首页 > 最新文献

Evolving Systems最新文献

英文 中文
Generic image application using GANs (Generative Adversarial Networks): A Review. 基于生成对抗网络的通用图像应用综述。
IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-30 DOI: 10.1007/s12530-022-09464-y
S P Porkodi, V Sarada, Vivek Maik, K Gurushankar

The generative adversarial network (GAN), which has received considerable notice for its outstanding data generating abilities, is one of the most intriguing fields of artificial intelligence study. Large volumes of data are required to develop generalizable deep learning models. GANs are a highly strong class of networks capable of producing believable new pictures from unlabeled source prints and labeled medical imaging data is scarce and costly to produce. Despite GAN's remarkable outcomes, steady training remains a challenge. The goal of this study is to perform a complete evaluation of the GAN-related literature and to present a succinct summary of existing knowledge on GAN, including the theory following it, its intended purpose, potential base model alterations, and latest breakthroughs in the area. This article will aid you in gaining a comprehensive grasp of GAN and provide an overview of GAN and its many model types, as well as common implementations, measurement parameter suggestions, and GAN applications in image processing. It will also go over the several applications of GANs in image processing, as well as their benefits and limitations, as well as its prospective reach.

生成对抗网络(GAN)因其出色的数据生成能力而受到广泛关注,是人工智能研究中最有趣的领域之一。开发可推广的深度学习模型需要大量的数据。gan是一种非常强大的网络,能够从未标记的源图像中生成可信的新图像,而标记的医学成像数据是稀缺且昂贵的。尽管GAN取得了显著的成果,但稳定的训练仍然是一个挑战。本研究的目的是对氮化镓相关文献进行全面评估,并对氮化镓的现有知识进行简要总结,包括其理论,其预期目的,潜在的基础模型变更以及该领域的最新突破。本文将帮助您全面掌握GAN,并概述GAN及其许多模型类型,以及常见实现、测量参数建议和GAN在图像处理中的应用。它还将讨论gan在图像处理中的几个应用,以及它们的优点和局限性,以及它的预期范围。
{"title":"Generic image application using GANs (Generative Adversarial Networks): A Review.","authors":"S P Porkodi, V Sarada, Vivek Maik, K Gurushankar","doi":"10.1007/s12530-022-09464-y","DOIUrl":"10.1007/s12530-022-09464-y","url":null,"abstract":"<p><p>The generative adversarial network (GAN), which has received considerable notice for its outstanding data generating abilities, is one of the most intriguing fields of artificial intelligence study. Large volumes of data are required to develop generalizable deep learning models. GANs are a highly strong class of networks capable of producing believable new pictures from unlabeled source prints and labeled medical imaging data is scarce and costly to produce. Despite GAN's remarkable outcomes, steady training remains a challenge. The goal of this study is to perform a complete evaluation of the GAN-related literature and to present a succinct summary of existing knowledge on GAN, including the theory following it, its intended purpose, potential base model alterations, and latest breakthroughs in the area. This article will aid you in gaining a comprehensive grasp of GAN and provide an overview of GAN and its many model types, as well as common implementations, measurement parameter suggestions, and GAN applications in image processing. It will also go over the several applications of GANs in image processing, as well as their benefits and limitations, as well as its prospective reach.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"84 1","pages":"1-15"},"PeriodicalIF":2.7,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83845029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An advance computational intelligent approach to solve the third kind of nonlinear pantograph Lane–Emden differential system 一种求解第三类非线性受电弓Lane-Emden微分系统的先进计算智能方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-28 DOI: 10.1007/s12530-022-09469-7
Z. Sabir, R. Zahoor, Mohamed R. Ali, R. Sadat
{"title":"An advance computational intelligent approach to solve the third kind of nonlinear pantograph Lane–Emden differential system","authors":"Z. Sabir, R. Zahoor, Mohamed R. Ali, R. Sadat","doi":"10.1007/s12530-022-09469-7","DOIUrl":"https://doi.org/10.1007/s12530-022-09469-7","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"29 6 1","pages":"393-412"},"PeriodicalIF":3.2,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88347246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An effective shunt active power filter based on novel binary multilevel inverter and optimal type-2 fuzzy system to accurately mitigate harmonic currents 一种基于新型二值多电平逆变器和最优2型模糊系统的有效并联有源电力滤波器,能准确地缓解谐波电流
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-26 DOI: 10.1007/s12530-022-09465-x
Hossein Toopchizadeh, Mostafa Zallaghi, Mosayeb Moradi, Saeid Shahmoradi
{"title":"An effective shunt active power filter based on novel binary multilevel inverter and optimal type-2 fuzzy system to accurately mitigate harmonic currents","authors":"Hossein Toopchizadeh, Mostafa Zallaghi, Mosayeb Moradi, Saeid Shahmoradi","doi":"10.1007/s12530-022-09465-x","DOIUrl":"https://doi.org/10.1007/s12530-022-09465-x","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"97 1","pages":"783 - 800"},"PeriodicalIF":3.2,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73596647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A trust region based local Bayesian optimization without exhausted optimization of acquisition function 一种基于信任域的局部贝叶斯优化算法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-26 DOI: 10.1007/s12530-022-09470-0
Qingxia Li, Anbing Fu, Wenhong Wei, Yuhui Zhang
{"title":"A trust region based local Bayesian optimization without exhausted optimization of acquisition function","authors":"Qingxia Li, Anbing Fu, Wenhong Wei, Yuhui Zhang","doi":"10.1007/s12530-022-09470-0","DOIUrl":"https://doi.org/10.1007/s12530-022-09470-0","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"6 1","pages":"839 - 858"},"PeriodicalIF":3.2,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79862561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of feature extraction using nonlinear dynamic system in face recognition 非线性动态系统特征提取在人脸识别中的应用
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-24 DOI: 10.1007/s12530-022-09468-8
Lianglei Sun, Hong-Yang Lin, Wanbo Yu, Yan Zhang
{"title":"Application of feature extraction using nonlinear dynamic system in face recognition","authors":"Lianglei Sun, Hong-Yang Lin, Wanbo Yu, Yan Zhang","doi":"10.1007/s12530-022-09468-8","DOIUrl":"https://doi.org/10.1007/s12530-022-09468-8","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"38 1","pages":"825 - 838"},"PeriodicalIF":3.2,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77643539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XECryptoGA: a metaheuristic algorithm-based block cipher to enhance the security goals XECryptoGA:基于元启发式算法的分组密码,以提高安全性目标
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-21 DOI: 10.1007/s12530-022-09462-0
Md Saquib Jawed, Mohammad Sajid
{"title":"XECryptoGA: a metaheuristic algorithm-based block cipher to enhance the security goals","authors":"Md Saquib Jawed, Mohammad Sajid","doi":"10.1007/s12530-022-09462-0","DOIUrl":"https://doi.org/10.1007/s12530-022-09462-0","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"51 1","pages":"749 - 770"},"PeriodicalIF":3.2,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73512774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
A novel multilevel color image segmentation technique based on an improved firefly algorithm and energy curve 基于改进的萤火虫算法和能量曲线的多级彩色图像分割技术
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-18 DOI: 10.1007/s12530-022-09460-2
Q. Guo, Hao Peng
{"title":"A novel multilevel color image segmentation technique based on an improved firefly algorithm and energy curve","authors":"Q. Guo, Hao Peng","doi":"10.1007/s12530-022-09460-2","DOIUrl":"https://doi.org/10.1007/s12530-022-09460-2","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"9 1","pages":"685 - 733"},"PeriodicalIF":3.2,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85260285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved equilibrium optimization based on Levy flight approach for feature selection 基于Levy飞行方法的特征选择改进平衡优化
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-15 DOI: 10.1007/s12530-022-09461-1
K. Balakrishnan, R. Dhanalakshmi, M. Akila, B. B. Sinha
{"title":"Improved equilibrium optimization based on Levy flight approach for feature selection","authors":"K. Balakrishnan, R. Dhanalakshmi, M. Akila, B. B. Sinha","doi":"10.1007/s12530-022-09461-1","DOIUrl":"https://doi.org/10.1007/s12530-022-09461-1","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"138 1","pages":"735 - 746"},"PeriodicalIF":3.2,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81207239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Tackling over-smoothing in multi-label image classification using graphical convolution neural network. 利用图形卷积神经网络解决多标签图像分类中的过度平滑问题。
IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-07 DOI: 10.1007/s12530-022-09463-z
Vikas Chauhan, Aruna Tiwari, Boppudi Venkata, Vislavath Naik

The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical convolution network suffers from an over-smoothing problem when the layers are increased in the network. Over-smoothing makes the nodes indistinguishable in the deep graphical convolution network. This paper proposes a normalization technique to tackle the over-smoothing problem in the graphical convolution network for multi-label classification. The proposed approach is an efficient multi-label object classifier based on a graphical convolution neural network that tackles the over-smoothing problem. The proposed approach normalizes the output of the graph such that the total pairwise squared distance between nodes remains the same after performing the convolution operation. The proposed approach outperforms the existing state-of-the-art approaches based on the results obtained from the experiments performed on MS-COCO and VOC2007 datasets. The experimentation results show that pairnorm mitigates the effect of over-smoothing in the case of using a deep graphical convolution network.

近年来,由于其标签嵌入表示能力,图形卷积网络在多标签分类中的重要性越来越大。图形卷积网络能够利用标签之间的相关性来捕获标签依赖关系。然而,随着网络层数的增加,图形卷积网络存在过度平滑问题。在深度图形卷积网络中,过度平滑使得节点难以区分。本文提出了一种归一化技术来解决图形卷积网络中多标签分类的过度平滑问题。该方法是一种基于图形卷积神经网络的高效多标签目标分类器,解决了过度平滑问题。所提出的方法将图的输出归一化,使得节点之间的总成对平方距离在执行卷积操作后保持不变。基于MS-COCO和VOC2007数据集的实验结果,本文提出的方法优于现有的最先进的方法。实验结果表明,在使用深度图形卷积网络的情况下,对范数减轻了过度平滑的影响。
{"title":"Tackling over-smoothing in multi-label image classification using graphical convolution neural network.","authors":"Vikas Chauhan, Aruna Tiwari, Boppudi Venkata, Vislavath Naik","doi":"10.1007/s12530-022-09463-z","DOIUrl":"10.1007/s12530-022-09463-z","url":null,"abstract":"<p><p>The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical convolution network suffers from an over-smoothing problem when the layers are increased in the network. Over-smoothing makes the nodes indistinguishable in the deep graphical convolution network. This paper proposes a normalization technique to tackle the over-smoothing problem in the graphical convolution network for multi-label classification. The proposed approach is an efficient multi-label object classifier based on a graphical convolution neural network that tackles the over-smoothing problem. The proposed approach normalizes the output of the graph such that the total pairwise squared distance between nodes remains the same after performing the convolution operation. The proposed approach outperforms the existing state-of-the-art approaches based on the results obtained from the experiments performed on MS-COCO and VOC2007 datasets. The experimentation results show that pairnorm mitigates the effect of over-smoothing in the case of using a deep graphical convolution network.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"44 1","pages":"1-11"},"PeriodicalIF":2.7,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79445647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A player unknown's battlegrounds ranking based optimization technique for power system optimization problem 基于玩家未知战场排名的电力系统优化技术
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-08-14 DOI: 10.1007/s12530-022-09458-w
K. Bodha, V. Mukherjee, V. Yadav
{"title":"A player unknown's battlegrounds ranking based optimization technique for power system optimization problem","authors":"K. Bodha, V. Mukherjee, V. Yadav","doi":"10.1007/s12530-022-09458-w","DOIUrl":"https://doi.org/10.1007/s12530-022-09458-w","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"13 1","pages":"295-317"},"PeriodicalIF":3.2,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87557260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 54
期刊
Evolving Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1