首页 > 最新文献

Fly最新文献

英文 中文
Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. 核糖-半胱氨酸和左旋多巴通过调节α-突触核蛋白转基因黑腹果蝇模型的神经化学和氧化还原活动来缓解帕金森症
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2024-12-01 Epub Date: 2024-01-29 DOI: 10.1080/19336934.2024.2306687
Olumayowa K Idowu, Ademola A Oremosu, Olufunke O Dosumu, Abdullahi A Mohammed

Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w1118) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.

帕金森病(Parkinson's disease,PD)是帕金森病中最常见的类型,是一种进行性神经退行性疾病,以多种非运动症状和运动症状为特征。帕金森病被认为病因复杂,包括年龄、遗传易感性和环境因素。α-突触核蛋白(α-Syn)蛋白表达的增加是这一毁灭性疾病神经病理学演变的核心,但核糖-半胱氨酸和左旋多巴在减轻 PD 模型病理生理变化方面的潜力尚不清楚。在有条件表达人类α-Syn病理变体(UAS-α-Syn)的苍蝇和在神经元中表达GAL4(elav-GAL4)的苍蝇之间建立杂交,产生的后代被称为PD苍蝇。苍蝇被随机分配到五个组(n = 40),每个组有五个重复。PD组苍蝇使用500毫克/千克的核糖-半胱氨酸饮食、250毫克/千克的左旋多巴饮食或两种化合物的组合进行21天的治疗,而对照组(w1118)和PD组则使用不含核糖-半胱氨酸或左旋多巴的饮食。除了各种生化和神经化学测定外,还进行了寿命、幼虫运动和重力轴向测定。结果表明,黑腹果蝇帕金森病模型的运动能力、寿命、繁殖力、抗氧化状态和神经递质系统均显著降低。
{"title":"Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic <i>Drosophila melanogaster</i> models.","authors":"Olumayowa K Idowu, Ademola A Oremosu, Olufunke O Dosumu, Abdullahi A Mohammed","doi":"10.1080/19336934.2024.2306687","DOIUrl":"10.1080/19336934.2024.2306687","url":null,"abstract":"<p><p>Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (<i>n</i> = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w<sup>1118</sup>) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (<i>p</i> < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic <i>Drosophila melanogaster</i> models of Parkinsonism.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"18 1","pages":"2306687"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2. 不稳定的β-PheRS对食物回避、生长和发育的影响受到食欲激素CCHa2的抑制。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2024-12-01 Epub Date: 2024-02-19 DOI: 10.1080/19336934.2024.2308737
Dominique Brunßen, Beat Suter

Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2β2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the β-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of β-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this β-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive β-PheRS points to β-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human β-PheRS (FARSB) can lead to problems in gaining weight, Drosophila β-PheRS can also serve as a model for the human phenotype and possibly also for obesity.

氨基酸酰基-tRNA 合成酶除了在 tRNA 中充填同源氨基酸的重要作用外,还具有多种非规范功能。苯丙氨酰-tRNA 合成酶(PheRS/FARS)是一种 α2β2 四聚体,它需要为 tRNAPhe 充电,以便其进行翻译活动。α亚基的片段已被证明具有额外的、不依赖于翻译的功能,可激活生长和增殖并抵消 Notch 信号。在这里,我们在果蝇中发现,在完整的 PheRS 背景下过量表达 β 亚基会导致幼虫漫游、回避食物、生长缓慢以及发育延迟,这种延迟可持续数天,甚至会阻碍化蛹。在 CCHa2+ 和 Pros+ 细胞中表达 PheRS 会诱发这些行为和发育表型。同时表达β-PheRS、α-PheRS和诱导食欲的CCHa2肽可挽救这些表型,从而将β-PheRS活性与食欲控制途径联系起来。过量β-PheRS的破碎动态表明,β-PheRS片段可能是这些表型的候选诱导剂。由于在人类细胞中也观察到了人类 FARS 的破碎,而且人类 β-PheRS(FARSB)的突变会导致体重增加的问题,因此果蝇 β-PheRS 也可以作为人类表型的模型,也可能是肥胖症的模型。
{"title":"Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2.","authors":"Dominique Brunßen, Beat Suter","doi":"10.1080/19336934.2024.2308737","DOIUrl":"10.1080/19336934.2024.2308737","url":null,"abstract":"<p><p>Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α<sub>2</sub>β<sub>2</sub> tetramer that is needed for charging the tRNA<sup>Phe</sup> for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in <i>Drosophila</i> that overexpressing the β-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2<sup>+</sup> and Pros<sup>+</sup> cells. Simultaneous expression of β-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this <i>β-PheRS</i> activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive β-PheRS points to β-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human <i>β-PheRS (FARSB)</i> can lead to problems in gaining weight, Drosophila <i>β-PheRS</i> can also serve as a model for the human phenotype and possibly also for obesity.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"18 1","pages":"2308737"},"PeriodicalIF":1.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tissue dissociation method for ATAC-seq and CUT&RUN in Drosophila pupal tissues. 果蝇蛹组织中ATAC-seq和CUT&RUN的组织分离方法。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2023-12-01 DOI: 10.1080/19336934.2023.2209481
Elli M Buchert, Elizabeth A Fogarty, Christopher M Uyehara, Daniel J McKay, Laura A Buttitta

Chromatin accessibility, histone modifications, and transcription factor binding are highly dynamic during Drosophila metamorphosis and drive global changes in gene expression as larval tissues differentiate into adult structures. Unfortunately, the presence of pupa cuticle on many Drosophila tissues during metamorphosis prevents enzyme access to cells and has limited the use of enzymatic in situ methods for assessing chromatin accessibility and histone modifications. Here, we present a dissociation method for cuticle-bound pupal tissues that is compatible for use with ATAC-Seq and CUT&RUN to interrogate chromatin accessibility and histone modifications. We show this method provides comparable chromatin accessibility data to the non-enzymatic approach FAIRE-seq, with only a fraction of the amount of input tissue required. This approach is also compatible with CUT&RUN, which allows genome-wide mapping of histone modifications with less than 1/10th of the tissue input required for more conventional approaches such as Chromatin Immunoprecipitation Sequencing (ChIP-seq). Our protocol makes it possible to use newer, more sensitive enzymatic in situ approaches to interrogate gene regulatory networks during Drosophila metamorphosis.

染色质可及性、组蛋白修饰和转录因子结合在果蝇变态过程中是高度动态的,并在幼虫组织分化为成虫结构时驱动基因表达的全局变化。不幸的是,在变态过程中,许多果蝇组织上存在蛹角质层,阻止了酶进入细胞,并限制了酶原位方法评估染色质可及性和组蛋白修饰的使用。在这里,我们提出了一种与角质层结合的蛹组织的解离方法,该方法与ATAC Seq和CUT&RUN兼容,用于询问染色质的可及性和组蛋白修饰。我们表明,这种方法提供了与非酶方法FAIRE-seq相当的染色质可及性数据,只需要输入组织量的一小部分。这种方法也与CUT&RUN兼容,后者允许组蛋白修饰的全基因组图谱,其输入量小于染色质免疫沉淀测序(ChIP-seq)等更传统方法所需组织输入量的1/10。我们的方案使使用更新、更敏感的酶原位方法来询问果蝇变态过程中的基因调控网络成为可能。
{"title":"A tissue dissociation method for ATAC-seq and CUT&RUN in <i>Drosophila</i> pupal tissues.","authors":"Elli M Buchert, Elizabeth A Fogarty, Christopher M Uyehara, Daniel J McKay, Laura A Buttitta","doi":"10.1080/19336934.2023.2209481","DOIUrl":"10.1080/19336934.2023.2209481","url":null,"abstract":"<p><p>Chromatin accessibility, histone modifications, and transcription factor binding are highly dynamic during <i>Drosophila</i> metamorphosis and drive global changes in gene expression as larval tissues differentiate into adult structures. Unfortunately, the presence of pupa cuticle on many <i>Drosophila</i> tissues during metamorphosis prevents enzyme access to cells and has limited the use of enzymatic in situ methods for assessing chromatin accessibility and histone modifications. Here, we present a dissociation method for cuticle-bound pupal tissues that is compatible for use with ATAC-Seq and CUT&RUN to interrogate chromatin accessibility and histone modifications. We show this method provides comparable chromatin accessibility data to the non-enzymatic approach FAIRE-seq, with only a fraction of the amount of input tissue required. This approach is also compatible with CUT&RUN, which allows genome-wide mapping of histone modifications with less than 1/10th of the tissue input required for more conventional approaches such as Chromatin Immunoprecipitation Sequencing (ChIP-seq). Our protocol makes it possible to use newer, more sensitive enzymatic in situ approaches to interrogate gene regulatory networks during <i>Drosophila</i> metamorphosis.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"17 1","pages":"2209481"},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9609652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The utility and caveat of split-GAL4s in the study of neurodegeneration. 分裂- gal4s在神经退行性疾病研究中的应用和警告。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2023-12-01 DOI: 10.1080/19336934.2023.2192847
Luca Stickley, Rafael Koch, Emi Nagoshi

Parkinson's disease (PD) is the second most common neurodegenerative disorder, afflicting over 1% of the population of age 60 y and above. The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is the primary cause of its characteristic motor symptoms. Studies using Drosophila melanogaster and other model systems have provided much insight into the pathogenesis of PD. However, little is known why certain cell types are selectively susceptible to degeneration in PD. Here, we describe an approach to identify vulnerable subpopulations of neurons in the genetic background linked to PD in Drosophila, using the split-GAL4 drivers that enable genetic manipulation of a small number of defined cell populations. We identify split-GAL4 lines that target neurons selectively vulnerable in a model of leucine-rich repeat kinase 2 (LRRK2)-linked familial PD, demonstrating the utility of this approach. We also show an unexpected caveat of the split-GAL4 system in ageing-related research: an age-dependent increase in the number of GAL4-labelled cells.

帕金森病(PD)是第二常见的神经退行性疾病,困扰着超过1%的60岁人群 y及以上。黑质致密部多巴胺能神经元的缺失是其特征性运动症状的主要原因。使用黑腹果蝇和其他模型系统进行的研究为帕金森病的发病机制提供了很多见解。然而,人们对某些细胞类型在帕金森病中选择性易变性的原因知之甚少。在这里,我们描述了一种在果蝇中识别与帕金森病相关的遗传背景中易受伤害的神经元亚群的方法,使用分裂-GAL4驱动程序,其能够对少量定义的细胞群体进行遗传操作。我们在富含亮氨酸重复激酶2(LRRK2)连接的家族性帕金森病模型中鉴定了靶向选择性易损神经元的分裂-GAL4系,证明了这种方法的实用性。在与衰老相关的研究中,我们还展示了对分裂-GAL4系统的一个意想不到的警告:GAL4标记细胞数量的年龄依赖性增加。
{"title":"The utility and caveat of split-GAL4s in the study of neurodegeneration.","authors":"Luca Stickley, Rafael Koch, Emi Nagoshi","doi":"10.1080/19336934.2023.2192847","DOIUrl":"10.1080/19336934.2023.2192847","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disorder, afflicting over 1% of the population of age 60 y and above. The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is the primary cause of its characteristic motor symptoms. Studies using <i>Drosophila melanogaster</i> and other model systems have provided much insight into the pathogenesis of PD. However, little is known why certain cell types are selectively susceptible to degeneration in PD. Here, we describe an approach to identify vulnerable subpopulations of neurons in the genetic background linked to PD in <i>Drosophila</i>, using the split-GAL4 drivers that enable genetic manipulation of a small number of defined cell populations. We identify split-GAL4 lines that target neurons selectively vulnerable in a model of <i>leucine-rich repeat kinase 2</i> (<i>LRRK2</i>)-linked familial PD, demonstrating the utility of this approach. We also show an unexpected caveat of the split-GAL4 system in ageing-related research: an age-dependent increase in the number of GAL4-labelled cells.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"17 1","pages":"2192847"},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Spatiotemporal changes in microtubule dynamics during dendritic morphogenesis. 树突形态发生过程中微管动力学的时空变化
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2021.1976033
Chun Hu, Pan Feng, Meilan Chen, Yan Tang, Peter Soba

Dendritic morphogenesis requires dynamic microtubules (MTs) to form a coordinated cytoskeletal network during development. Dynamic MTs are characterized by their number, polarity and speed of polymerization. Previous studies described a correlation between anterograde MT growth and terminal branch extension in Drosophila dendritic arborization (da) neurons, suggesting a model that anterograde MT polymerization provides a driving force for dendritic branching. We recently found that the Ste20-like kinase Tao specifically regulates dendritic branching by controlling the number of dynamic MTs in a kinase activity-dependent fashion, without affecting MT polarity or speed. This finding raises the interesting question of how MT dynamics affects dendritic morphogenesis, and if Tao kinase activity is developmentally regulated to coordinate MT dynamics and dendritic morphogenesis. We explored the possible correlation between MT dynamics and dendritic morphogenesis together with the activity changes of Tao kinase in C1da and C4da neurons during larval development. Our data show that spatiotemporal changes in the number of dynamic MTs, but not polarity or polymerization speed, correlate with dendritic branching and Tao kinase activity. Our findings suggest that Tao kinase limits dendritic branching by controlling the abundance of dynamic MTs and we propose a novel model on how regulation of MT dynamics might influence dendritic morphogenesis.

树突形态发生需要动态微管(MT)在发育过程中形成协调的细胞骨架网络。动态 MT 的特征是其数量、极性和聚合速度。之前的研究描述了果蝇树突轴化(da)神经元中MT的前向生长与末端分支延伸之间的相关性,提出了一种MT前向聚合为树突分支提供驱动力的模型。我们最近发现,类似 Ste20 的激酶 Tao 以一种激酶活性依赖的方式控制动态 MT 的数量,从而特异性地调节树突分支,而不影响 MT 的极性或速度。这一发现提出了一个有趣的问题:MT 的动态如何影响树突形态发生,以及 Tao 激酶的活性是否受发育调控以协调 MT 动态和树突形态发生。我们结合幼虫发育过程中 C1da 和 C4da 神经元中 Tao 激酶的活性变化,探讨了 MT 动态与树突形态发生之间可能存在的相关性。我们的数据显示,动态MT数量的时空变化与树突分枝和Tao激酶活性相关,但极性或聚合速度与树突分枝和Tao激酶活性无关。我们的研究结果表明,Tao 激酶通过控制动态 MT 的数量来限制树突的分支,我们还提出了一个关于 MT 动态调控如何影响树突形态发生的新模型。
{"title":"Spatiotemporal changes in microtubule dynamics during dendritic morphogenesis.","authors":"Chun Hu, Pan Feng, Meilan Chen, Yan Tang, Peter Soba","doi":"10.1080/19336934.2021.1976033","DOIUrl":"10.1080/19336934.2021.1976033","url":null,"abstract":"<p><p>Dendritic morphogenesis requires dynamic microtubules (MTs) to form a coordinated cytoskeletal network during development. Dynamic MTs are characterized by their number, polarity and speed of polymerization. Previous studies described a correlation between anterograde MT growth and terminal branch extension in <i>Drosophila</i> dendritic arborization (da) neurons, suggesting a model that anterograde MT polymerization provides a driving force for dendritic branching. We recently found that the Ste20-like kinase Tao specifically regulates dendritic branching by controlling the number of dynamic MTs in a kinase activity-dependent fashion, without affecting MT polarity or speed. This finding raises the interesting question of how MT dynamics affects dendritic morphogenesis, and if Tao kinase activity is developmentally regulated to coordinate MT dynamics and dendritic morphogenesis. We explored the possible correlation between MT dynamics and dendritic morphogenesis together with the activity changes of Tao kinase in C1da and C4da neurons during larval development. Our data show that spatiotemporal changes in the number of dynamic MTs, but not polarity or polymerization speed, correlate with dendritic branching and Tao kinase activity. Our findings suggest that Tao kinase limits dendritic branching by controlling the abundance of dynamic MTs and we propose a novel model on how regulation of MT dynamics might influence dendritic morphogenesis.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"16 1","pages":"13-23"},"PeriodicalIF":2.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9188952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patched and Costal-2 mutations lead to differences in tissue overgrowth autonomy. Patched和Costal-2突变导致组织过度生长自主性的差异。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2022.2062991
Shannon L Moore, Frank C Adamini, Erik S Coopes, Dustin Godoy, Shyra J Northington, Jordan M Stewart, Richard L Tillett, Kayla L Bieser, Jacob D Kagey

Genetic screens are used in Drosophila melanogaster to identify genes key in the regulation of organismal development and growth. These screens have defined signalling pathways necessary for tissue and organismal development, which are evolutionarily conserved across species, including Drosophila. Here, we have used an FLP/FRT mosaic system to screen for conditional regulators of cell growth and cell division in the Drosophila eye. The conditional nature of this screen utilizes a block in the apoptotic pathway to prohibit the mosaic mutant cells from dying via apoptosis. From this screen, we identified two different mutants that mapped to the Hedgehog signalling pathway. Previously, we described a novel Ptc mutation and here we add to the understanding of disrupting the Hh pathway with a novel allele of Cos2. Both of these Hh components are negative regulators of the pathway, yet they depict mutant differences in the type of overgrowth created. Ptc mutations lead to overgrowth consisting of almost entirely wild-type tissue (non-autonomous overgrowth), while the Cos2 mutation results in tissue that is overgrown in both the mutant and wild-type clones (both autonomous and non-autonomous). These differences in tissue overgrowth are consistent in the Drosophila eye and wing. The observed difference is correlated with different deregulation patterns of pMad, the downstream effector of DPP signalling. This finding provides insight into pathway-specific differences that help to better understand intricacies of developmental processes and human diseases that result from deregulated Hedgehog signalling, such as basal cell carcinoma.

在黑腹果蝇中使用基因筛选来确定调控生物体发育和生长的关键基因。这些筛选确定了组织和机体发育所必需的信号通路,这些信号通路在包括果蝇在内的不同物种中是进化保守的。在这里,我们利用 FLP/FRT 镶嵌系统筛选果蝇眼睛中细胞生长和细胞分裂的条件调节因子。这种筛选的条件性质是利用凋亡途径的阻断来禁止镶嵌突变细胞通过凋亡死亡。通过这一筛选,我们发现了两种不同的突变体,它们映射到刺猬信号通路。此前,我们描述了一种新型的 Ptc 突变,在此,我们通过一种新型的 Cos2 等位基因,进一步加深了对 Hh 通路破坏的理解。这两种 Hh 通路元件都是该通路的负调控因子,但它们在造成过度生长的类型上存在突变差异。Ptc 突变导致的过度生长几乎完全由野生型组织组成(非自主性过度生长),而 Cos2 突变则导致突变体和野生型克隆中的组织都过度生长(自主性和非自主性)。这些组织过度生长的差异在果蝇的眼睛和翅膀中是一致的。观察到的差异与 DPP 信号的下游效应物 pMad 的不同失调模式有关。这一发现深入揭示了特定途径的差异,有助于更好地理解发育过程的复杂性以及因刺猬信号失调而导致的人类疾病,如基底细胞癌。
{"title":"<i>Patched</i> and <i>Costal-2</i> mutations lead to differences in tissue overgrowth autonomy.","authors":"Shannon L Moore, Frank C Adamini, Erik S Coopes, Dustin Godoy, Shyra J Northington, Jordan M Stewart, Richard L Tillett, Kayla L Bieser, Jacob D Kagey","doi":"10.1080/19336934.2022.2062991","DOIUrl":"10.1080/19336934.2022.2062991","url":null,"abstract":"<p><p>Genetic screens are used in <i>Drosophila melanogaster</i> to identify genes key in the regulation of organismal development and growth. These screens have defined signalling pathways necessary for tissue and organismal development, which are evolutionarily conserved across species, including <i>Drosophila</i>. Here, we have used an FLP/FRT mosaic system to screen for conditional regulators of cell growth and cell division in the <i>Drosophila</i> eye. The conditional nature of this screen utilizes a block in the apoptotic pathway to prohibit the mosaic mutant cells from dying via apoptosis. From this screen, we identified two different mutants that mapped to the Hedgehog signalling pathway. Previously, we described a novel <i>Ptc</i> mutation and here we add to the understanding of disrupting the Hh pathway with a novel allele of <i>Cos2</i>. Both of these Hh components are negative regulators of the pathway, yet they depict mutant differences in the type of overgrowth created. <i>Ptc</i> mutations lead to overgrowth consisting of almost entirely wild-type tissue (non-autonomous overgrowth), while the <i>Cos2</i> mutation results in tissue that is overgrown in both the mutant and wild-type clones (both autonomous and non-autonomous). These differences in tissue overgrowth are consistent in the <i>Drosophila</i> eye and wing. The observed difference is correlated with different deregulation patterns of pMad, the downstream effector of DPP signalling. This finding provides insight into pathway-specific differences that help to better understand intricacies of developmental processes and human diseases that result from deregulated Hedgehog signalling, such as basal cell carcinoma.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"16 1","pages":"176-189"},"PeriodicalIF":2.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A direct-drive GFP reporter for studies of tracheal development in Drosophila. 用于果蝇气管发育研究的直接驱动GFP报告器。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2022.2030191
Geanette Lam, Katherine Beebe, Carl S Thummel

The Drosophila tracheal system consists of a widespread tubular network that provides respiratory functions for the animal. Its development, from ten pairs of placodes in the embryo to the final stereotypical branched structure in the adult, has been extensively studied by many labs as a model system for understanding tubular epithelial morphogenesis. Throughout these studies, a breathless (btl)-GAL4 driver has provided an invaluable tool to either mark tracheal cells during development or to manipulate gene expression in this tissue. A distinct shortcoming of this approach, however, is that btl-GAL4 cannot be used to specifically visualize tracheal cells in the presence of other GAL4 drivers or other UAS constructs, restricting its utility. Here we describe a direct-drive btl-nGFP reporter that can be used as a specific marker of tracheal cells throughout development in combination with any GAL4 driver and/or UAS construct. This reporter line should facilitate the use of Drosophila as a model system for studies of tracheal development and tubular morphogenesis.

果蝇的气管系统由一个广泛的管状网络组成,为动物提供呼吸功能。它的发育,从胚胎的十对基板到成人的最终定型分支结构,已经被许多实验室广泛研究作为理解小管上皮形态发生的模型系统。在这些研究中,屏气(btl)-GAL4驱动因子为在气管细胞发育过程中标记或操纵该组织中的基因表达提供了宝贵的工具。然而,这种方法的一个明显缺点是,在其他GAL4驱动因子或其他UAS结构存在的情况下,btl-GAL4不能用于特异性地观察气管细胞,限制了它的实用性。在这里,我们描述了一种直接驱动的btl-nGFP报告基因,它可以与任何GAL4驱动基因和/或UAS结构相结合,作为气管细胞在整个发育过程中的特定标记。这条报告细胞系有助于将果蝇作为研究气管发育和小管形态发生的模型系统。
{"title":"A direct-drive GFP reporter for studies of tracheal development in <i>Drosophila</i>.","authors":"Geanette Lam,&nbsp;Katherine Beebe,&nbsp;Carl S Thummel","doi":"10.1080/19336934.2022.2030191","DOIUrl":"https://doi.org/10.1080/19336934.2022.2030191","url":null,"abstract":"<p><p>The <i>Drosophila</i> tracheal system consists of a widespread tubular network that provides respiratory functions for the animal. Its development, from ten pairs of placodes in the embryo to the final stereotypical branched structure in the adult, has been extensively studied by many labs as a model system for understanding tubular epithelial morphogenesis. Throughout these studies, a <i>breathless</i> (<i>btl</i>)<i>-GAL4</i> driver has provided an invaluable tool to either mark tracheal cells during development or to manipulate gene expression in this tissue. A distinct shortcoming of this approach, however, is that <i>btl-GAL4</i> cannot be used to specifically visualize tracheal cells in the presence of other GAL4 drivers or other UAS constructs, restricting its utility. Here we describe a direct-drive <i>btl-nGFP</i> reporter that can be used as a specific marker of tracheal cells throughout development in combination with any GAL4 driver and/or UAS construct. This reporter line should facilitate the use of <i>Drosophila</i> as a model system for studies of tracheal development and tubular morphogenesis.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":" ","pages":"105-110"},"PeriodicalIF":1.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39870583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. 利用果蝇研究神经退行性疾病,并开发新的分析方法。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2022.2087484
Yohei Nitta, Atsushi Sugie

The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.

在神经退行性疾病研究中使用果蝇,有助于确定病理学的修饰基因。果蝇发生神经退行性疾病的基础是跨物种基因的保护,以及利用小型大脑进行快速遗传分析的能力。以前在果蝇身上发现的基因发现可以揭示人类神经系统疾病的分子病理。利用果蝇制作疾病模型始于基因工程的发展时期。近年来,利用果蝇进行反向转化研究的成果不断涌现。在这篇综述中,我们将讨论神经退行性疾病的研究;此外,我们还将介绍果蝇神经退行性疾病的各种量化方法。
{"title":"Studies of neurodegenerative diseases using <i>Drosophila</i> and the development of novel approaches for their analysis.","authors":"Yohei Nitta, Atsushi Sugie","doi":"10.1080/19336934.2022.2087484","DOIUrl":"10.1080/19336934.2022.2087484","url":null,"abstract":"<p><p>The use of <i>Drosophila</i> in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in <i>Drosophila</i> is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in <i>Drosophila</i> can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using <i>Drosophila</i> began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using <i>Drosophila</i> have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in <i>Drosophila</i>.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"16 1","pages":"275-298"},"PeriodicalIF":2.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10472195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Social Experience and Environment Impacts Behavioural Plasticity in Drosophila. 社会经验和环境如何影响果蝇的行为可塑性。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2021.1989248
Molly Chen, Marla B Sokolowski

An organism's behaviour is influenced by its social environment. Experiences such as social isolation or crowding may have profound short or long-term effects on an individual's behaviour. The composition of the social environment also depends on the genetics and previous experiences of the individuals present, leading to additional potential outcomes from each social interaction. In this article, we review selected literature related to the social environment of the model organism Drosophila melanogaster, and how Drosophila respond to variation in their social experiences throughout their lifetimes. We focus on the effects of social environment on behavioural phenotypes such as courtship, aggression, and group dynamics, as well as other phenotypes such as development and physiology. The consequences of phenotypic plasticity due to social environment are discussed with respect to the ecology and evolution of Drosophila. We also relate these studies to laboratory research practices involving Drosophila and other animals.

有机体的行为受其社会环境的影响。社会隔离或拥挤等经历可能对个人行为产生深远的短期或长期影响。社会环境的构成也取决于基因和在场的个人以前的经历,导致每次社会互动产生额外的潜在结果。在本文中,我们回顾了与模式生物黑腹果蝇的社会环境有关的文献,以及果蝇如何在其一生中对其社会经历的变化做出反应。我们关注社会环境对行为表型的影响,如求爱、攻击和群体动力学,以及其他表型,如发育和生理。从果蝇的生态学和进化角度探讨了社会环境对果蝇表型可塑性的影响。我们还将这些研究与涉及果蝇和其他动物的实验室研究实践联系起来。
{"title":"How Social Experience and Environment Impacts Behavioural Plasticity in <i>Drosophila</i>.","authors":"Molly Chen,&nbsp;Marla B Sokolowski","doi":"10.1080/19336934.2021.1989248","DOIUrl":"https://doi.org/10.1080/19336934.2021.1989248","url":null,"abstract":"<p><p>An organism's behaviour is influenced by its social environment. Experiences such as social isolation or crowding may have profound short or long-term effects on an individual's behaviour. The composition of the social environment also depends on the genetics and previous experiences of the individuals present, leading to additional potential outcomes from each social interaction. In this article, we review selected literature related to the social environment of the model organism <i>Drosophila melanogaster</i>, and how <i>Drosophila</i> respond to variation in their social experiences throughout their lifetimes. We focus on the effects of social environment on behavioural phenotypes such as courtship, aggression, and group dynamics, as well as other phenotypes such as development and physiology. The consequences of phenotypic plasticity due to social environment are discussed with respect to the ecology and evolution of <i>Drosophila</i>. We also relate these studies to laboratory research practices involving <i>Drosophila</i> and other animals.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":" ","pages":"68-84"},"PeriodicalIF":1.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39795704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mathematical modeling of Notch dynamics in Drosophila neural development. 果蝇神经发育过程中Notch动力学的数学建模。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2022-12-01 DOI: 10.1080/19336934.2021.1953363
Tetsuo Yasugi, Makoto Sato

Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is 'lateral inhibition', whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in Drosophila neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.

Notch信号是一种保守的信号通路,通过细胞间通讯调节细胞命运。Notch信号传导的一个典型特征是“侧抑制”,即两个具有相同分化状态的相邻细胞获得不同的细胞命运。最近,数学和计算方法已经解决了果蝇神经发育中的Notch动力学。在胚胎中的神经干细胞和胸腔中的感觉器官前体中观察到典型的侧抑制。在眼盘发育过程中,Notch信号通路与其他信号通路共同决定感光细胞均匀分布的位置。Notch与表皮生长因子受体信号传导之间的相互作用调节了视叶神经干细胞分化的时间。本文综述了国内外对Notch动力学的理论研究,并讨论了数学模型与生物实验相结合的优势。
{"title":"Mathematical modeling of Notch dynamics in <i>Drosophila</i> neural development.","authors":"Tetsuo Yasugi,&nbsp;Makoto Sato","doi":"10.1080/19336934.2021.1953363","DOIUrl":"https://doi.org/10.1080/19336934.2021.1953363","url":null,"abstract":"<p><p>Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is 'lateral inhibition', whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in <i>Drosophila</i> neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":" ","pages":"24-36"},"PeriodicalIF":1.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39510420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Fly
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1