Pub Date : 2018-01-02Epub Date: 2017-06-02DOI: 10.1080/19336934.2017.1325979
Lin Cheng, Ming Cui, Yikang S Rong
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.
端粒保护线形染色体的末端。端粒功能障碍会加剧基因组的不稳定,从而导致癌症等疾病。30多年来,果蝇作为唯一不依赖于保守的端粒酶进行末端保护的主要模式生物而吸引了这个领域。果蝇驯化了反转录转座子,而不是染色体末端的短DNA重复。此外,在正常的实验室条件下,端粒保护可以完全独立于序列,这与已经建立的端粒酶维持系统不同。尽管存在这些主要差异,但我们和其他人最近的研究揭示了这两个系统之间惊人的相似之处。特别是,随着MTV复合体被鉴定为对果蝇端粒完整性至关重要的ssDNA结合复合体(Zhang et al. 2016 Plos Genetics),我们现在已经建立了几个普遍的原则,这些原则是染色体末端固有的,但独立于潜在的DNA序列或端粒酶。对果蝇端粒的研究将继续产生有助于理解端粒进化和端粒功能的基本见解。
{"title":"MTV sings jubilation for telomere biology in Drosophila.","authors":"Lin Cheng, Ming Cui, Yikang S Rong","doi":"10.1080/19336934.2017.1325979","DOIUrl":"10.1080/19336934.2017.1325979","url":null,"abstract":"<p><p>Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1325979","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34968291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-12DOI: 10.1080/19336934.2017.1402994
Trevor L Davis, Ilaria Rebay
Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.
{"title":"Pleiotropy in Drosophila organogenesis: Mechanistic insights from Combgap and the retinal determination gene network.","authors":"Trevor L Davis, Ilaria Rebay","doi":"10.1080/19336934.2017.1402994","DOIUrl":"https://doi.org/10.1080/19336934.2017.1402994","url":null,"abstract":"<p><p>Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1402994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35595263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2018-01-08DOI: 10.1080/19336934.2017.1416277
Ana Carmena
Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.
{"title":"Compromising asymmetric stem cell division in Drosophila central brain: Revisiting the connections with tumorigenesis.","authors":"Ana Carmena","doi":"10.1080/19336934.2017.1416277","DOIUrl":"https://doi.org/10.1080/19336934.2017.1416277","url":null,"abstract":"<p><p>Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1416277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35655337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-11-22DOI: 10.1080/19336934.2017.1396399
Jason Somers, Hang Ngoc Bao Luong, Philip Batterham, Trent Perry
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.
{"title":"Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost?","authors":"Jason Somers, Hang Ngoc Bao Luong, Philip Batterham, Trent Perry","doi":"10.1080/19336934.2017.1396399","DOIUrl":"https://doi.org/10.1080/19336934.2017.1396399","url":null,"abstract":"<p><p>Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1396399","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35216322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-01DOI: 10.1080/19336934.2017.1396400
Wolfgang Arthofer, Carina Heussler, Patrick Krapf, Birgit C Schlick-Steiner, Florian M Steiner
Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci ("core sets") for long-time use in large-scale population screenings are compiled.
{"title":"Identifying the minimum number of microsatellite loci needed to assess population genetic structure: A case study in fly culturing.","authors":"Wolfgang Arthofer, Carina Heussler, Patrick Krapf, Birgit C Schlick-Steiner, Florian M Steiner","doi":"10.1080/19336934.2017.1396400","DOIUrl":"https://doi.org/10.1080/19336934.2017.1396400","url":null,"abstract":"<p><p>Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci (\"core sets\") for long-time use in large-scale population screenings are compiled.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1396400","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35631723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02Epub Date: 2017-12-07DOI: 10.1080/19336934.2017.1394558
Neda N Moghadam, Pia Mai Thorshauge, Torsten N Kristensen, Nadieh de Jonge, Simon Bahrndorff, Henrik Kjeldal, Jeppe Lund Nielsen
Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.
{"title":"Strong responses of Drosophila melanogaster microbiota to developmental temperature.","authors":"Neda N Moghadam, Pia Mai Thorshauge, Torsten N Kristensen, Nadieh de Jonge, Simon Bahrndorff, Henrik Kjeldal, Jeppe Lund Nielsen","doi":"10.1080/19336934.2017.1394558","DOIUrl":"https://doi.org/10.1080/19336934.2017.1394558","url":null,"abstract":"<p><p>Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1394558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35568217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-09-18DOI: 10.1080/19336934.2018.1520574
Shuling Yan, Jörg Großhans
In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.
{"title":"Localization and translation control of slam in Drosophila cellularization.","authors":"Shuling Yan, Jörg Großhans","doi":"10.1080/19336934.2018.1520574","DOIUrl":"https://doi.org/10.1080/19336934.2018.1520574","url":null,"abstract":"<p><p>In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2018.1520574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36485995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-08-19DOI: 10.1080/19336934.2018.1499370
Nanci S Kane, Mehul Vora, Richard W Padgett, Ying Li
Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.
{"title":"bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway.","authors":"Nanci S Kane, Mehul Vora, Richard W Padgett, Ying Li","doi":"10.1080/19336934.2018.1499370","DOIUrl":"https://doi.org/10.1080/19336934.2018.1499370","url":null,"abstract":"<p><p>Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2018.1499370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36317587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-11-29DOI: 10.1080/19336934.2018.1549419
Catherine M Mageeney, Michael G Kearse, Brett W Gershman, Caroline E Pritchard, Jennifer M Colquhoun, Vassie C Ware
Duplicated ribosomal protein (RP) genes in the Drosophila melanogaster eRpL22 family encode structurally-divergent and differentially-expressed rRNA-binding RPs. eRpL22 is expressed ubiquitously and eRpL22-like expression is tissue-restricted with highest levels in the adult male germline. We explored paralogue functional equivalence using the GAL4-UAS system for paralogue knockdown or overexpression and a conditional eRpL22-like knockout in a heat- shock flippase/FRT line. Ubiquitous eRpL22 knockdown with Actin-GAL4 resulted in embryonic lethality, confirming eRpL22 essentiality. eRpL22-like knockdown (60%) was insufficient to cause lethality; yet, conditional eRpL22-like knockout at one hour following egg deposition caused lethality within each developmental stage. Therefore, each paralogue is essential. Variation in timing of heat-shock-induced eRpL22-like knockout highlighted early embryogenesis as the critical period where eRpL22-like expression (not compensated for by eRpL22) is required for normal development of several organ systems, including testis development and subsequent sperm production. To determine if eRpL22-like can substitute for eRpL22, we used Actin-GAL4 for ubiquitous eRpL22 knockdown and eRpL22-like-FLAG (or FLAG-eRpL22: control) overexpression. Emergence of adults demonstrated that ubiquitous eRpL22-like-FLAG or FLAG-eRpL22 expression eliminates embryonic lethality resulting from eRpL22 depletion. Adults rescued by eRpL22-like-FLAG (but not by FLAG-eRpL22) overexpression had reduced fertility and longevity. We conclude that eRpL22 paralogue roles are not completely interchangeable and include functionally-diverse roles in development and spermatogenesis. Testis-specific paralogue knockdown revealed molecular phenotypes, including increases in eRpL22 protein and mRNA levels following eRpL22-like depletion, implicating a negative crosstalk mechanism regulating eRpL22 expression. Paralogue depletion unmasked mechanisms, yet to be defined that impact paralogue co-expression within germ cells.
{"title":"Functional interplay between ribosomal protein paralogues in the eRpL22 family in Drosophila melanogaster.","authors":"Catherine M Mageeney, Michael G Kearse, Brett W Gershman, Caroline E Pritchard, Jennifer M Colquhoun, Vassie C Ware","doi":"10.1080/19336934.2018.1549419","DOIUrl":"https://doi.org/10.1080/19336934.2018.1549419","url":null,"abstract":"<p><p>Duplicated ribosomal protein (RP) genes in the Drosophila melanogaster eRpL22 family encode structurally-divergent and differentially-expressed rRNA-binding RPs. eRpL22 is expressed ubiquitously and eRpL22-like expression is tissue-restricted with highest levels in the adult male germline. We explored paralogue functional equivalence using the GAL4-UAS system for paralogue knockdown or overexpression and a conditional eRpL22-like knockout in a heat- shock flippase/FRT line. Ubiquitous eRpL22 knockdown with Actin-GAL4 resulted in embryonic lethality, confirming eRpL22 essentiality. eRpL22-like knockdown (60%) was insufficient to cause lethality; yet, conditional eRpL22-like knockout at one hour following egg deposition caused lethality within each developmental stage. Therefore, each paralogue is essential. Variation in timing of heat-shock-induced eRpL22-like knockout highlighted early embryogenesis as the critical period where eRpL22-like expression (not compensated for by eRpL22) is required for normal development of several organ systems, including testis development and subsequent sperm production. To determine if eRpL22-like can substitute for eRpL22, we used Actin-GAL4 for ubiquitous eRpL22 knockdown and eRpL22-like-FLAG (or FLAG-eRpL22: control) overexpression. Emergence of adults demonstrated that ubiquitous eRpL22-like-FLAG or FLAG-eRpL22 expression eliminates embryonic lethality resulting from eRpL22 depletion. Adults rescued by eRpL22-like-FLAG (but not by FLAG-eRpL22) overexpression had reduced fertility and longevity. We conclude that eRpL22 paralogue roles are not completely interchangeable and include functionally-diverse roles in development and spermatogenesis. Testis-specific paralogue knockdown revealed molecular phenotypes, including increases in eRpL22 protein and mRNA levels following eRpL22-like depletion, implicating a negative crosstalk mechanism regulating eRpL22 expression. Paralogue depletion unmasked mechanisms, yet to be defined that impact paralogue co-expression within germ cells.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2018.1549419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36706857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-02-07DOI: 10.1080/19336934.2018.1429859
Rebeca Zanini, Mário Josias Müller, Gilberto Cavalheiro Vieira, Victor Hugo Valiati, Maríndia Deprá, Vera Lúcia da Silva Valente
The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data. Also, morphological data presented some unresolved polytomies, which could reflect the very recent divergence of the subgroup. The total evidence phylogenetic reconstruction presented well-supported relationships and summarized the results of all analyses. The diversification of the willistoni subgroup began about 7.3 Ma with the split of D. insularis while D.paulistorum complex has a much more recent diversification history, which began about 2.1 Ma and apparently has not completed the speciation process, since the average time to sister species separation is one million years, and some entities of the D. paulistorum complex diverge between 0.3 and 1 Ma. Based on the obtained data, we propose the categorization of the former "semispecies" of D. paulistorum as a subspecies and describe the subspecies D. paulistorum amazonian, D. paulistorum andeanbrazilian, D. paulistorum centroamerican, D. paulistorum interior, D. paulistorum orinocan and D. paulistorum transitional.
{"title":"Combining morphology and molecular data to improve Drosophila paulistorum (Diptera, Drosophilidae) taxonomic status.","authors":"Rebeca Zanini, Mário Josias Müller, Gilberto Cavalheiro Vieira, Victor Hugo Valiati, Maríndia Deprá, Vera Lúcia da Silva Valente","doi":"10.1080/19336934.2018.1429859","DOIUrl":"10.1080/19336934.2018.1429859","url":null,"abstract":"<p><p>The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data. Also, morphological data presented some unresolved polytomies, which could reflect the very recent divergence of the subgroup. The total evidence phylogenetic reconstruction presented well-supported relationships and summarized the results of all analyses. The diversification of the willistoni subgroup began about 7.3 Ma with the split of D. insularis while D.paulistorum complex has a much more recent diversification history, which began about 2.1 Ma and apparently has not completed the speciation process, since the average time to sister species separation is one million years, and some entities of the D. paulistorum complex diverge between 0.3 and 1 Ma. Based on the obtained data, we propose the categorization of the former \"semispecies\" of D. paulistorum as a subspecies and describe the subspecies D. paulistorum amazonian, D. paulistorum andeanbrazilian, D. paulistorum centroamerican, D. paulistorum interior, D. paulistorum orinocan and D. paulistorum transitional.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2018.1429859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35754730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}