Peng Liu, Sitian He, Anouk Mentink, Pieter Hart, Yongjun Wu, Leon W M M Terstappen, Pascal Jonkheijm, Michiel Stevens
Detecting circulating tumor cells (CTCs) is challenging due to their low presence and heterogeneity. Traditional methods using EpCAM-based separation struggle with CTCs that have undergone epithelial-mesenchymal transition, as this results in lower EpCAM expression. This study presents the use of silica-coated magnetic nanobeads functionalized with streptavidin for CTC capture. Using the FETCH magnetic separation system, we validated the capture efficiency of our beads on tumor cells with varying EpCAM expression. Our beads showed superior capture rates for LNCaP (97%), PC3-9 (91%), PC3 (23%), A549 (22%), and T24 (8%) cells compared to commercial MojoSort™ beads. Despite slightly higher nonspecific binding than CellSearch, our beads demonstrated improved sensitivity for EpCAMlow cells, suggesting they have promise for enhanced CTC capture.
{"title":"Silica-coated magnetic nanobeads in a flow enrichment target capture Halbach (FETCH) magnetic separation system for circulating tumor cell enrichment.","authors":"Peng Liu, Sitian He, Anouk Mentink, Pieter Hart, Yongjun Wu, Leon W M M Terstappen, Pascal Jonkheijm, Michiel Stevens","doi":"10.1002/1873-3468.15094","DOIUrl":"https://doi.org/10.1002/1873-3468.15094","url":null,"abstract":"<p><p>Detecting circulating tumor cells (CTCs) is challenging due to their low presence and heterogeneity. Traditional methods using EpCAM-based separation struggle with CTCs that have undergone epithelial-mesenchymal transition, as this results in lower EpCAM expression. This study presents the use of silica-coated magnetic nanobeads functionalized with streptavidin for CTC capture. Using the FETCH magnetic separation system, we validated the capture efficiency of our beads on tumor cells with varying EpCAM expression. Our beads showed superior capture rates for LNCaP (97%), PC3-9 (91%), PC3 (23%), A549 (22%), and T24 (8%) cells compared to commercial MojoSort™ beads. Despite slightly higher nonspecific binding than CellSearch, our beads demonstrated improved sensitivity for EpCAMlow cells, suggesting they have promise for enhanced CTC capture.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga Zimmermannova, Martin Kubeš, Tereza Przeczková, Gal Masrati
The Homo sapiens Na+/H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ in exchange for protons across cell membranes, and its dysfunction results in various pathologies. The activity of HsNHA2 is specifically inhibited by the flavonoid phloretin. Using bioinformatic modeling, we predicted two amino acids (R177 and S178) as being important for the binding of phloretin to the HsNHA2 molecule. Functional expression of HsNHA2 in Saccharomyces cerevisiae and its site-directed mutagenesis revealed that while the R177T mutation resulted in an antiporter that was less sensitive to phloretin, the S178T mutation enhanced the inhibitory effect of phloretin on HsNHA2. Our data corroborate the transport properties of HsNHA2 and its interactions with an inhibitor and can be helpful for the development of new therapeutics targeting this antiporter and its pleiotropic physiological functions.
Homo sapiens Na+/H+反转运蛋白NHA2 (SLC9B2)通过细胞膜运输Na+或Li+以交换质子,其功能障碍导致各种病理。HsNHA2的活性被黄酮类根皮素特异性抑制。利用生物信息学模型,我们预测了两个氨基酸(R177和S178)对于根皮素与HsNHA2分子的结合是重要的。HsNHA2在酿酒酵母中的功能表达及其定点突变表明,R177T突变导致一个对根皮素不太敏感的反向转运蛋白,而S178T突变增强了根皮素对HsNHA2的抑制作用。我们的数据证实了HsNHA2的转运特性及其与抑制剂的相互作用,并有助于开发针对这种反向转运蛋白及其多效生理功能的新疗法。
{"title":"Residues R177 and S178 of the human Na<sup>+</sup>/H<sup>+</sup> antiporter NHA2 are involved in its inhibition by the flavonoid phloretin.","authors":"Olga Zimmermannova, Martin Kubeš, Tereza Przeczková, Gal Masrati","doi":"10.1002/1873-3468.15089","DOIUrl":"https://doi.org/10.1002/1873-3468.15089","url":null,"abstract":"<p><p>The Homo sapiens Na<sup>+</sup>/H<sup>+</sup> antiporter NHA2 (SLC9B2) transports Na<sup>+</sup> or Li<sup>+</sup> in exchange for protons across cell membranes, and its dysfunction results in various pathologies. The activity of HsNHA2 is specifically inhibited by the flavonoid phloretin. Using bioinformatic modeling, we predicted two amino acids (R177 and S178) as being important for the binding of phloretin to the HsNHA2 molecule. Functional expression of HsNHA2 in Saccharomyces cerevisiae and its site-directed mutagenesis revealed that while the R177T mutation resulted in an antiporter that was less sensitive to phloretin, the S178T mutation enhanced the inhibitory effect of phloretin on HsNHA2. Our data corroborate the transport properties of HsNHA2 and its interactions with an inhibitor and can be helpful for the development of new therapeutics targeting this antiporter and its pleiotropic physiological functions.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for studying second messengers with high temporal and spatial resolution. FRET is commonly detected by ratio imaging, but fluorescence lifetime imaging microscopy (FLIM), which measures the donor fluorophore's lifetime, offers a robust and more quantitative alternative. We have introduced and optimized four generations of FRET sensors for cAMP, based on the effector molecule Epac1, including variants for either ratio imaging or FLIM detection. Recently, Massengill and colleagues introduced additional mutations that improve cytosolic localization in these sensors, focusing on constructs optimized for ratio imaging. Here we present and briefly characterize these mutations in our dedicated FLIM sensors, finding they enhance cytosolic localization while maintaining performance comparable to original constructs.
{"title":"Cytosolic-enhanced dark Epac-based FRET sensors allow for intracellular cAMP detection in live cells via FLIM.","authors":"Giulia Zanetti, Jeffrey B Klarenbeek, Kees Jalink","doi":"10.1002/1873-3468.15093","DOIUrl":"https://doi.org/10.1002/1873-3468.15093","url":null,"abstract":"<p><p>Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for studying second messengers with high temporal and spatial resolution. FRET is commonly detected by ratio imaging, but fluorescence lifetime imaging microscopy (FLIM), which measures the donor fluorophore's lifetime, offers a robust and more quantitative alternative. We have introduced and optimized four generations of FRET sensors for cAMP, based on the effector molecule Epac1, including variants for either ratio imaging or FLIM detection. Recently, Massengill and colleagues introduced additional mutations that improve cytosolic localization in these sensors, focusing on constructs optimized for ratio imaging. Here we present and briefly characterize these mutations in our dedicated FLIM sensors, finding they enhance cytosolic localization while maintaining performance comparable to original constructs.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR-Cas9 is a widely used genome-editing tool. We previously developed a method with improved homology-directed repair efficiency and reduced off-target effects by utilizing a fusion protein of AcrIIA4, a Cas9 inhibitor, and Cdt1, which accumulates in the G1 phase and activates Cas9 only in the S/G2 phase. However, it is unknown whether Cas9 inhibition by AcrIIA4 + Cdt1 occurs repeatedly in the G1 phase as the cell cycle progresses. In this study, we used the CRISPRa system to monitor changes in the interaction between Cas9 and AcrIIA4 + Cdt1 at single-cell resolution and in real time. Our findings are among the few examples of successful detection of fluctuating protein-protein interactions that oscillate over time.
{"title":"Cell cycle-dependent regulation of CRISPR-Cas9 repetitive activation by anti-CRISPR and Cdt1 fusion in the CRISPRa system.","authors":"Kanae Kishi, Kiyomi Nigorikawa, Yuki Hasegawa, Yusaku Ohta, Erina Matsugi, Daisuke Matsumoto, Wataru Nomura","doi":"10.1002/1873-3468.15090","DOIUrl":"https://doi.org/10.1002/1873-3468.15090","url":null,"abstract":"<p><p>CRISPR-Cas9 is a widely used genome-editing tool. We previously developed a method with improved homology-directed repair efficiency and reduced off-target effects by utilizing a fusion protein of AcrIIA4, a Cas9 inhibitor, and Cdt1, which accumulates in the G1 phase and activates Cas9 only in the S/G2 phase. However, it is unknown whether Cas9 inhibition by AcrIIA4 + Cdt1 occurs repeatedly in the G1 phase as the cell cycle progresses. In this study, we used the CRISPRa system to monitor changes in the interaction between Cas9 and AcrIIA4 + Cdt1 at single-cell resolution and in real time. Our findings are among the few examples of successful detection of fluctuating protein-protein interactions that oscillate over time.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dawn M Maynard, Bernadette R Gochuico, Hadass Pri Chen, Christopher K E Bleck, Patricia M Zerfas, Wendy J Introne, William A Gahl, May C V Malicdan
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals. We identified 1029 proteins, 149 of which were altered in HPS-1 uEVs. Ingenuity Pathway Analysis revealed disruptions in mitochondrial function and the LXR/RXR pathway that regulates lipid metabolism, which is supported by our novel Hps1 knockout mouse. Serum concentration of the LXR/RXR pathway protein ApoA1 in our patient cohort was positively correlated with kidney function (with the estimated glomerular filtration rate or eGFR). uEVs can be used to study epithelial cell protein trafficking in HPS-1 and may provide outcome measures for HPS-1 therapeutic interventions.
{"title":"Insights into the renal pathophysiology in Hermansky-Pudlak syndrome-1 from urinary extracellular vesicle proteomics and a new mouse model.","authors":"Dawn M Maynard, Bernadette R Gochuico, Hadass Pri Chen, Christopher K E Bleck, Patricia M Zerfas, Wendy J Introne, William A Gahl, May C V Malicdan","doi":"10.1002/1873-3468.15088","DOIUrl":"https://doi.org/10.1002/1873-3468.15088","url":null,"abstract":"<p><p>Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals. We identified 1029 proteins, 149 of which were altered in HPS-1 uEVs. Ingenuity Pathway Analysis revealed disruptions in mitochondrial function and the LXR/RXR pathway that regulates lipid metabolism, which is supported by our novel Hps1 knockout mouse. Serum concentration of the LXR/RXR pathway protein ApoA1 in our patient cohort was positively correlated with kidney function (with the estimated glomerular filtration rate or eGFR). uEVs can be used to study epithelial cell protein trafficking in HPS-1 and may provide outcome measures for HPS-1 therapeutic interventions.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefan Pieter Hendrik van den Berg, Adja Zoumaro-Djayoon, Flora Yang, Gregory Bokinsky
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.
{"title":"Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli.","authors":"Stefan Pieter Hendrik van den Berg, Adja Zoumaro-Djayoon, Flora Yang, Gregory Bokinsky","doi":"10.1002/1873-3468.15092","DOIUrl":"https://doi.org/10.1002/1873-3468.15092","url":null,"abstract":"<p><p>Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.
{"title":"Release of FUS into the extracellular space is regulated by its amino-terminal prion-like domain.","authors":"Tadashi Nakaya","doi":"10.1002/1873-3468.15086","DOIUrl":"https://doi.org/10.1002/1873-3468.15086","url":null,"abstract":"<p><p>Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 via a novel mechanism.
{"title":"Violaceoid F induces nuclear translocation of FOXO3a by inhibiting CRM1 via a novel mechanism and suppresses HeLa cell growth.","authors":"Nobumoto Watanabe, Emiko Sanada, Akiko Okano, Toshihiko Nogawa, Ngit Shin Lai, Yui Mazaki, Makoto Muroi, Yoko Yashiroda, Minoru Yoshida, Hiroyuki Osada","doi":"10.1002/1873-3468.15085","DOIUrl":"https://doi.org/10.1002/1873-3468.15085","url":null,"abstract":"<p><p>FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 via a novel mechanism.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Federation of European Biochemical Societies (FEBS) celebrated its 60th anniversary in 2024, and FEBS Letters marked the occasion with a writing contest on the future of scientific societies. This editorial introduces the winning article by Yussuf Ali and presents an overview of the predominant themes that emerged during the contest, which included AI, interdisciplinarity, diversity and sustainability.
{"title":"The FEBS 60th anniversary writing contest—blueprints for the scientific society of tomorrow","authors":"Duncan E. Wright","doi":"10.1002/1873-3468.15066","DOIUrl":"10.1002/1873-3468.15066","url":null,"abstract":"<p>The Federation of European Biochemical Societies (FEBS) celebrated its 60th anniversary in 2024, and <i>FEBS Letters</i> marked the occasion with a writing contest on the future of scientific societies. This editorial introduces the winning article by Yussuf Ali and presents an overview of the predominant themes that emerged during the contest, which included AI, interdisciplinarity, diversity and sustainability.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 24","pages":"2943-2945"},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.15066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phospholipids are asymmetrically distributed in the plasma membrane (PM), and scramblases disrupt this asymmetry by shuffling phospholipids. We recently identified mouse Tmem63b as a membrane structure-responsive scramblase. Tmem63b belongs to the TMEM63/OSCA family of ion channels; however, the conservation of the scramblase activity within this family remains unclear. We expressed human TMEM63 paralogs, TMEM63B orthologs, and plant OSCA1.1 in Tmem63b-deficient mouse pro-B cells and found that vertebrate TMEM63B orthologs exhibit scramblase activity at the PM. Previously, ten pathogenic human TMEM63B variants were identified, some of which exhibited constitutive scramblase activity. Upon expressing all variants, we found that nine variants displayed constitutive scramblase activity. These results suggest that membrane structure-responsive scramblase activity at the PM is conserved among vertebrate TMEM63B orthologs.
{"title":"Membrane structure-responsive lipid scramblase activity of the TMEM63/OSCA family.","authors":"Yugo Miyata, Megumi Nishimura, Aya Nagata, Xu Jing, Cheryl S Sultan, Risa Kuribayashi, Katsuya Takahashi, Yongchan Lee, Tomohiro Nishizawa, Katsumori Segawa","doi":"10.1002/1873-3468.15084","DOIUrl":"https://doi.org/10.1002/1873-3468.15084","url":null,"abstract":"<p><p>Phospholipids are asymmetrically distributed in the plasma membrane (PM), and scramblases disrupt this asymmetry by shuffling phospholipids. We recently identified mouse Tmem63b as a membrane structure-responsive scramblase. Tmem63b belongs to the TMEM63/OSCA family of ion channels; however, the conservation of the scramblase activity within this family remains unclear. We expressed human TMEM63 paralogs, TMEM63B orthologs, and plant OSCA1.1 in Tmem63b-deficient mouse pro-B cells and found that vertebrate TMEM63B orthologs exhibit scramblase activity at the PM. Previously, ten pathogenic human TMEM63B variants were identified, some of which exhibited constitutive scramblase activity. Upon expressing all variants, we found that nine variants displayed constitutive scramblase activity. These results suggest that membrane structure-responsive scramblase activity at the PM is conserved among vertebrate TMEM63B orthologs.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}