首页 > 最新文献

Fly最新文献

英文 中文
Flying remote. 远程飞行。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1884033
Howy Jacobs
{"title":"Flying remote.","authors":"Howy Jacobs","doi":"10.1080/19336934.2021.1884033","DOIUrl":"https://doi.org/10.1080/19336934.2021.1884033","url":null,"abstract":"","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"45-46"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1884033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25400050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo assay and modelling of protein and mitochondrial turnover during aging. 衰老过程中蛋白质和线粒体周转的活体检测和建模。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1911286
Hans S Bell, John Tower

To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, Drosophila melanogaster is particularly well suited for this kind of analysis.

为了保持平衡,细胞必须降解受损或折叠错误的蛋白质,并合成功能性替代物。保持这些过程之间的平衡,即蛋白质的更替,是应激反应和细胞适应不断变化的环境所必需的。受损的线粒体也必须被清除和替换。蛋白质和线粒体更替的变化与衰老和神经退行性疾病有关,因此了解这些过程如何在细胞中发生和调控非常重要。要做到这一点,必须开发出可靠的新陈代谢检测方法。目前有几种方法,包括用放射性或稳定同位素进行脉冲标记,以及利用荧光蛋白的策略,每种方法都有各自的优势和局限性。从酵母到哺乳动物,细胞培养和活体动物都被用于这些研究。活体检测尤其有助于将新陈代谢与衰老和疾病联系起来。黑腹果蝇的生命周期短,适合荧光成像,而且有遗传工具,因此特别适合进行这类分析。
{"title":"In vivo assay and modelling of protein and mitochondrial turnover during aging.","authors":"Hans S Bell, John Tower","doi":"10.1080/19336934.2021.1911286","DOIUrl":"10.1080/19336934.2021.1911286","url":null,"abstract":"<p><p>To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, <i>Drosophila melanogaster</i> is particularly well suited for this kind of analysis.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"60-72"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143256/pdf/KFLY_15_1911286.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38993629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Excitotoxicity and Regulation of a Constitutively Active TRP Ca2+ Channel in Drosophila. 探索果蝇组成活性TRP Ca2+通道的兴奋毒性和调控。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 Epub Date: 2020-12-01 DOI: 10.1080/19336934.2020.1851586
Bih-Hwa Shieh, Lucinda Nuzum, Inga Kristaponyte

Unregulated Ca2+ influx affects intracellular Ca2+ homoeostasis, which may lead to neuronal death. In Drosophila, following the activation of rhodopsin the TRP Ca2+ channel is open to mediate the light-dependent depolarization. A constitutively active TRP channel triggers the degeneration of TrpP365 /+ photoreceptors. To explore retinal degeneration, we employed a multidisciplinary approach including live imaging using GFP tagged actin and arrestin 2. Importantly, we demonstrate that the major rhodopsin (Rh1) was greatly reduced before the onset of rhabdomere degeneration; a great reduction of Rh1 affects the maintenance of rhabdomere leading to degeneration of photoreceptors. TrpP365 /+ also led to the up-regulation of CaMKII, which is beneficial as suppression of CaMKII accelerated retinal degeneration. We explored the regulation of TRP by investigating the genetic interaction between TrpP365 /+ and mutants affecting the turnover of diacylglycerol (DAG). We show a loss of phospholipase C in norpAP24 exhibited a great reduction of the DAG content delayed degeneration of TrpP365 /+ photoreceptors. In contrast, knockdown or mutations in DAG lipase (InaE) that is accompanied by slightly reduced levels of most DAG but an increased level of DAG 34:1, exacerbated retinal degeneration of TrpP365 /+. Together, our findings support the notion that DAG plays a role in regulating TRP. Interestingly, DAG lipase is likely required during photoreceptor development as TrpP365 /+; inaEN125 double mutants contained severely degenerated rhabdomeres.

不受管制的Ca2+内流影响细胞内Ca2+平衡,这可能导致神经元死亡。在果蝇中,随着视紫红质的激活,TRP Ca2+通道打开以介导光依赖性去极化。组成活性TRP通道触发TrpP365 /+光感受器的退化。为了探索视网膜变性,我们采用了多学科方法,包括使用GFP标记的肌动蛋白和抑制蛋白2进行实时成像。重要的是,我们证明了主要视紫红质(Rh1)在横纹肌变性发病前大大减少;Rh1的大量减少影响横纹肌的维持,导致光感受器变性。TrpP365 /+也导致CaMKII的上调,这是有益的,因为CaMKII的抑制加速了视网膜变性。我们通过研究TrpP365 /+与影响二酰基甘油(DAG)周转的突变体之间的遗传相互作用来探索TRP的调控。我们发现,在norpAP24中,磷脂酶C的缺失表现出DAG含量的大幅降低,延迟了TrpP365 /+光感受器的变性。相反,DAG脂肪酶(InaE)的敲低或突变,伴随着大多数DAG水平的轻微降低,但DAG 34:1水平的升高,加剧了TrpP365 /+的视网膜变性。总之,我们的研究结果支持DAG在调节TRP中起作用的观点。有趣的是,DAG脂肪酶可能在光感受器发育过程中需要TrpP365 /+;inaEN125双突变体含有严重退化的横纹肌。
{"title":"Exploring Excitotoxicity and Regulation of a Constitutively Active TRP Ca<sup>2+</sup> Channel in Drosophila.","authors":"Bih-Hwa Shieh,&nbsp;Lucinda Nuzum,&nbsp;Inga Kristaponyte","doi":"10.1080/19336934.2020.1851586","DOIUrl":"https://doi.org/10.1080/19336934.2020.1851586","url":null,"abstract":"<p><p>Unregulated Ca<sup>2+</sup> influx affects intracellular Ca<sup>2+</sup> homoeostasis, which may lead to neuronal death. In <i>Drosophila</i>, following the activation of rhodopsin the TRP Ca<sup>2+</sup> channel is open to mediate the light-dependent depolarization. A constitutively active TRP channel triggers the degeneration of <i>Trp<sup>P365</sup></i> /+ photoreceptors. To explore retinal degeneration, we employed a multidisciplinary approach including live imaging using GFP tagged actin and arrestin 2. Importantly, we demonstrate that the major rhodopsin (Rh1) was greatly reduced before the onset of rhabdomere degeneration; a great reduction of Rh1 affects the maintenance of rhabdomere leading to degeneration of photoreceptors. <i>Trp<sup>P365</sup></i> /+ also led to the up-regulation of CaMKII, which is beneficial as suppression of CaMKII accelerated retinal degeneration. We explored the regulation of TRP by investigating the genetic interaction between <i>Trp<sup>P365</sup></i> /+ and mutants affecting the turnover of diacylglycerol (DAG). We show a loss of phospholipase C in <i>norpA<sup>P24</sup></i> exhibited a great reduction of the DAG content delayed degeneration of <i>Trp<sup>P365</sup></i> /+ photoreceptors. In contrast, knockdown or mutations in DAG lipase (InaE) that is accompanied by slightly reduced levels of most DAG but an increased level of DAG 34:1, exacerbated retinal degeneration of <i>Trp<sup>P365</sup></i> /+. Together, our findings support the notion that DAG plays a role in regulating TRP. Interestingly, DAG lipase is likely required during photoreceptor development as <i>Trp<sup>P365</sup></i> /+; <i>inaE<sup>N125</sup></i> double mutants contained severely degenerated rhabdomeres.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"8-27"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1851586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38611004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characterizing a gene expression toolkit for eye- and photoreceptor-specific expression in Drosophila. 鉴定果蝇眼部和感光器特异性基因表达工具包。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1915683
Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake

Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available Drosophila eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult Drosophila eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington Drosophila Stock Center (BDSC) including GMR-Gal4, longGMR-Gal4 and Rh1-Gal4 with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible Rh1-GSGal4 lines and compared their induced expression with an available GMR-GSGal4 line. Although both lines had significant induction of gene expression measured by luciferase activity, Rh1-GSGal4 was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while GMR-GSGal4 showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.

二元表达系统是组织和细胞特异性研究的有力工具。目前可用的许多果蝇眼特异性驱动因子还没有系统地鉴定过它们在成虫眼睛或发育过程中的表达水平和细胞类型特异性。在这里,我们使用荧光素酶报告器测量了不同驱动程序在成年果蝇眼睛中的表达水平,并使用荧光报告器鉴定了每个驱动程序在活体10天大成年雄果蝇中的细胞类型特异性。我们还进一步确定了这些驱动因子在不同发育阶段的表达模式。我们将布卢明顿果蝇种群中心(BDSC)的几种Gal4驱动程序(包括GMR-Gal4、longGMR-Gal4和Rh1-Gal4)与新开发的针对成虫眼部不同细胞类型的Gal4和QF2驱动程序进行了比较。此外,我们还生成了药物诱导的 Rh1-GSGal4 株系,并将它们的诱导表达与现有的 GMR-GSGal4 株系进行了比较。虽然通过荧光素酶活性测量,这两种品系都能显著诱导基因表达,但通过共聚焦显微镜,Rh1-GSGal4 的表达水平低于荧光报告基因的检测水平,而 GMR-GSGal4 则在没有药物的情况下通过显微镜显示出大量的报告基因表达。总之,我们的研究系统地描述和比较了眼和感光细胞特异性驱动因子的大量工具包,同时也揭示了目前可用的成眼表达系统的一些局限性。
{"title":"Characterizing a gene expression toolkit for eye- and photoreceptor-specific expression in Drosophila.","authors":"Spencer E Escobedo, Aashka Shah, Alyssa N Easton, Hana Hall, Vikki M Weake","doi":"10.1080/19336934.2021.1915683","DOIUrl":"10.1080/19336934.2021.1915683","url":null,"abstract":"<p><p>Binary expression systems are a powerful tool for tissue- and cell-specific research. Many of the currently available <i>Drosophila</i> eye-specific drivers have not been systematically characterized for their expression level and cell-type specificity in the adult eye or during development. Here, we used a luciferase reporter to measure expression levels of different drivers in the adult <i>Drosophila</i> eye, and characterized the cell type-specificity of each driver using a fluorescent reporter in live 10-day-old adult males. We also further characterized the expression pattern of these drivers in various developmental stages. We compared several Gal4 drivers from the Bloomington <i>Drosophila</i> Stock Center (BDSC) including <i>GMR-Gal4, longGMR-Gal4</i> and <i>Rh1-Gal4</i> with newly developed Gal4 and QF2 drivers that are specific to different cell types in the adult eye. In addition, we generated drug-inducible <i>Rh1-GSGal4</i> lines and compared their induced expression with an available <i>GMR-GSGal4</i> line. Although both lines had significant induction of gene expression measured by luciferase activity, <i>Rh1-GSGal4</i> was expressed at levels below the detection of the fluorescent reporter by confocal microscopy, while <i>GMR-GSGal4</i> showed substantial reporter expression in the absence of drug by microscopy. Overall, our study systematically characterizes and compares a large toolkit of eye- and photoreceptor-specific drivers, while also uncovering some of the limitations of currently available expression systems in the adult eye.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"73-88"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1915683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38908488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Drosophila melanogaster: a fruitful model for oncohistones. 黑腹果蝇:嗜瘤蛋白丰富的模型。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2020.1863124
Amel Chaouch, Paul Lasko

Drosophila melanogaster has proven to be a powerful genetic model to study human disease. Approximately 75% of human disease-associated genes have homologs in the fruit fly and regulatory pathways are highly conserved in Drosophila compared to humans. Drosophila is an established model organism for the study of genetics and developmental biology related to human disease and has also made a great contribution to epigenetic research. Many key factors that regulate chromatin condensation through effects on histone post-translational modifications were first discovered in genetic screens in Drosophila. Recently, the importance of chromatin regulators in cancer progression has been uncovered, leading to a rapid expansion in the knowledge on how perturbations of chromatin can result in the pathogenesis of human cancer. In this review, we provide examples of how Drosophila melanogaster has contributed to better understanding the detrimental effects of mutant forms of histones, called 'oncohistones', that are found in different human tumours.

黑腹果蝇已被证明是研究人类疾病的一个强有力的遗传模型。大约75%的人类疾病相关基因在果蝇中有同源基因,与人类相比,果蝇的调控途径高度保守。果蝇是与人类疾病相关的遗传学和发育生物学研究的既定模式生物,在表观遗传学研究方面也做出了巨大贡献。许多通过组蛋白翻译后修饰调节染色质凝聚的关键因素是在果蝇的遗传筛选中首次发现的。最近,染色质调节因子在癌症进展中的重要性已经被发现,导致染色质扰动如何导致人类癌症发病机制的知识迅速扩展。在这篇综述中,我们提供了一些例子,说明黑腹果蝇如何有助于更好地理解在不同的人类肿瘤中发现的组蛋白突变形式的有害影响,称为“癌组蛋白”。
{"title":"<i>Drosophila melanogaster</i>: a fruitful model for oncohistones.","authors":"Amel Chaouch,&nbsp;Paul Lasko","doi":"10.1080/19336934.2020.1863124","DOIUrl":"https://doi.org/10.1080/19336934.2020.1863124","url":null,"abstract":"<p><p><i>Drosophila melanogaster</i> has proven to be a powerful genetic model to study human disease. Approximately 75% of human disease-associated genes have homologs in the fruit fly and regulatory pathways are highly conserved in <i>Drosophila</i> compared to humans. <i>Drosophila</i> is an established model organism for the study of genetics and developmental biology related to human disease and has also made a great contribution to epigenetic research. Many key factors that regulate chromatin condensation through effects on histone post-translational modifications were first discovered in genetic screens in <i>Drosophila</i>. Recently, the importance of chromatin regulators in cancer progression has been uncovered, leading to a rapid expansion in the knowledge on how perturbations of chromatin can result in the pathogenesis of human cancer. In this review, we provide examples of how <i>Drosophila melanogaster</i> has contributed to better understanding the detrimental effects of mutant forms of histones, called 'oncohistones', that are found in different human tumours.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"28-37"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1863124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39138005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drosophila as a useful model for understanding the evolutionary physiology of obesity resistance and metabolic thrift. 果蝇是理解肥胖抵抗和代谢节俭的进化生理学的有用模型。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1896960
Lindsey J Gray, Marla B Sokolowski, Stephen J Simpson

Evolved metabolic thriftiness in humans is a proposed contributor to the obesity epidemic. Insect models have been shown to evolve both 'metabolic thrift' in response to rearing on high-protein diets that promote leanness, and 'obesity resistance' when reared on fattening high-carbohydrate, low-protein foods. Despite the hypothesis that human obesity is caused by evolved metabolic thrift, genetic contributions to this physiological trait remain elusive. Here we conducted a pilot study to determine whether thrift and obesity resistance can arise under laboratory based 'quasi-natural selection' in the genetic model organism Drosophila melanogaster. We found that both these traits can evolve within 16 generations. Contrary to predictions from the 'thrifty genotype/phenotype' hypothesis, we found that when animals from a metabolic thrift inducing high-protein environment are mismatched to fattening high-carbohydrate foods, they did not become 'obese'. Rather, they accumulate less triglyceride than control animals, not more. We speculate that this may arise through as yet un-quantified parental effects - potentially epigenetic. This study establishes that D. melanogaster could be a useful model for elucidating the role of the trans- and inter-generational effects of diet on the genetics of metabolic traits in higher animals.

人类进化的代谢节俭被认为是肥胖流行的一个原因。昆虫模型已经被证明进化出“代谢节俭”,以应对高蛋白饮食,促进瘦,而“肥胖抵抗”,当饲养在高碳水化合物,低蛋白质的食物中。尽管假设人类肥胖是由进化的代谢节俭引起的,但遗传因素对这一生理特征的影响仍然难以捉摸。在这里,我们进行了一项初步研究,以确定在遗传模式生物黑腹果蝇的实验室“准自然选择”下,节俭和肥胖抵抗是否会出现。我们发现这两种特征都可以在16代内进化。与“节俭基因型/表型”假说的预测相反,我们发现,当来自代谢节俭诱导高蛋白环境的动物与高碳水化合物食物不匹配时,它们不会变得“肥胖”。相反,它们积累的甘油三酯比对照动物少,而不是更多。我们推测,这可能是由于尚未量化的亲本效应——潜在的表观遗传效应。本研究为阐明饮食对高等动物代谢性状遗传的跨代和代际影响提供了一个有用的模型。
{"title":"Drosophila as a useful model for understanding the evolutionary physiology of obesity resistance and metabolic thrift.","authors":"Lindsey J Gray,&nbsp;Marla B Sokolowski,&nbsp;Stephen J Simpson","doi":"10.1080/19336934.2021.1896960","DOIUrl":"https://doi.org/10.1080/19336934.2021.1896960","url":null,"abstract":"<p><p>Evolved metabolic thriftiness in humans is a proposed contributor to the obesity epidemic. Insect models have been shown to evolve both 'metabolic thrift' in response to rearing on high-protein diets that promote leanness, and 'obesity resistance' when reared on fattening high-carbohydrate, low-protein foods. Despite the hypothesis that human obesity is caused by evolved metabolic thrift, genetic contributions to this physiological trait remain elusive. Here we conducted a pilot study to determine whether thrift and obesity resistance can arise under laboratory based 'quasi-natural selection' in the genetic model organism <i>Drosophila melanogaster</i>. We found that both these traits can evolve within 16 generations. Contrary to predictions from the 'thrifty genotype/phenotype' hypothesis, we found that when animals from a metabolic thrift inducing high-protein environment are mismatched to fattening high-carbohydrate foods, they did not become 'obese'. Rather, they accumulate less triglyceride than control animals, not more. We speculate that this may arise through as yet un-quantified parental effects - potentially epigenetic. This study establishes that <i>D. melanogaster</i> could be a useful model for elucidating the role of the trans- and inter-generational effects of diet on the genetics of metabolic traits in higher animals.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"47-59"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1896960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25475814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
PseudoBase: a genomic visualization and exploration resource for the Drosophila pseudoobscura subgroup. PseudoBase:假褐腹果蝇亚群的基因组可视化和探索资源。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2020.1864201
Katharine L Korunes, Russell B Myers, Ryan Hardy, Mohamed A F Noor

Drosophila pseudoobscura is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for D. pseudoobscura and closely related species D. persimilis, D. miranda, and D. lowei. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the Drosophila pseudoobscura subgroup.

假鳞翅目果蝇是研究进化遗传学和基因组学的经典模式系统。鉴于这种长期存在的兴趣,我们已经积累了许多伪胸腺果蝇和密切相关物种 D. persimilis、D. miranda 和 D. lowei 的基因组序列。为了便于探索物种内的遗传变异和物种间的比较基因组学,我们推出了 PseudoBase 数据库,该数据库通过直观的图形界面将大量公开的基因组数据与简单的可视化和查询工具结合在一起,适合在研究和教育环境中使用。数据库中的所有基因变异(SNPs 和 indels)都来自相同的工作流程,因此不同数据集之间的变异很容易进行比较。该数据库的功能包括嵌入式 JBrowse 界面、提取单个基因/区域的比对结果以及批量访问基因列表。在这里,我们将介绍 PseudoBase,并演示该资源如何帮助使用来自假鳞翅目果蝇亚群的大量基因组数据。
{"title":"PseudoBase: a genomic visualization and exploration resource for the <i>Drosophila pseudoobscura</i> subgroup.","authors":"Katharine L Korunes, Russell B Myers, Ryan Hardy, Mohamed A F Noor","doi":"10.1080/19336934.2020.1864201","DOIUrl":"10.1080/19336934.2020.1864201","url":null,"abstract":"<p><p><i>Drosophila pseudoobscura</i> is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for <i>D. pseudoobscura</i> and closely related species <i>D. persimilis, D. miranda</i>, and <i>D. lowei</i>. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the <i>Drosophila pseudoobscura</i> subgroup.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"38-44"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808432/pdf/KFLY_15_1864201.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38714228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sperm viability varies with buffer and genotype in Drosophila melanogaster. 黑腹果蝇精子活力随缓冲液和基因型的不同而不同。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 Epub Date: 2020-12-08 DOI: 10.1080/19336934.2020.1837592
Ruijian Guo, Anna-Lena Henke, Klaus Reinhardt

Sperm quality, an important male fitness trait, is commonly compared between studies. However, few studies consider how genetic and environmental variation affect sperm quality, even in the genetic model Drosophila melanogaster. Here we show that sperm viability, the proportion of live sperm, differed across the genotypes Oregon-R, Dahomey, and Canton-S by more than 15%, and across buffers (phosphate-buffered saline (PBS), Grace's Medium and Drosophila Ringer solution) by more than 20%. In terms of genotype-buffer pair comparisons, nearly half of the comparisons would produce significant differences in sperm viability (15 in 36), or its temporal decrease in a stress medium (19 in 36). Grace's medium produced the longest-lived sperm in vitro and the smallest differences between genotypes, Drosophila Ringer Solution produced the shortest lifespan and the largest differences. Our results suggest that fly and other sperm researchers would benefit from a standardized protocol of measuring sperm viability.

精子质量是一项重要的男性健康特征,经常在研究之间进行比较。然而,很少有研究考虑遗传和环境变化如何影响精子质量,即使在遗传模型果蝇中也是如此。在这里,我们发现精子活力(活精子的比例)在基因型Oregon-R、Dahomey和Canton-S之间的差异超过15%,在缓冲液(磷酸盐缓冲盐水(PBS)、Grace培养基和果蝇林格溶液)之间的差异超过20%。在基因型-缓冲对比较方面,近一半的比较会产生显著的精子活力差异(36例中有15例),或者在应激介质中精子活力降低(36例中有19例)。格雷斯培养基在体外产生的精子寿命最长,基因型之间的差异最小,而果蝇林格溶液产生的精子寿命最短,差异最大。我们的研究结果表明,苍蝇和其他精子研究人员将受益于测量精子活力的标准化协议。
{"title":"Sperm viability varies with buffer and genotype in <i>Drosophila melanogaster</i>.","authors":"Ruijian Guo,&nbsp;Anna-Lena Henke,&nbsp;Klaus Reinhardt","doi":"10.1080/19336934.2020.1837592","DOIUrl":"https://doi.org/10.1080/19336934.2020.1837592","url":null,"abstract":"<p><p>Sperm quality, an important male fitness trait, is commonly compared between studies. However, few studies consider how genetic and environmental variation affect sperm quality, even in the genetic model <i>Drosophila melanogaster</i>. Here we show that sperm viability, the proportion of live sperm, differed across the genotypes Oregon-R, Dahomey, and Canton-S by more than 15%, and across buffers (phosphate-buffered saline (PBS), Grace's Medium and <i>Drosophila</i> Ringer solution) by more than 20%. In terms of genotype-buffer pair comparisons, nearly half of the comparisons would produce significant differences in sperm viability (15 in 36), or its temporal decrease in a stress medium (19 in 36). Grace's medium produced the longest-lived sperm <i>in vitro</i> and the smallest differences between genotypes, <i>Drosophila</i> Ringer Solution produced the shortest lifespan and the largest differences. Our results suggest that fly and other sperm researchers would benefit from a standardized protocol of measuring sperm viability.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"1-7"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1837592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38583257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dawning of the open era. 开放时代的曙光。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2021-12-01 DOI: 10.1080/19336934.2021.1943285
Howy Jacobs
{"title":"Dawning of the open era.","authors":"Howy Jacobs","doi":"10.1080/19336934.2021.1943285","DOIUrl":"https://doi.org/10.1080/19336934.2021.1943285","url":null,"abstract":"","PeriodicalId":12128,"journal":{"name":"Fly","volume":"15 1","pages":"89-90"},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2021.1943285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39161015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drosophila GFAT1 and GFAT2 enzymes encode obligate developmental functions. 果蝇GFAT1和GFAT2酶编码专性发育功能。
IF 1.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly
Pub Date : 2020-03-01 Epub Date: 2020-07-02 DOI: 10.1080/19336934.2020.1784674
Po Chen, Sarah Visokay, John M Abrams

Glutamine: fructose-6-phosphate amidotransferase (GFAT) enzymes catalyse the first committed step of the hexosamine biosynthesis pathway (HBP) using glutamine and fructose-6-phosphate to form glucosamine-6-phosphate (GlcN6P). Numerous species (e.g. mouse, rat, zebrafish, chicken) including humans and Drosophila encode two broadly expressed copies of this enzyme but whether these perform redundant, partially overlapping or distinct functions is not known. To address this question, we produced single gene null mutations in the fly counterparts of gfat1 and gfat2. Deletions for either enzyme were fully lethal and homozygotes lacking either GFAT1 or GFAT2 died at or prior to the first instar larval stage. Therefore, when genetically eliminated, neither isoform was able to compensate for the other. Importantly, dietary supplementation with D-glucosamine-6-phosphate rescued GFAT2 deficiency and restored viability to gfat2-/- mutants. In contrast, glucosamine-6-phosphate did not rescue gfat1-/- animals.

谷氨酰胺:果糖-6-磷酸氨基转移酶(GFAT)酶催化己糖胺生物合成途径(HBP)的第一步,利用谷氨酰胺和果糖-6-磷酸形成葡萄糖-6-磷酸(GlcN6P)。包括人类和果蝇在内的许多物种(如小鼠、大鼠、斑马鱼、鸡)编码该酶的两个广泛表达拷贝,但这些拷贝是否具有冗余、部分重叠或不同的功能尚不清楚。为了解决这个问题,我们在果蝇gfat1和gfat2的对应物中产生了单基因零突变。这两种酶的缺失都是完全致死的,缺乏GFAT1或GFAT2的纯合子在1龄幼虫期或之前死亡。因此,当基因消除时,任何一种异构体都无法补偿另一种异构体。重要的是,膳食中补充d -氨基葡萄糖-6-磷酸可挽救GFAT2缺乏,并恢复GFAT2 -/-突变体的生存能力。相反,葡萄糖胺-6-磷酸不能拯救gfat1-/-动物。
{"title":"<i>Drosophila</i> GFAT1 and GFAT2 enzymes encode obligate developmental functions.","authors":"Po Chen,&nbsp;Sarah Visokay,&nbsp;John M Abrams","doi":"10.1080/19336934.2020.1784674","DOIUrl":"https://doi.org/10.1080/19336934.2020.1784674","url":null,"abstract":"<p><p>Glutamine: fructose-6-phosphate amidotransferase (GFAT) enzymes catalyse the first committed step of the hexosamine biosynthesis pathway (HBP) using glutamine and fructose-6-phosphate to form glucosamine-6-phosphate (GlcN6P). Numerous species (e.g. mouse, rat, zebrafish, chicken) including humans and <i>Drosophila</i> encode two broadly expressed copies of this enzyme but whether these perform redundant, partially overlapping or distinct functions is not known. To address this question, we produced single gene null mutations in the fly counterparts of <i>gfat1</i> and <i>gfat2</i>. Deletions for either enzyme were fully lethal and homozygotes lacking either GFAT1 or GFAT2 died at or prior to the first instar larval stage. Therefore, when genetically eliminated, neither isoform was able to compensate for the other. Importantly, dietary supplementation with D-glucosamine-6-phosphate rescued GFAT2 deficiency and restored viability to <i>gfat2<sup>-/-</sup></i> mutants. In contrast, glucosamine-6-phosphate did not rescue <i>gfat1<sup>-/-</sup></i> animals.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":" ","pages":"3-9"},"PeriodicalIF":1.2,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2020.1784674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38117106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Fly
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1