Phosphoinositides, comprising less than 10% of membrane lipids, function as 'lipid codes' within cellular compartments through seven species formed by myo-inositol headgroup phosphorylation. This review examines their diverse roles in endocytic transport, encompassing endocytosis, endosomal sorting, degradation, and recycling, as well as specialized mechanisms, such as caveolin-mediated endocytosis. The review also investigates the involvement of specific kinases and phosphatases in these processes. Additionally, it discusses the impact of technological advancements, such as fluorescent biosensors, super-resolution microscopy, optogenetics, and synthetic biology, on elucidating phosphoinositide dynamics during endocytic trafficking. Perturbations in phosphoinositide metabolism have been associated with human diseases, including cancer and neurodegenerative disorders. Exploring these pathways may unveil potential therapeutic targets, with subsequent research focusing on their spatiotemporal regulation, tissue-specific metabolism, the synergistic effects of phosphoinositides with other lipids, and the incorporation of systems biology to bridge basic cell biology with translational medicine.
扫码关注我们
求助内容:
应助结果提醒方式:
