首页 > 最新文献

Fly最新文献

英文 中文
Cell-cell interactions that drive tumorigenesis in Drosophila. 驱动果蝇肿瘤发生的细胞-细胞相互作用。
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2022.2148828
Masato Enomoto, Tatsushi Igaki

Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.

肿瘤微环境中细胞与细胞的相互作用在肿瘤发生中起着至关重要的作用。果蝇遗传镶嵌技术为研究肿瘤生长和进展的基本原理提供了一个强大的平台。这导致在果蝇想象上皮中鉴定出由内吞失调、线粒体功能障碍、细胞极性缺陷或Src激活引发的致癌细胞-细胞相互作用。这种致癌性合作可由上皮细胞、间充质细胞和免疫细胞之间的相互作用引起。此外,微环境因素如营养物质、局部组织结构和内源性生长信号活动对肿瘤的发生有重要影响。在果蝇的单细胞水平上解剖各种类型的致癌细胞-细胞相互作用将大大增加我们对肿瘤如何在活体动物中发展的理解。
{"title":"Cell-cell interactions that drive tumorigenesis in <i>Drosophila</i>.","authors":"Masato Enomoto,&nbsp;Tatsushi Igaki","doi":"10.1080/19336934.2022.2148828","DOIUrl":"https://doi.org/10.1080/19336934.2022.2148828","url":null,"abstract":"<p><p>Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in <i>Drosophila</i> have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in <i>Drosophila</i> imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in <i>Drosophila</i> will greatly increase our understanding of how tumours progress in living animals.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10479263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cell mechanics and cell-cell recognition controls by Toll-like receptors in tissue morphogenesis and homeostasis Toll样受体在组织形态发生和稳态中的细胞力学和细胞-细胞识别控制
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-05-17 DOI: 10.1080/19336934.2022.2074783
Daiki Umetsu
ABSTRACT Signal transduction by the Toll-like receptors (TLRs) is conserved and essential for innate immunity in metazoans. The founding member of the TLR family, Drosophila Toll-1, was initially identified for its role in dorsoventral axis formation in early embryogenesis. The Drosophila genome encodes nine TLRs that display dynamic expression patterns during development, suggesting their involvement in tissue morphogenesis and homeostasis. Recent progress on the developmental functions of TLRs beyond dorsoventral patterning has revealed not only their diverse functions in various biological processes, but also unprecedented molecular mechanisms in directly regulating cell mechanics and cell-cell recognition independent of the canonical signal transduction pathway involving transcriptional regulation of target genes. In this review, I feature and discuss the non-immune functions of TLRs in the control of epithelial tissue homeostasis, tissue morphogenesis, and cell-cell recognition between cell populations with different cell identities.
Toll样受体(TLRs)的信号转导在后生动物的先天免疫中是保守的和必要的。TLR家族的创始成员Drosophila Toll-1最初因其在早期胚胎发生中的背心轴形成中的作用而被鉴定。果蝇基因组编码9个TLR,这些TLR在发育过程中表现出动态表达模式,表明它们参与组织形态发生和稳态。TLRs在背腔模式之外的发育功能的最新进展不仅揭示了它们在各种生物过程中的不同功能,而且揭示了它们直接调节细胞力学和细胞-细胞识别的前所未有的分子机制,而不依赖于涉及靶基因转录调控的经典信号转导途径。在这篇综述中,我介绍并讨论了TLRs在控制上皮组织稳态、组织形态发生和具有不同细胞身份的细胞群体之间的细胞-细胞识别方面的非免疫功能。
{"title":"Cell mechanics and cell-cell recognition controls by Toll-like receptors in tissue morphogenesis and homeostasis","authors":"Daiki Umetsu","doi":"10.1080/19336934.2022.2074783","DOIUrl":"https://doi.org/10.1080/19336934.2022.2074783","url":null,"abstract":"ABSTRACT Signal transduction by the Toll-like receptors (TLRs) is conserved and essential for innate immunity in metazoans. The founding member of the TLR family, Drosophila Toll-1, was initially identified for its role in dorsoventral axis formation in early embryogenesis. The Drosophila genome encodes nine TLRs that display dynamic expression patterns during development, suggesting their involvement in tissue morphogenesis and homeostasis. Recent progress on the developmental functions of TLRs beyond dorsoventral patterning has revealed not only their diverse functions in various biological processes, but also unprecedented molecular mechanisms in directly regulating cell mechanics and cell-cell recognition independent of the canonical signal transduction pathway involving transcriptional regulation of target genes. In this review, I feature and discuss the non-immune functions of TLRs in the control of epithelial tissue homeostasis, tissue morphogenesis, and cell-cell recognition between cell populations with different cell identities.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45632648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Cutting edge technologies expose the temporal regulation of neurogenesis in the Drosophila nervous system 尖端技术揭示了果蝇神经系统神经发生的时间调节
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-05-13 DOI: 10.1080/19336934.2022.2073158
Makoto Sato, Takumi Suzuki
ABSTRACT During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.
在中枢神经系统(central nervous system, CNS)的发育过程中,有规律地产生大量神经元,形成精确的神经回路。在这一过程中,神经祖细胞由于其内在的基因调控机制和外在的机制,随着时间的推移产生不同的神经元。果蝇中枢神经系统在阐明控制神经发生的时间机制方面发挥了重要作用。研究表明,在胚胎中枢神经系统中,一系列时间转录因子在神经祖细胞中有序表达,并调节神经元的时间特异性。此外,在幼虫中枢神经系统发育中的视叶和中央脑中也发现了类似的机制。然而,仅通过分子遗传学方法很难阐明许多不同细胞类型中许多分子的功能。近年来,利用单细胞RNA-seq等方法进行组学分析已被用于果蝇神经系统的大规模研究,为理解神经发生的时间机制做出了重要贡献。本文将对神经发生的时间模式的最新研究成果和前沿技术的贡献进行综述。
{"title":"Cutting edge technologies expose the temporal regulation of neurogenesis in the Drosophila nervous system","authors":"Makoto Sato, Takumi Suzuki","doi":"10.1080/19336934.2022.2073158","DOIUrl":"https://doi.org/10.1080/19336934.2022.2073158","url":null,"abstract":"ABSTRACT During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49020058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species 东方繁花果蝇及其近缘种的生物学与生态学
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-05-01 DOI: 10.1080/19336934.2022.2066953
Yuki Ishikawa, M. Kimura, M. Toda
ABSTRACT Animals adapt to their environments in the course of evolution. One effective approach to elucidate mechanisms of adaptive evolution is to compare closely related species with model organisms in which knowledge of the molecular and physiological bases of various traits has been accumulated. Drosophila elegans and its close relatives, belonging to the same species group as the model organism D. melanogaster, exhibit various unique characteristics such as flower-breeding habit, courtship display, territoriality, sexual dimorphism, and colour polymorphism. Their ease of culturing and availability of genomic information makes them a useful model for understanding mechanisms of adaptive evolution. Here, we review the morphology, distribution, and phylogenetic relationships of D. elegans and related species, as well as their characteristic flower-dependent biology, food habits, and life-history traits. We also describe their unique mating and territorial behaviours and note their distinctive karyotype and the genetic mechanisms of morphological diversity that have recently been revealed.
动物在进化过程中适应环境。研究适应进化机制的一种有效方法是将亲缘关系密切的物种与模式生物进行比较,在模式生物中积累了各种特征的分子和生理基础知识。秀丽果蝇及其近亲与模式生物黑腹果蝇同属一个物种群,在繁花习性、求偶行为、领地性、两性二态性和颜色多态性等方面表现出许多独特的特征。它们的易于培养和基因组信息的可用性使它们成为理解适应性进化机制的有用模型。本文综述了线虫及其近缘种的形态、分布和系统发育关系,以及它们特有的依赖花朵的生物学特性、食性和生活史特征。我们还描述了它们独特的交配和领土行为,并注意到它们独特的核型和最近揭示的形态多样性的遗传机制。
{"title":"Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species","authors":"Yuki Ishikawa, M. Kimura, M. Toda","doi":"10.1080/19336934.2022.2066953","DOIUrl":"https://doi.org/10.1080/19336934.2022.2066953","url":null,"abstract":"ABSTRACT Animals adapt to their environments in the course of evolution. One effective approach to elucidate mechanisms of adaptive evolution is to compare closely related species with model organisms in which knowledge of the molecular and physiological bases of various traits has been accumulated. Drosophila elegans and its close relatives, belonging to the same species group as the model organism D. melanogaster, exhibit various unique characteristics such as flower-breeding habit, courtship display, territoriality, sexual dimorphism, and colour polymorphism. Their ease of culturing and availability of genomic information makes them a useful model for understanding mechanisms of adaptive evolution. Here, we review the morphology, distribution, and phylogenetic relationships of D. elegans and related species, as well as their characteristic flower-dependent biology, food habits, and life-history traits. We also describe their unique mating and territorial behaviours and note their distinctive karyotype and the genetic mechanisms of morphological diversity that have recently been revealed.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43806870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The developing wing crossvein of Drosophila melanogaster: a fascinating model for signaling and morphogenesis 黑腹果蝇正在发育的翅膀横静脉:一个迷人的信号传导和形态发生模型
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-03-18 DOI: 10.1080/19336934.2022.2040316
Hanna Antson, Tambet Tõnissoo, O. Shimmi
ABSTRACT The Drosophila wing has been used as a model for studying tissue growth, morphogenesis and pattern formation. The wing veins of Drosophila are composed of two distinct structures, longitudinal veins and crossveins. Although positional information of longitudinal veins is largely defined in the wing imaginal disc during the larval stage, crossvein primordial cells appear to be naive until the early pupal stage. Here, we first review how wing crossveins have been investigated in the past. Then, the developmental mechanisms underlying crossvein formation are summarized. This review focuses on how a conserved trafficking mechanism of BMP ligands is utilized for crossvein formation, and how various co-factors play roles in sustaining BMP signalling. Recent findings further reveal that crossvein development serves as an excellent model to address how BMP signal and dynamic cellular processes are coupled. This comprehensive review illustrates the uniqueness, scientific value and future perspectives of wing crossvein development as a model.
摘要:果蝇翅膀已被用作研究组织生长、形态发生和模式形成的模型。果蝇的翼脉由两种不同的结构组成,纵脉和横脉。尽管在幼虫阶段,纵静脉的位置信息在很大程度上是在翅膀想象盘中确定的,但横静脉原始细胞在蛹早期之前似乎是幼稚的。在这里,我们首先回顾一下过去是如何研究机翼横静脉的。然后,总结了横脉形成的发育机制。这篇综述的重点是BMP配体的保守运输机制如何用于横静脉形成,以及各种辅助因子如何在维持BMP信号传导中发挥作用。最近的研究结果进一步表明,交叉静脉发育是解决BMP信号和动态细胞过程如何耦合的极好模型。这篇全面的综述说明了机翼横静脉发展模型的独特性、科学价值和未来前景。
{"title":"The developing wing crossvein of Drosophila melanogaster: a fascinating model for signaling and morphogenesis","authors":"Hanna Antson, Tambet Tõnissoo, O. Shimmi","doi":"10.1080/19336934.2022.2040316","DOIUrl":"https://doi.org/10.1080/19336934.2022.2040316","url":null,"abstract":"ABSTRACT The Drosophila wing has been used as a model for studying tissue growth, morphogenesis and pattern formation. The wing veins of Drosophila are composed of two distinct structures, longitudinal veins and crossveins. Although positional information of longitudinal veins is largely defined in the wing imaginal disc during the larval stage, crossvein primordial cells appear to be naive until the early pupal stage. Here, we first review how wing crossveins have been investigated in the past. Then, the developmental mechanisms underlying crossvein formation are summarized. This review focuses on how a conserved trafficking mechanism of BMP ligands is utilized for crossvein formation, and how various co-factors play roles in sustaining BMP signalling. Recent findings further reveal that crossvein development serves as an excellent model to address how BMP signal and dynamic cellular processes are coupled. This comprehensive review illustrates the uniqueness, scientific value and future perspectives of wing crossvein development as a model.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47870403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structure-function analysis of Cdc25Twine degradation at the Drosophila maternal-to-zygotic transition Cdc25Twine在果蝇母体向合子转化过程中降解的结构-功能分析
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2022-02-28 DOI: 10.1080/19336934.2022.2043095
P. Ferree, Maggie Xing, Jenny Zhang, Stefano Di Talia
ABSTRACT Downregulation of protein phosphatase Cdc25Twine activity is linked to remodelling of the cell cycle during the Drosophila maternal-to-zygotic transition (MZT). Here, we present a structure-function analysis of Cdc25Twine. We use chimeras to show that the N-terminus regions of Cdc25Twine and Cdc25String control their differential degradation dynamics. Deletion of different regions of Cdc25Twine reveals a putative domain involved in and required for its rapid degradation during the MZT. Notably, a very similar domain is present in Cdc25String and deletion of the DNA replication checkpoint results in similar dynamics of degradation of both Cdc25String and Cdc25Twine. Finally, we show that Cdc25Twine degradation is delayed in embryos lacking the left arm of chromosome III. Thus, we propose a model for the differential regulation of Cdc25 at the Drosophila MZT.
蛋白磷酸酶Cdc25Twine活性的下调与果蝇母系到合子转变(MZT)期间细胞周期的重塑有关。本文对Cdc25Twine进行了结构-功能分析。我们用嵌合体证明了Cdc25Twine和Cdc25String的n端区域控制着它们的微分降解动力学。Cdc25Twine的不同区域的缺失揭示了在MZT期间其快速降解所涉及和需要的假设结构域。值得注意的是,Cdc25String中存在一个非常相似的结构域,DNA复制检查点的删除导致Cdc25String和Cdc25Twine的降解动力学相似。最后,我们发现在缺少三号染色体左臂的胚胎中,Cdc25Twine的降解被延迟。因此,我们提出了Cdc25在果蝇MZT上的差异调控模型。
{"title":"Structure-function analysis of Cdc25Twine degradation at the Drosophila maternal-to-zygotic transition","authors":"P. Ferree, Maggie Xing, Jenny Zhang, Stefano Di Talia","doi":"10.1080/19336934.2022.2043095","DOIUrl":"https://doi.org/10.1080/19336934.2022.2043095","url":null,"abstract":"ABSTRACT Downregulation of protein phosphatase Cdc25Twine activity is linked to remodelling of the cell cycle during the Drosophila maternal-to-zygotic transition (MZT). Here, we present a structure-function analysis of Cdc25Twine. We use chimeras to show that the N-terminus regions of Cdc25Twine and Cdc25String control their differential degradation dynamics. Deletion of different regions of Cdc25Twine reveals a putative domain involved in and required for its rapid degradation during the MZT. Notably, a very similar domain is present in Cdc25String and deletion of the DNA replication checkpoint results in similar dynamics of degradation of both Cdc25String and Cdc25Twine. Finally, we show that Cdc25Twine degradation is delayed in embryos lacking the left arm of chromosome III. Thus, we propose a model for the differential regulation of Cdc25 at the Drosophila MZT.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47968196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flying remote. 远程飞行。
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1884033
Howy Jacobs
{"title":"Flying remote.","authors":"Howy Jacobs","doi":"10.1080/19336934.2021.1884033","DOIUrl":"https://doi.org/10.1080/19336934.2021.1884033","url":null,"abstract":"","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1884033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25400050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo assay and modelling of protein and mitochondrial turnover during aging. 衰老过程中蛋白质和线粒体周转的活体检测和建模。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1911286
Hans S Bell, John Tower

To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, Drosophila melanogaster is particularly well suited for this kind of analysis.

为了保持平衡,细胞必须降解受损或折叠错误的蛋白质,并合成功能性替代物。保持这些过程之间的平衡,即蛋白质的更替,是应激反应和细胞适应不断变化的环境所必需的。受损的线粒体也必须被清除和替换。蛋白质和线粒体更替的变化与衰老和神经退行性疾病有关,因此了解这些过程如何在细胞中发生和调控非常重要。要做到这一点,必须开发出可靠的新陈代谢检测方法。目前有几种方法,包括用放射性或稳定同位素进行脉冲标记,以及利用荧光蛋白的策略,每种方法都有各自的优势和局限性。从酵母到哺乳动物,细胞培养和活体动物都被用于这些研究。活体检测尤其有助于将新陈代谢与衰老和疾病联系起来。黑腹果蝇的生命周期短,适合荧光成像,而且有遗传工具,因此特别适合进行这类分析。
{"title":"In vivo assay and modelling of protein and mitochondrial turnover during aging.","authors":"Hans S Bell, John Tower","doi":"10.1080/19336934.2021.1911286","DOIUrl":"10.1080/19336934.2021.1911286","url":null,"abstract":"<p><p>To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, <i>Drosophila melanogaster</i> is particularly well suited for this kind of analysis.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143256/pdf/KFLY_15_1911286.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38993629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing a gene expression toolkit for eye- and photoreceptor-specific expression in Drosophila. 鉴定果蝇眼部和感光器特异性基因表达工具包。
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1915683
Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake

Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available Drosophila eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult Drosophila eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington Drosophila Stock Center (BDSC) including GMR-Gal4, longGMR-Gal4 and Rh1-Gal4 with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible Rh1-GSGal4 lines and compared their induced expression with an available GMR-GSGal4 line. Although both lines had significant induction of gene expression measured by luciferase activity, Rh1-GSGal4 was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while GMR-GSGal4 showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.

二元表达系统是组织和细胞特异性研究的有力工具。目前可用的许多果蝇眼特异性驱动因子还没有系统地鉴定过它们在成虫眼睛或发育过程中的表达水平和细胞类型特异性。在这里,我们使用荧光素酶报告器测量了不同驱动程序在成年果蝇眼睛中的表达水平,并使用荧光报告器鉴定了每个驱动程序在活体10天大成年雄果蝇中的细胞类型特异性。我们还进一步确定了这些驱动因子在不同发育阶段的表达模式。我们将布卢明顿果蝇种群中心(BDSC)的几种Gal4驱动程序(包括GMR-Gal4、longGMR-Gal4和Rh1-Gal4)与新开发的针对成虫眼部不同细胞类型的Gal4和QF2驱动程序进行了比较。此外,我们还生成了药物诱导的 Rh1-GSGal4 株系,并将它们的诱导表达与现有的 GMR-GSGal4 株系进行了比较。虽然通过荧光素酶活性测量,这两种品系都能显著诱导基因表达,但通过共聚焦显微镜,Rh1-GSGal4 的表达水平低于荧光报告基因的检测水平,而 GMR-GSGal4 则在没有药物的情况下通过显微镜显示出大量的报告基因表达。总之,我们的研究系统地描述和比较了眼和感光细胞特异性驱动因子的大量工具包,同时也揭示了目前可用的成眼表达系统的一些局限性。
{"title":"Characterizing a gene expression toolkit for eye- and photoreceptor-specific expression in Drosophila.","authors":"Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake","doi":"10.1080/19336934.2021.1915683","DOIUrl":"10.1080/19336934.2021.1915683","url":null,"abstract":"<p><p>Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available <i>Drosophila</i> eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult <i>Drosophila</i> eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington <i>Drosophila</i> Stock Center (BDSC) including <i>GMR-Gal4, longGMR-Gal4</i> and <i>Rh1-Gal4</i> with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible <i>Rh1-GSGal4</i> lines and compared their induced expression with an available <i>GMR-GSGal4</i> line. Although both lines had significant induction of gene expression measured by luciferase activity, <i>Rh1-GSGal4</i> was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while <i>GMR-GSGal4</i> showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1915683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38908488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Exploring Excitotoxicity and Regulation of a Constitutively Active TRP Ca2+ Channel in Drosophila. 探索果蝇组成活性TRP Ca2+通道的兴奋毒性和调控。
IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Fly
Pub Date : 2021-12-01 Epub Date: 2020-12-01 DOI: 10.1080/19336934.2020.1851586
Bih-Hwa Shieh, Lucinda Nuzum, Inga Kristaponyte

Unregulated Ca2+ influx affects intracellular Ca2+ homoeostasis, which may lead to neuronal death. In Drosophila, following the activation of rhodopsin the TRP Ca2+ channel is open to mediate the light-dependent depolarization. A constitutively active TRP channel triggers the degeneration of TrpP365 /+ photoreceptors. To explore retinal degeneration, we employed a multidisciplinary approach including live imaging using GFP tagged actin and arrestin 2. Importantly, we demonstrate that the major rhodopsin (Rh1) was greatly reduced before the onset of rhabdomere degeneration; a great reduction of Rh1 affects the maintenance of rhabdomere leading to degeneration of photoreceptors. TrpP365 /+ also led to the up-regulation of CaMKII, which is beneficial as suppression of CaMKII accelerated retinal degeneration. We explored the regulation of TRP by investigating the genetic interaction between TrpP365 /+ and mutants affecting the turnover of diacylglycerol (DAG). We show a loss of phospholipase C in norpAP24 exhibited a great reduction of the DAG content delayed degeneration of TrpP365 /+ photoreceptors. In contrast, knockdown or mutations in DAG lipase (InaE) that is accompanied by slightly reduced levels of most DAG but an increased level of DAG 34:1, exacerbated retinal degeneration of TrpP365 /+. Together, our findings support the notion that DAG plays a role in regulating TRP. Interestingly, DAG lipase is likely required during photoreceptor development as TrpP365 /+; inaEN125 double mutants contained severely degenerated rhabdomeres.

不受管制的Ca2+内流影响细胞内Ca2+平衡,这可能导致神经元死亡。在果蝇中,随着视紫红质的激活,TRP Ca2+通道打开以介导光依赖性去极化。组成活性TRP通道触发TrpP365 /+光感受器的退化。为了探索视网膜变性,我们采用了多学科方法,包括使用GFP标记的肌动蛋白和抑制蛋白2进行实时成像。重要的是,我们证明了主要视紫红质(Rh1)在横纹肌变性发病前大大减少;Rh1的大量减少影响横纹肌的维持,导致光感受器变性。TrpP365 /+也导致CaMKII的上调,这是有益的,因为CaMKII的抑制加速了视网膜变性。我们通过研究TrpP365 /+与影响二酰基甘油(DAG)周转的突变体之间的遗传相互作用来探索TRP的调控。我们发现,在norpAP24中,磷脂酶C的缺失表现出DAG含量的大幅降低,延迟了TrpP365 /+光感受器的变性。相反,DAG脂肪酶(InaE)的敲低或突变,伴随着大多数DAG水平的轻微降低,但DAG 34:1水平的升高,加剧了TrpP365 /+的视网膜变性。总之,我们的研究结果支持DAG在调节TRP中起作用的观点。有趣的是,DAG脂肪酶可能在光感受器发育过程中需要TrpP365 /+;inaEN125双突变体含有严重退化的横纹肌。
{"title":"Exploring Excitotoxicity and Regulation of a Constitutively Active TRP Ca<sup>2+</sup> Channel in Drosophila.","authors":"Bih-Hwa Shieh,&nbsp;Lucinda Nuzum,&nbsp;Inga Kristaponyte","doi":"10.1080/19336934.2020.1851586","DOIUrl":"https://doi.org/10.1080/19336934.2020.1851586","url":null,"abstract":"<p><p>Unregulated Ca<sup>2+</sup> influx affects intracellular Ca<sup>2+</sup> homoeostasis, which may lead to neuronal death. In <i>Drosophila</i>, following the activation of rhodopsin the TRP Ca<sup>2+</sup> channel is open to mediate the light-dependent depolarization. A constitutively active TRP channel triggers the degeneration of <i>Trp<sup>P365</sup></i> /+ photoreceptors. To explore retinal degeneration, we employed a multidisciplinary approach including live imaging using GFP tagged actin and arrestin 2. Importantly, we demonstrate that the major rhodopsin (Rh1) was greatly reduced before the onset of rhabdomere degeneration; a great reduction of Rh1 affects the maintenance of rhabdomere leading to degeneration of photoreceptors. <i>Trp<sup>P365</sup></i> /+ also led to the up-regulation of CaMKII, which is beneficial as suppression of CaMKII accelerated retinal degeneration. We explored the regulation of TRP by investigating the genetic interaction between <i>Trp<sup>P365</sup></i> /+ and mutants affecting the turnover of diacylglycerol (DAG). We show a loss of phospholipase C in <i>norpA<sup>P24</sup></i> exhibited a great reduction of the DAG content delayed degeneration of <i>Trp<sup>P365</sup></i> /+ photoreceptors. In contrast, knockdown or mutations in DAG lipase (InaE) that is accompanied by slightly reduced levels of most DAG but an increased level of DAG 34:1, exacerbated retinal degeneration of <i>Trp<sup>P365</sup></i> /+. Together, our findings support the notion that DAG plays a role in regulating TRP. Interestingly, DAG lipase is likely required during photoreceptor development as <i>Trp<sup>P365</sup></i> /+; <i>inaE<sup>N125</sup></i> double mutants contained severely degenerated rhabdomeres.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1851586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38611004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Fly
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1