首页 > 最新文献

FEBS Letters最新文献

英文 中文
14-3-3ε conditional knockout mice exhibit defects in the development of the epidermis. 14-3-3ε 条件性基因敲除小鼠表现出表皮发育缺陷。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-11-07 DOI: 10.1002/1873-3468.15051
Sarika Tilwani, Karan Gandhi, Sorab N Dalal

The epidermis is a stratified epithelium that functions as the first line of defense against pathogenic invasion and acts as a barrier preventing water loss. In this study, we aimed to decipher the role of 14-3-3ε in the development of the epidermis. We report that loss of 14-3-3ε in the epidermis of juvenile and adult mice reduces cell division in the basal layer and increases the percentage of cells with multiple centrosomes, leading to a reduction in the thickness of the basal and stratified layers. We also demonstrate a decrease in the expression of differentiation markers, although no gross morphological defects in the skin or adverse effects on the survival of the mice were observed. These results suggest that loss of 14-3-3ε in the epidermis may lead to defects in proliferation and differentiation.

表皮是分层上皮,是抵御病原体入侵的第一道防线,也是防止水分流失的屏障。在这项研究中,我们旨在破译 14-3-3ε 在表皮发育过程中的作用。我们发现,幼鼠和成年小鼠表皮中 14-3-3ε 的缺失会减少基底层的细胞分裂,增加多中心体细胞的比例,从而导致基底层和分层厚度的减少。我们还证明了分化标记表达的减少,尽管没有观察到皮肤的严重形态缺陷或对小鼠存活的不利影响。这些结果表明,表皮中 14-3-3ε 的缺失可能会导致增殖和分化缺陷。
{"title":"14-3-3ε conditional knockout mice exhibit defects in the development of the epidermis.","authors":"Sarika Tilwani, Karan Gandhi, Sorab N Dalal","doi":"10.1002/1873-3468.15051","DOIUrl":"https://doi.org/10.1002/1873-3468.15051","url":null,"abstract":"<p><p>The epidermis is a stratified epithelium that functions as the first line of defense against pathogenic invasion and acts as a barrier preventing water loss. In this study, we aimed to decipher the role of 14-3-3ε in the development of the epidermis. We report that loss of 14-3-3ε in the epidermis of juvenile and adult mice reduces cell division in the basal layer and increases the percentage of cells with multiple centrosomes, leading to a reduction in the thickness of the basal and stratified layers. We also demonstrate a decrease in the expression of differentiation markers, although no gross morphological defects in the skin or adverse effects on the survival of the mice were observed. These results suggest that loss of 14-3-3ε in the epidermis may lead to defects in proliferation and differentiation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structure of a novel α-synuclein filament subtype from multiple system atrophy. 多系统萎缩症中一种新型α-突触核蛋白丝亚型的冷冻电子显微镜结构。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-11-07 DOI: 10.1002/1873-3468.15048
Nicholas L Yan, Francisco Candido, Eric Tse, Arthur A Melo, Stanley B Prusiner, Daniel A Mordes, Daniel R Southworth, Nick A Paras, Gregory E Merz

Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by accumulation of α-synuclein cross-β amyloid filaments in the brain. Previous structural studies of these filaments by cryo-electron microscopy (cryo-EM) revealed three discrete folds distinct from α-synuclein filaments associated with other neurodegenerative diseases. Here, we use cryo-EM to identify a novel, low-populated MSA filament subtype (designated Type I2) in addition to a predominant class comprising MSA Type II2 filaments. The 3.3-Å resolution structure of the Type I2 filament reveals a fold consisting of two asymmetric protofilaments, one of which adopts a novel structure that is chimeric between two previously reported protofilaments. These results further define MSA-specific folds of α-synuclein filaments and have implications for designing MSA diagnostics and therapeutics.

多系统萎缩症(MSA)是一种进行性神经退行性疾病,其特征是大脑中α-突触核蛋白交叉β淀粉样蛋白丝的堆积。以前通过低温电子显微镜(cryo-EM)对这些丝状物进行的结构研究揭示了与其他神经退行性疾病相关的α-突触核蛋白丝状物不同的三种离散褶皱。在这里,我们利用低温电子显微镜鉴定出了一种新型、低密度的 MSA 细丝亚型(命名为 I2 型),此外还有一种由 MSA II2 型细丝组成的主要类型。分辨率为 3.3 Å 的 I2 型细丝结构揭示了一个由两条不对称原丝组成的折叠,其中一条原丝采用了一种新型结构,与之前报道的两条原丝嵌合。这些结果进一步确定了α-突触核蛋白丝的MSA特异性折叠,对设计MSA诊断和治疗方法具有重要意义。
{"title":"Cryo-EM structure of a novel α-synuclein filament subtype from multiple system atrophy.","authors":"Nicholas L Yan, Francisco Candido, Eric Tse, Arthur A Melo, Stanley B Prusiner, Daniel A Mordes, Daniel R Southworth, Nick A Paras, Gregory E Merz","doi":"10.1002/1873-3468.15048","DOIUrl":"https://doi.org/10.1002/1873-3468.15048","url":null,"abstract":"<p><p>Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by accumulation of α-synuclein cross-β amyloid filaments in the brain. Previous structural studies of these filaments by cryo-electron microscopy (cryo-EM) revealed three discrete folds distinct from α-synuclein filaments associated with other neurodegenerative diseases. Here, we use cryo-EM to identify a novel, low-populated MSA filament subtype (designated Type I<sub>2</sub>) in addition to a predominant class comprising MSA Type II<sub>2</sub> filaments. The 3.3-Å resolution structure of the Type I<sub>2</sub> filament reveals a fold consisting of two asymmetric protofilaments, one of which adopts a novel structure that is chimeric between two previously reported protofilaments. These results further define MSA-specific folds of α-synuclein filaments and have implications for designing MSA diagnostics and therapeutics.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structures of the zinc transporters ZnT3 and ZnT4 provide insights into their transport mechanisms. 锌转运体 ZnT3 和 ZnT4 的低温电子显微镜(Cryo-EM)结构有助于深入了解它们的转运机制。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-30 DOI: 10.1002/1873-3468.15047
Hanako Ishida, Riri Yo, Zhikuan Zhang, Toshiyuki Shimizu, Umeharu Ohto

Zinc transporters (ZnTs) act as H+/Zn2+ antiporters, crucial for zinc homeostasis. Brain-specific ZnT3 expressed in synaptic vesicles transports Zn2+ from the cytosol into vesicles and is essential for neurotransmission, with ZnT3 dysfunction associated with neurological disorders. Ubiquitously expressed ZnT4 localized to lysosomes facilitates the Zn2+ efflux from the cytosol to lysosomes, mitigating the cell injury risk. Despite their importance, the structures and Zn2+ transport mechanisms remain unclear. We characterized the three-dimensional structures of human ZnT3 (inward-facing) and ZnT4 (outward-facing) using cryo-electron microscopy. By combining these structures, we assessed the conformational changes that could occur within the transmembrane domain during Zn2+ transport. Our results provide a structural basis for a more comprehensive understanding of the H+/Zn2+ exchange mechanisms exhibited by ZnTs.

锌转运体(ZnTs)作为 H+/Zn2+ 反转运体,对锌平衡至关重要。大脑特异性 ZnT3 在突触小泡中表达,将 Zn2+ 从细胞膜转运到小泡中,对神经传递至关重要,ZnT3 功能障碍与神经系统疾病有关。在溶酶体中定位的泛表达 ZnT4 可促进 Zn2+ 从细胞液流出到溶酶体,从而降低细胞损伤风险。尽管ZnT4非常重要,但其结构和Zn2+转运机制仍不清楚。我们利用冷冻电镜鉴定了人类 ZnT3(内向型)和 ZnT4(外向型)的三维结构。结合这些结构,我们评估了 Zn2+ 转运过程中跨膜结构域内可能发生的构象变化。我们的研究结果为更全面地了解 ZnTs 的 H+/Zn2+ 交换机制提供了结构基础。
{"title":"Cryo-EM structures of the zinc transporters ZnT3 and ZnT4 provide insights into their transport mechanisms.","authors":"Hanako Ishida, Riri Yo, Zhikuan Zhang, Toshiyuki Shimizu, Umeharu Ohto","doi":"10.1002/1873-3468.15047","DOIUrl":"https://doi.org/10.1002/1873-3468.15047","url":null,"abstract":"<p><p>Zinc transporters (ZnTs) act as H<sup>+</sup>/Zn<sup>2+</sup> antiporters, crucial for zinc homeostasis. Brain-specific ZnT3 expressed in synaptic vesicles transports Zn<sup>2+</sup> from the cytosol into vesicles and is essential for neurotransmission, with ZnT3 dysfunction associated with neurological disorders. Ubiquitously expressed ZnT4 localized to lysosomes facilitates the Zn<sup>2+</sup> efflux from the cytosol to lysosomes, mitigating the cell injury risk. Despite their importance, the structures and Zn<sup>2+</sup> transport mechanisms remain unclear. We characterized the three-dimensional structures of human ZnT3 (inward-facing) and ZnT4 (outward-facing) using cryo-electron microscopy. By combining these structures, we assessed the conformational changes that could occur within the transmembrane domain during Zn<sup>2+</sup> transport. Our results provide a structural basis for a more comprehensive understanding of the H<sup>+</sup>/Zn<sup>2+</sup> exchange mechanisms exhibited by ZnTs.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leishmania donovani adenylosuccinate synthetase requires IMP for dimerization and organization of the active site. 唐氏利什曼原虫腺苷琥珀酸合成酶的二聚化和活性位点的组织需要 IMP。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-27 DOI: 10.1002/1873-3468.15040
Jigneshkumar A Mochi, Jaykumar Jani, Smit Shah, Anju Pappachan

Adenylosuccinate synthetase (AdSS), which catalyses the GTP-dependent conversion of inosine monophosphate (IMP) and aspartic acid to succinyl-AMP, plays a major role in purine biosynthesis. In some bacterial AdSS, it is implicated that IMP binding is important to organize the active site, but in certain plant AdSS, GTP performs this role. Here, we report that in Leishmania donovani AdSS, IMP binding favoured dimerization, induced greater conformational change and improved the protein stability more than GTP binding. IMP binding, which resulted in a network of hydrogen bonds, stabilized the conformation of active site loops and brought the switch loop to a closed conformation, which then facilitated GTP binding. Our results provide a basis for designing better inhibitors of leishmanial AdSS.

腺苷琥珀酸合成酶(AdSS)能催化依赖于 GTP 的单磷酸肌苷(IMP)和天冬氨酸向琥珀酰-AMP 的转化,在嘌呤生物合成中发挥着重要作用。在某些细菌的 AdSS 中,IMP 的结合对于组织活性位点非常重要,但在某些植物的 AdSS 中,GTP 发挥着这一作用。在这里,我们报告了在利什曼原虫 AdSS 中,IMP 结合比 GTP 结合更有利于二聚化,诱导更大的构象变化,并提高蛋白质的稳定性。IMP 结合形成氢键网络,稳定了活性位点环的构象,并使开关环形成闭合构象,从而促进了 GTP 结合。我们的研究结果为设计更好的利什曼病 AdSS 抑制剂提供了依据。
{"title":"Leishmania donovani adenylosuccinate synthetase requires IMP for dimerization and organization of the active site.","authors":"Jigneshkumar A Mochi, Jaykumar Jani, Smit Shah, Anju Pappachan","doi":"10.1002/1873-3468.15040","DOIUrl":"https://doi.org/10.1002/1873-3468.15040","url":null,"abstract":"<p><p>Adenylosuccinate synthetase (AdSS), which catalyses the GTP-dependent conversion of inosine monophosphate (IMP) and aspartic acid to succinyl-AMP, plays a major role in purine biosynthesis. In some bacterial AdSS, it is implicated that IMP binding is important to organize the active site, but in certain plant AdSS, GTP performs this role. Here, we report that in Leishmania donovani AdSS, IMP binding favoured dimerization, induced greater conformational change and improved the protein stability more than GTP binding. IMP binding, which resulted in a network of hydrogen bonds, stabilized the conformation of active site loops and brought the switch loop to a closed conformation, which then facilitated GTP binding. Our results provide a basis for designing better inhibitors of leishmanial AdSS.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells. Odz4上调SAN特异性基因,促进心脏起搏器样细胞的分化。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-27 DOI: 10.1002/1873-3468.15036
Anqi Dong, Masao Yoshizumi, Hiroki Kokubo

Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.

心房结(SAN)功能异常引起的心律失常可导致猝死。开发用于治疗病态窦房结综合征(SSS)的生物起搏器装置有可能提供一种治疗方法。了解 SAN 的分化至关重要,但其调控机制仍不清楚。我们重新分析了已发表的RNA-seq数据,发现Odz4是SAN特异性候选基因。原位杂交显示 Odz4 在心脏新月和整个心脏传导系统(CCS)中都有表达。为了评估Odz4在CCS分化中的作用,我们使用了一个Tet-Off诱导系统来诱导其胞内结构域(ICD)。外源表达Odz4-ICD的胚胎体(EBs)表现出更强的倾向性,能发育成起搏器样细胞,自动性增强,SAN特异性基因表达上调。CellChat和GO分析揭示了外源表达Odz4-ICD组中配体受体集(尤其是Ptn-Ncl)和细胞外基质成分的SAN特异性富集。我们的研究结果强调了Odz4在SAN发育中的重要性,并为生物起搏器的建立提供了新的见解。
{"title":"Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells.","authors":"Anqi Dong, Masao Yoshizumi, Hiroki Kokubo","doi":"10.1002/1873-3468.15036","DOIUrl":"https://doi.org/10.1002/1873-3468.15036","url":null,"abstract":"<p><p>Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis. 黑曲霉外β-(1,3)-葡聚糖酶的晶体结构揭示了寡糖的结合、识别和水解过程。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-24 DOI: 10.1002/1873-3468.15045
Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik

Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.

外-β-(1,3)-葡聚糖酶是一种很有希望用于生物燃料工业的酶,因为它们能水解糖类,如海藻细胞壁的主要成分--层聚糖。本研究报告了属于 GH5 家族的黑曲霉外-β-(1,3)-葡聚糖酶(AoBgl)的结构和生物化学特征。纯化的 AoBgl 能有效地水解低聚糖层叠三糖和多糖层叠糖的β-(1,3)-糖苷键。我们测定了 AoBgl 的三种高分辨率结构:(a) 1.75 Å 的 apo 形式;(b) 1.73 Å 的与结合纤维二糖的复合物形式;(c) 1.20 Å 的与葡萄糖结合的形式。晶体结构、分子动力学模拟研究和定点突变揭示了底物结合模式和活性位点上的相互作用。研究结果还表明,AoBgl 能有效水解三糖和更高的寡糖。我们的结构和生化研究结果将有助于合理的工程设计工作,以产生更好的 AoBgl 变体和类似的 GH5 酶,供工业使用。
{"title":"Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis.","authors":"Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik","doi":"10.1002/1873-3468.15045","DOIUrl":"https://doi.org/10.1002/1873-3468.15045","url":null,"abstract":"<p><p>Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Role of the PDK1-PKB-GSK3 Pathway in Regulating Glycogen Synthase and Glucose Uptake in the Heart. 回归:PDK1-PKB-GSK3 通路在调节心脏糖原合成酶和葡萄糖摄取中的作用。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-24 DOI: 10.1002/1873-3468.15044

Retraction: A. Mora, K. Sakamoto, E. J. McManus, and D. R. Alessi, "Role of the PDK1-PKB-GSK3 Pathway in Regulating Glycogen Synthase and Glucose Uptake in the Heart," FEBS Letters 579, no. 17 (2005): 3632-3638, https://doi.org/10.1016/j.febslet.2005.05.040. The above article, published online on 06 June 2005 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Michael Brunner; FEBS Press; and John Wiley and Sons Ltd. The journal was contacted by a representative of the research integrity group at the authors' institute, since an institutional investigation revealed inappropriate splicing and duplication of image sections within Fig. 2A, B and Fig. 3A. Consequently, the conclusions of the paper are substantially compromised, and the institute has recommended the paper to be retracted. The editors of the journal agree with the retraction based on the institutional investigation.

撤回:A. Mora, K. Sakamoto, E. J. McManus, and D. R. Alessi, "Role of the PDK1-PKB-GSK3 Pathway in Regulating Glycogen Synthase and Glucose Uptake in the Heart," FEBS Letters 579, no:3632-3638, https://doi.org/10.1016/j.febslet.2005.05.040.上述文章于 2005 年 6 月 6 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),经作者、期刊主编 Michael Brunner、FEBS Press 和 John Wiley and Sons Ltd.协商,该文章已被撤回。由于机构调查发现图 2A、B 和图 3A 中的图像部分存在不恰当的拼接和重复,作者所在研究所的研究诚信小组代表与该期刊取得了联系。因此,该论文的结论大打折扣,研究所建议撤回该论文。根据机构调查,期刊编辑同意撤稿。
{"title":"RETRACTION: Role of the PDK1-PKB-GSK3 Pathway in Regulating Glycogen Synthase and Glucose Uptake in the Heart.","authors":"","doi":"10.1002/1873-3468.15044","DOIUrl":"https://doi.org/10.1002/1873-3468.15044","url":null,"abstract":"<p><strong>Retraction: </strong>A. Mora, K. Sakamoto, E. J. McManus, and D. R. Alessi, \"Role of the PDK1-PKB-GSK3 Pathway in Regulating Glycogen Synthase and Glucose Uptake in the Heart,\" FEBS Letters 579, no. 17 (2005): 3632-3638, https://doi.org/10.1016/j.febslet.2005.05.040. The above article, published online on 06 June 2005 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Michael Brunner; FEBS Press; and John Wiley and Sons Ltd. The journal was contacted by a representative of the research integrity group at the authors' institute, since an institutional investigation revealed inappropriate splicing and duplication of image sections within Fig. 2A, B and Fig. 3A. Consequently, the conclusions of the paper are substantially compromised, and the institute has recommended the paper to be retracted. The editors of the journal agree with the retraction based on the institutional investigation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substrate recognition by the 4-hydroxytryptamine kinase PsiK in psilocybin biosynthesis. 迷幻药生物合成过程中 4-羟色胺激酶 PsiK 的底物识别。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-24 DOI: 10.1002/1873-3468.15042
Kai Rogge, Tobias Johannes Wagner, Dirk Hoffmeister, Bernhard Rupp, Sebastiaan Werten

Psilocybin, the natural hallucinogen from Psilocybe (magic) mushrooms, is a highly promising drug candidate for the treatment of depression and several other mental health conditions. Biosynthesis of psilocybin from the amino acid l-tryptophan involves four strictly sequential modifications. The third of these, ATP-dependent phosphorylation of the intermediate 4-hydroxytryptamine, is catalysed by PsiK. Here we present a crystallographic analysis and a structure-based mutagenesis study of this kinase, providing insight into its mode of substrate recognition. The results of our work will support future bioengineering efforts aimed at generating variants of psilocybin with enhanced therapeutic properties.

迷幻蘑菇中的天然致幻剂--迷幻蘑菇素是一种非常有前途的候选药物,可用于治疗抑郁症和其他几种精神疾病。从氨基酸 l-色氨酸中生物合成迷幻蘑菇素涉及四种严格按顺序进行的修饰。其中第三种是由 PsiK 催化的依赖 ATP 的 4-hydroxytryptamine 中间体磷酸化。在此,我们对这种激酶进行了晶体学分析和基于结构的诱变研究,从而深入了解了它识别底物的模式。我们的工作成果将为未来旨在产生具有更强治疗特性的迷幻药变体的生物工程工作提供支持。
{"title":"Substrate recognition by the 4-hydroxytryptamine kinase PsiK in psilocybin biosynthesis.","authors":"Kai Rogge, Tobias Johannes Wagner, Dirk Hoffmeister, Bernhard Rupp, Sebastiaan Werten","doi":"10.1002/1873-3468.15042","DOIUrl":"https://doi.org/10.1002/1873-3468.15042","url":null,"abstract":"<p><p>Psilocybin, the natural hallucinogen from Psilocybe (magic) mushrooms, is a highly promising drug candidate for the treatment of depression and several other mental health conditions. Biosynthesis of psilocybin from the amino acid l-tryptophan involves four strictly sequential modifications. The third of these, ATP-dependent phosphorylation of the intermediate 4-hydroxytryptamine, is catalysed by PsiK. Here we present a crystallographic analysis and a structure-based mutagenesis study of this kinase, providing insight into its mode of substrate recognition. The results of our work will support future bioengineering efforts aimed at generating variants of psilocybin with enhanced therapeutic properties.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the sclerostin-LRP4 binding interface identifies critical interaction hotspots in loops 1 and 3 of sclerostin. 绘制硬骨蛋白-LRP4 结合界面图,确定硬骨蛋白环 1 和环 3 中的关键相互作用热点。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-23 DOI: 10.1002/1873-3468.15033
Svetlana Katchkovsky, Reut Meiri, Shiran Lacham-Hartman, Yaron Orenstein, Noam Levaot, Niv Papo

The interaction of sclerostin (Scl) with the low-density lipoprotein receptor-related protein 4 (LRP4) leads to a marked reduction in bone formation by inhibiting the Wnt/β-catenin pathway. To characterize the Scl-LRP4 binding interface, we sorted a combinatorial library of Scl variants and isolated variants with reduced affinity to LRP4. We identified Scl single-mutation variants enriched during the sorting process and verified their reduction in affinity toward LRP4-a reduction that was not a result of changes in the variants' secondary structure or stability. We found that Scl positions K75 (loop 1) and V136 (loop 3) are critical hotspots for binding to LRP4. Our findings establish the foundation for targeting these hotspots for developing novel therapeutic strategies to promote bone formation.

硬骨蛋白(Scl)与低密度脂蛋白受体相关蛋白 4(LRP4)的相互作用通过抑制 Wnt/β-catenin 通路导致骨形成明显减少。为了确定Scl-LRP4结合界面的特征,我们对Scl变体组合库进行了分类,并分离出与LRP4亲和力降低的变体。我们确定了在分选过程中富集的 Scl 单突变变体,并验证了它们对 LRP4 的亲和力降低--这种降低并不是变体二级结构或稳定性发生变化的结果。我们发现,Scl 位置 K75(环 1)和 V136(环 3)是与 LRP4 结合的关键热点。我们的发现为针对这些热点开发促进骨形成的新型治疗策略奠定了基础。
{"title":"Mapping the sclerostin-LRP4 binding interface identifies critical interaction hotspots in loops 1 and 3 of sclerostin.","authors":"Svetlana Katchkovsky, Reut Meiri, Shiran Lacham-Hartman, Yaron Orenstein, Noam Levaot, Niv Papo","doi":"10.1002/1873-3468.15033","DOIUrl":"https://doi.org/10.1002/1873-3468.15033","url":null,"abstract":"<p><p>The interaction of sclerostin (Scl) with the low-density lipoprotein receptor-related protein 4 (LRP4) leads to a marked reduction in bone formation by inhibiting the Wnt/β-catenin pathway. To characterize the Scl-LRP4 binding interface, we sorted a combinatorial library of Scl variants and isolated variants with reduced affinity to LRP4. We identified Scl single-mutation variants enriched during the sorting process and verified their reduction in affinity toward LRP4-a reduction that was not a result of changes in the variants' secondary structure or stability. We found that Scl positions K75 (loop 1) and V136 (loop 3) are critical hotspots for binding to LRP4. Our findings establish the foundation for targeting these hotspots for developing novel therapeutic strategies to promote bone formation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression and function of interferon lambda receptor 1 variants. 干扰素λ受体1变体的表达和功能。
IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-10-22 DOI: 10.1002/1873-3468.15041
Laura A Novotny, Eric G Meissner

Lambda interferons (IFNLs) provide critical host defense against pathogens encountered at mucosal surfaces. In humans, IFNL signaling is regulated in part by low and cell-type restricted expression of the lambda interferon receptor 1 protein with expression restricted primarily to epithelial cells located at mucosal surfaces. This review will examine the evidence suggesting a role for IFNLR1 transcriptional variants in mediating cell responsiveness to IFNL ligand exposure and regulation of pathway activity.

λ干扰素(IFNL)是宿主抵御粘膜表面病原体的重要防御因子。在人体中,IFNL 信号部分受λ干扰素受体 1 蛋白的低表达和细胞类型限制的调节,其表达主要限于粘膜表面的上皮细胞。本综述将研究表明 IFNLR1 转录变体在介导细胞对 IFNL 配体暴露的反应和调节通路活性方面发挥作用的证据。
{"title":"Expression and function of interferon lambda receptor 1 variants.","authors":"Laura A Novotny, Eric G Meissner","doi":"10.1002/1873-3468.15041","DOIUrl":"10.1002/1873-3468.15041","url":null,"abstract":"<p><p>Lambda interferons (IFNLs) provide critical host defense against pathogens encountered at mucosal surfaces. In humans, IFNL signaling is regulated in part by low and cell-type restricted expression of the lambda interferon receptor 1 protein with expression restricted primarily to epithelial cells located at mucosal surfaces. This review will examine the evidence suggesting a role for IFNLR1 transcriptional variants in mediating cell responsiveness to IFNL ligand exposure and regulation of pathway activity.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEBS Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1