genes and the application of a transformation marker that generates RNAi against eyes absent. This allows for screening based on eye morphology rather than colour. These new tools can be used to make a single change or a series of allelic substitutions in a region of interest, or to create additional genetic tools such as balancer chromosomes.
{"title":"A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in <i>Drosophila</i>.","authors":"Kevin G Nyberg, Joseph Q Nguyen, Yong-Jae Kwon, Shelby Blythe, Greg J Beitel, Richard Carthew","doi":"10.1080/19336934.2020.1832416","DOIUrl":"10.1080/19336934.2020.1832416","url":null,"abstract":"<p><p>Genome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of <i>Drosophila melanogaster</i> as well as to other <i>Drosophila</i> species. To address these issues, we developed a two-stage marker-assisted strategy in which embryos are injected with RNPs and pre-screened using T7EI. Using sgRNA in complex with recombinant Cas9 protein, we assayed each sgRNA for genome-cutting efficiency. We then conducted HDR using sgRNAs that efficiently cut target genes and the application of a transformation marker that generates RNAi against <i>eyes absent</i>. This allows for screening based on eye morphology rather than colour. These new tools can be used to make a single change or a series of allelic substitutions in a region of interest, or to create additional genetic tools such as balancer chromosomes.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"14 1-4","pages":"34-48"},"PeriodicalIF":1.2,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1832416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9278192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-17DOI: 10.1080/19336934.2019.1662266
Jack George, Tea Tuomela, E. Kemppainen, A. Nurminen, Samuel T. Braun, Cagri Yalgin, H. Jacobs
ABSTRACT The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.
{"title":"Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae","authors":"Jack George, Tea Tuomela, E. Kemppainen, A. Nurminen, Samuel T. Braun, Cagri Yalgin, H. Jacobs","doi":"10.1080/19336934.2019.1662266","DOIUrl":"https://doi.org/10.1080/19336934.2019.1662266","url":null,"abstract":"ABSTRACT The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.","PeriodicalId":12128,"journal":{"name":"Fly","volume":"13 1","pages":"12 - 28"},"PeriodicalIF":1.2,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2019.1662266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48725842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1080/19336934.2019.1653733
Gavin R. Rice, J. David, Y. Kamimura, John P. Masly, A. McGregor, Olga Nagy, S. Noselli, M. D. Nunes, P. O'Grady, E. Sánchez-Herrero, M. Siegal, M. Toda, Mark Rebeiz, V. Courtier-Orgogozo, A. Yassin
ABSTRACT Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.
{"title":"A standardized nomenclature and atlas of the male terminalia of Drosophila melanogaster","authors":"Gavin R. Rice, J. David, Y. Kamimura, John P. Masly, A. McGregor, Olga Nagy, S. Noselli, M. D. Nunes, P. O'Grady, E. Sánchez-Herrero, M. Siegal, M. Toda, Mark Rebeiz, V. Courtier-Orgogozo, A. Yassin","doi":"10.1080/19336934.2019.1653733","DOIUrl":"https://doi.org/10.1080/19336934.2019.1653733","url":null,"abstract":"ABSTRACT Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.","PeriodicalId":12128,"journal":{"name":"Fly","volume":"13 1","pages":"51 - 64"},"PeriodicalIF":1.2,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2019.1653733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48298400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01Epub Date: 2019-03-28DOI: 10.1080/19336934.2019.1595999
Jun Luo, Pingping Shen, Jiong Chen
The Drosophila transgenic technology and fluorescent protein fusions are powerful tools to analyze protein expression patterns, subcellular localization and protein dynamics. Recently, the Drosophila transgenic technology has been improved by the highly efficient phiC31 site-specific integration system. Many new and improved fluorescent proteins with desirable advantages have been developed. However, the phiC31 system and the newly developed fluorescent proteins have not been systematically applied in Drosophila transgenic vectors. Here, we have constructed a modular toolset of C-terminal fluorescent protein fusion vectors based on phiC31 site-specific integration system for the generation of transgenic Drosophila lines. These cloning vectors contain a variety of fluorescent tags, including blue, cyan, green or red fluorescent proteins, photoactivatable or photoswitchable fluorescent proteins, fluorescent timers, photosensitizers and bimolecular fluorescence complementation tags. These vectors provide a range of transcriptional regulation options including UAST, UASP, UASC, LexAop, QUAS, Ubi, αTub67C and αTub84B promoters, and two screening marker options including white and vermilion gene. The vectors have been tested in vivo and can produce fluorescent chimeric proteins that are functional.
{"title":"A modular toolset of phiC31-based fluorescent protein tagging vectors for <i>Drosophila</i>.","authors":"Jun Luo, Pingping Shen, Jiong Chen","doi":"10.1080/19336934.2019.1595999","DOIUrl":"https://doi.org/10.1080/19336934.2019.1595999","url":null,"abstract":"<p><p>The <i>Drosophila</i> transgenic technology and fluorescent protein fusions are powerful tools to analyze protein expression patterns, subcellular localization and protein dynamics. Recently, the <i>Drosophila</i> transgenic technology has been improved by the highly efficient phiC31 site-specific integration system. Many new and improved fluorescent proteins with desirable advantages have been developed. However, the phiC31 system and the newly developed fluorescent proteins have not been systematically applied in <i>Drosophila</i> transgenic vectors. Here, we have constructed a modular toolset of C-terminal fluorescent protein fusion vectors based on phiC31 site-specific integration system for the generation of transgenic <i>Drosophila</i> lines. These cloning vectors contain a variety of fluorescent tags, including blue, cyan, green or red fluorescent proteins, photoactivatable or photoswitchable fluorescent proteins, fluorescent timers, photosensitizers and bimolecular fluorescence complementation tags. These vectors provide a range of transcriptional regulation options including UAST, UASP, UASC, LexAop, QUAS, Ubi, αTub67C and αTub84B promoters, and two screening marker options including <i>white</i> and <i>vermilion</i> gene. The vectors have been tested <i>in vivo</i> and can produce fluorescent chimeric proteins that are functional.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"13 1-4","pages":"29-41"},"PeriodicalIF":1.2,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2019.1595999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37067893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}