Pub Date : 2019-03-01Epub Date: 2019-05-25DOI: 10.1080/19336934.2019.1619438
Arslan Akmammedov, Marco Geigges, Renato Paro
Polycomb group (PcG) and Trithorax group (TrxG) proteins orchestrate development of a multicellular organism by faithfully maintaining cell fate decisions made early in embryogenesis. An important chromatin mark connected to PcG/TrxG regulation is bivalent domains, the simultaneous presence of H3K27me3 and H3K4me3 on a given locus, originally identified in mammalian embryonic stem cells but considered to be absent in invertebrates. Here, we provide evidence for the existence of bivalency in fly embryos. Using a recently described PcG reporter fly line, we observed a strong reporter inducibility in the embryo and its sharp decrease in larval and adult stages. Analysis of the chromatin landscape of the reporter revealed a strong signal for the repressive PcG mark, H3K27me3, in all three developmental stages and, surprisingly, a strong signal for a transcriptionally activating H3K4me3 mark in the embryo. Using re-chromatin immunoprecipitation experiments, bivalent domains were also uncovered at endogenous PcG targets like the Hox genes.
Polycomb group (PcG)和Trithorax group (TrxG)蛋白通过忠实地维持胚胎发生早期的细胞命运决定来协调多细胞生物的发育。与PcG/TrxG调控相关的一个重要染色质标记是二价结构域,即H3K27me3和H3K4me3同时存在于给定位点上,最初在哺乳动物胚胎干细胞中发现,但被认为在无脊椎动物中不存在。本研究为蝇胚中存在二价性提供了证据。利用最近描述的PcG报告蝇系,我们观察到报告蝇在胚胎中具有很强的诱导性,并且在幼虫期和成虫期急剧下降。对报告基因染色质结构的分析显示,抑制PcG标记H3K27me3在所有三个发育阶段都有很强的信号,令人惊讶的是,胚胎中转录激活H3K4me3标记也有很强的信号。利用重染色质免疫沉淀实验,在内源性PcG靶点(如Hox基因)上也发现了二价结构域。
{"title":"Bivalency in <i>Drosophila</i> embryos is associated with strong inducibility of Polycomb target genes.","authors":"Arslan Akmammedov, Marco Geigges, Renato Paro","doi":"10.1080/19336934.2019.1619438","DOIUrl":"https://doi.org/10.1080/19336934.2019.1619438","url":null,"abstract":"<p><p>Polycomb group (PcG) and Trithorax group (TrxG) proteins orchestrate development of a multicellular organism by faithfully maintaining cell fate decisions made early in embryogenesis. An important chromatin mark connected to PcG/TrxG regulation is bivalent domains, the simultaneous presence of H3K27me3 and H3K4me3 on a given locus, originally identified in mammalian embryonic stem cells but considered to be absent in invertebrates. Here, we provide evidence for the existence of bivalency in fly embryos. Using a recently described PcG reporter fly line, we observed a strong reporter inducibility in the embryo and its sharp decrease in larval and adult stages. Analysis of the chromatin landscape of the reporter revealed a strong signal for the repressive PcG mark, H3K27me3, in all three developmental stages and, surprisingly, a strong signal for a transcriptionally activating H3K4me3 mark in the embryo. Using re-chromatin immunoprecipitation experiments, bivalent domains were also uncovered at endogenous PcG targets like the Hox genes.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"13 1-4","pages":"42-50"},"PeriodicalIF":1.2,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2019.1619438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37245835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-08DOI: 10.1080/19336934.2017.1402993
Derek Dean, Hannah Weinstein, Seema Amin, Breelyn Karno, Emma McAvoy, Ronald Hoy, Andrew Recknagel, Casey Jarvis, David Deitcher
The bang-sensitive (BS) mutants of Drosophila are an important model for studying epilepsy. We recently identified a novel BS locus, julius seizure (jus), encoding a protein containing two transmembrane domains and an extracellular cysteine-rich loop. We also determined that jussda iso7.8, a previously identified BS mutation, is an allele of jus by recombination, deficiency mapping, complementation testing, and genetic rescue. RNAi knockdown revealed that jus expression is important in cholinergic neurons and that the critical stage of jus expression is the mid-pupa. Finally, we found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia. In this Extra View article, we show that a MiMiC GFP-tagged Jus is localized to the same nervous system regions as the GFP-tagged genomic construct, but its expression is mostly confined to cell bodies and it causes bang-sensitivity. The MiMiC GFP-tag lies in the extracellular loop while the genomic construct is tagged at the C-terminus. This suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability. We also show that a small subset of jus-expressing neurons are responsible for the BS phenotype. Finally, extending the utility of the BS seizure model, we show that jus mutants exhibit cold-sensitive paralysis and are partially sensitive to strobe-induced seizures.
{"title":"Extending julius seizure, a bang-sensitive gene, as a model for studying epileptogenesis: Cold shock, and a new insertional mutation.","authors":"Derek Dean, Hannah Weinstein, Seema Amin, Breelyn Karno, Emma McAvoy, Ronald Hoy, Andrew Recknagel, Casey Jarvis, David Deitcher","doi":"10.1080/19336934.2017.1402993","DOIUrl":"https://doi.org/10.1080/19336934.2017.1402993","url":null,"abstract":"<p><p>The bang-sensitive (BS) mutants of Drosophila are an important model for studying epilepsy. We recently identified a novel BS locus, julius seizure (jus), encoding a protein containing two transmembrane domains and an extracellular cysteine-rich loop. We also determined that jus<sup>sda iso7.8</sup>, a previously identified BS mutation, is an allele of jus by recombination, deficiency mapping, complementation testing, and genetic rescue. RNAi knockdown revealed that jus expression is important in cholinergic neurons and that the critical stage of jus expression is the mid-pupa. Finally, we found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia. In this Extra View article, we show that a MiMiC GFP-tagged Jus is localized to the same nervous system regions as the GFP-tagged genomic construct, but its expression is mostly confined to cell bodies and it causes bang-sensitivity. The MiMiC GFP-tag lies in the extracellular loop while the genomic construct is tagged at the C-terminus. This suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability. We also show that a small subset of jus-expressing neurons are responsible for the BS phenotype. Finally, extending the utility of the BS seizure model, we show that jus mutants exhibit cold-sensitive paralysis and are partially sensitive to strobe-induced seizures.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"55-61"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1402993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35243197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2018-03-06DOI: 10.1080/19336934.2018.1441651
Martin Resnik-Docampo, Vivien Sauer, Joseph M Schinaman, Rebecca I Clark, David W Walker, D Leanne Jones
Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability1,2. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)3. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.
{"title":"Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila.","authors":"Martin Resnik-Docampo, Vivien Sauer, Joseph M Schinaman, Rebecca I Clark, David W Walker, D Leanne Jones","doi":"10.1080/19336934.2018.1441651","DOIUrl":"10.1080/19336934.2018.1441651","url":null,"abstract":"<p><p>Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability<sup>1,2</sup>. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)<sup>3</sup>. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"34-40"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927685/pdf/kfly-12-01-1441651.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35841932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-22DOI: 10.1080/19336934.2017.1409927
Leonard L Dobens, Anna Shipman, Jeffrey D Axelrod
Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.
{"title":"FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.","authors":"Leonard L Dobens, Anna Shipman, Jeffrey D Axelrod","doi":"10.1080/19336934.2017.1409927","DOIUrl":"https://doi.org/10.1080/19336934.2017.1409927","url":null,"abstract":"<p><p>Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"23-33"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1409927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35297211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-12DOI: 10.1080/19336934.2017.1402994
Trevor L Davis, Ilaria Rebay
Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.
{"title":"Pleiotropy in Drosophila organogenesis: Mechanistic insights from Combgap and the retinal determination gene network.","authors":"Trevor L Davis, Ilaria Rebay","doi":"10.1080/19336934.2017.1402994","DOIUrl":"https://doi.org/10.1080/19336934.2017.1402994","url":null,"abstract":"<p><p>Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"62-70"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1402994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35595263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-06-02DOI: 10.1080/19336934.2017.1325979
Lin Cheng, Ming Cui, Yikang S Rong
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.
端粒保护线形染色体的末端。端粒功能障碍会加剧基因组的不稳定,从而导致癌症等疾病。30多年来,果蝇作为唯一不依赖于保守的端粒酶进行末端保护的主要模式生物而吸引了这个领域。果蝇驯化了反转录转座子,而不是染色体末端的短DNA重复。此外,在正常的实验室条件下,端粒保护可以完全独立于序列,这与已经建立的端粒酶维持系统不同。尽管存在这些主要差异,但我们和其他人最近的研究揭示了这两个系统之间惊人的相似之处。特别是,随着MTV复合体被鉴定为对果蝇端粒完整性至关重要的ssDNA结合复合体(Zhang et al. 2016 Plos Genetics),我们现在已经建立了几个普遍的原则,这些原则是染色体末端固有的,但独立于潜在的DNA序列或端粒酶。对果蝇端粒的研究将继续产生有助于理解端粒进化和端粒功能的基本见解。
{"title":"MTV sings jubilation for telomere biology in Drosophila.","authors":"Lin Cheng, Ming Cui, Yikang S Rong","doi":"10.1080/19336934.2017.1325979","DOIUrl":"10.1080/19336934.2017.1325979","url":null,"abstract":"<p><p>Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"41-45"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1325979","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34968291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2018-01-08DOI: 10.1080/19336934.2017.1416277
Ana Carmena
Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.
{"title":"Compromising asymmetric stem cell division in Drosophila central brain: Revisiting the connections with tumorigenesis.","authors":"Ana Carmena","doi":"10.1080/19336934.2017.1416277","DOIUrl":"https://doi.org/10.1080/19336934.2017.1416277","url":null,"abstract":"<p><p>Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"71-80"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1416277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35655337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-11-22DOI: 10.1080/19336934.2017.1396399
Jason Somers, Hang Ngoc Bao Luong, Philip Batterham, Trent Perry
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.
{"title":"Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost?","authors":"Jason Somers, Hang Ngoc Bao Luong, Philip Batterham, Trent Perry","doi":"10.1080/19336934.2017.1396399","DOIUrl":"https://doi.org/10.1080/19336934.2017.1396399","url":null,"abstract":"<p><p>Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"46-54"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1396399","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35216322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-01DOI: 10.1080/19336934.2017.1396400
Wolfgang Arthofer, Carina Heussler, Patrick Krapf, Birgit C Schlick-Steiner, Florian M Steiner
Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci ("core sets") for long-time use in large-scale population screenings are compiled.
{"title":"Identifying the minimum number of microsatellite loci needed to assess population genetic structure: A case study in fly culturing.","authors":"Wolfgang Arthofer, Carina Heussler, Patrick Krapf, Birgit C Schlick-Steiner, Florian M Steiner","doi":"10.1080/19336934.2017.1396400","DOIUrl":"10.1080/19336934.2017.1396400","url":null,"abstract":"<p><p>Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci (\"core sets\") for long-time use in large-scale population screenings are compiled.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"13-22"},"PeriodicalIF":2.4,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35631723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-07DOI: 10.1080/19336934.2017.1394558
Neda N Moghadam, Pia Mai Thorshauge, Torsten N Kristensen, Nadieh de Jonge, Simon Bahrndorff, Henrik Kjeldal, Jeppe Lund Nielsen
Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.
{"title":"Strong responses of Drosophila melanogaster microbiota to developmental temperature.","authors":"Neda N Moghadam, Pia Mai Thorshauge, Torsten N Kristensen, Nadieh de Jonge, Simon Bahrndorff, Henrik Kjeldal, Jeppe Lund Nielsen","doi":"10.1080/19336934.2017.1394558","DOIUrl":"https://doi.org/10.1080/19336934.2017.1394558","url":null,"abstract":"<p><p>Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"12 1","pages":"1-12"},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1394558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35568217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}