Pub Date : 2024-05-07DOI: 10.1186/s42408-024-00278-8
Catrin M. Edgeley, William H. Cannon, Scott Pearse, Branko Kosović, Gabriele Pfister, Rajesh Kumar
Increased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire visualizations more broadly. We conducted semi-structured interviews with 101 residents and professionals affected by Colorado’s 2020 East Troublesome and 2021 Marshall Fires, using 3D model visualizations of fire events on tablets as a discussion tool to understand how fire behavior influenced evacuation experiences and decision-making. We provide empirically gathered insights that can inform the ethical use of wildfire visualizations by scientists, managers, and communicators working at the intersection of fire management and public safety. Study design, interview discussions, and field observations from both case studies reveal the importance of nuanced and responsive approaches for the use of 3D visualizations, with an emphasis on the implementation of protocols that ensure the risk of harm to the intended audience is minimal. We share five considerations for use of visualizations as communication tools with public and professional audiences, expanding existing research into post-fire spaces: (1) determine whether the use of visualizations will truly benefit users; (2) connect users to visualizations by incorporating local values; (3) provide context around model uncertainty; (4) design and share visualizations in ways that meet the needs of the user; (5) be cognizant of the emotional impacts that sharing wildfire visualizations can have. This research demonstrates the importance of study design and planning that considers the emotional and psychological well-being of users. For users that do wish to engage with visualizations, this technical note provides guidance for ensuring meaningful understandings that can generate new discussion and knowledge. We advocate for communication with visualizations that consider local context and provide opportunities for users to engage to a level that suits them, suggesting that visualizations should serve as catalysts for meaningful dialogue rather than conclusive information sources.
{"title":"Five social and ethical considerations for using wildfire visualizations as a communication tool","authors":"Catrin M. Edgeley, William H. Cannon, Scott Pearse, Branko Kosović, Gabriele Pfister, Rajesh Kumar","doi":"10.1186/s42408-024-00278-8","DOIUrl":"https://doi.org/10.1186/s42408-024-00278-8","url":null,"abstract":"Increased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire visualizations more broadly. We conducted semi-structured interviews with 101 residents and professionals affected by Colorado’s 2020 East Troublesome and 2021 Marshall Fires, using 3D model visualizations of fire events on tablets as a discussion tool to understand how fire behavior influenced evacuation experiences and decision-making. We provide empirically gathered insights that can inform the ethical use of wildfire visualizations by scientists, managers, and communicators working at the intersection of fire management and public safety. Study design, interview discussions, and field observations from both case studies reveal the importance of nuanced and responsive approaches for the use of 3D visualizations, with an emphasis on the implementation of protocols that ensure the risk of harm to the intended audience is minimal. We share five considerations for use of visualizations as communication tools with public and professional audiences, expanding existing research into post-fire spaces: (1) determine whether the use of visualizations will truly benefit users; (2) connect users to visualizations by incorporating local values; (3) provide context around model uncertainty; (4) design and share visualizations in ways that meet the needs of the user; (5) be cognizant of the emotional impacts that sharing wildfire visualizations can have. This research demonstrates the importance of study design and planning that considers the emotional and psychological well-being of users. For users that do wish to engage with visualizations, this technical note provides guidance for ensuring meaningful understandings that can generate new discussion and knowledge. We advocate for communication with visualizations that consider local context and provide opportunities for users to engage to a level that suits them, suggesting that visualizations should serve as catalysts for meaningful dialogue rather than conclusive information sources.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1186/s42408-024-00275-x
Karma Tenzin, Craig R. Nitschke, Kathryn J. Allen, Paul J. Krusic, Edward R. Cook, Thiet V. Nguyen, Patrick J. Baker
Chir pine (Pinus roxburghii Sarg.) forests are distributed in the dry valleys of Bhutan Himalaya. In the past, these forests have been heavily influenced by human activities such as grazing, burning, resin tapping, and collection of non-timber forest products. Bhutan’s Forest Act of 1969, which shifted forest management from local community control to centralized governmental control, greatly restricted these activities. To understand the implications of the Forest Act on the chir pine forests, we used tree-rings and fire scars to reconstruct the fire history of a chir pine forest in eastern Bhutan. This provided an opportunity to characterize the fire regime before and after the Forest Act of 1969 was implemented and assess the scale and magnitude of changes that have occurred. We developed a 120-year chir pine fire chronology from nine sites within a single forested landscape. Between 1900 and ~ 1970, fires were small and patchy. When fires occurred, they were limited to one to two sites within the larger study area. After 1970, there was a distinct shift in fire activity, with fires in 1985, 1989, 1996, 2000, and 2013 burning > 90% of sample plots. Fire activity was positively associated with La Niña conditions (wetter, cooler) in the preceding year. This is likely the result of increased accumulation and connectivity of fuels on the forest floor in wetter years. Prior to 1970, the fire regime in the studied chir pine landscape in eastern Bhutan was dominated by patchy, low-intensity fires indicating that the fire regime was fuel limited. After 1970, fires became larger and more frequent. This shift was associated with the enactment of the Bhutan Forest Act in 1969, which regulated grazing and implemented a policy of strict fire exclusion in government-reserved forests. This likely led to a large buildup of fuels, particularly after La Niña years. Historical patterns of grazing and low-intensity fires prior to the Forest Act kept fuel loads low and disconnected. The cessation of most human activities in these forests after 1969 resulted in an increase in fuel loads and connectivity within the landscape. This has greatly reshaped fire regimes in the chir pine forests of eastern Bhutan over the past half century.
{"title":"Climate and humans interact to shape the fire regime of a chir pine (Pinus roxburghii) forest in eastern Bhutan","authors":"Karma Tenzin, Craig R. Nitschke, Kathryn J. Allen, Paul J. Krusic, Edward R. Cook, Thiet V. Nguyen, Patrick J. Baker","doi":"10.1186/s42408-024-00275-x","DOIUrl":"https://doi.org/10.1186/s42408-024-00275-x","url":null,"abstract":"Chir pine (Pinus roxburghii Sarg.) forests are distributed in the dry valleys of Bhutan Himalaya. In the past, these forests have been heavily influenced by human activities such as grazing, burning, resin tapping, and collection of non-timber forest products. Bhutan’s Forest Act of 1969, which shifted forest management from local community control to centralized governmental control, greatly restricted these activities. To understand the implications of the Forest Act on the chir pine forests, we used tree-rings and fire scars to reconstruct the fire history of a chir pine forest in eastern Bhutan. This provided an opportunity to characterize the fire regime before and after the Forest Act of 1969 was implemented and assess the scale and magnitude of changes that have occurred. We developed a 120-year chir pine fire chronology from nine sites within a single forested landscape. Between 1900 and ~ 1970, fires were small and patchy. When fires occurred, they were limited to one to two sites within the larger study area. After 1970, there was a distinct shift in fire activity, with fires in 1985, 1989, 1996, 2000, and 2013 burning > 90% of sample plots. Fire activity was positively associated with La Niña conditions (wetter, cooler) in the preceding year. This is likely the result of increased accumulation and connectivity of fuels on the forest floor in wetter years. Prior to 1970, the fire regime in the studied chir pine landscape in eastern Bhutan was dominated by patchy, low-intensity fires indicating that the fire regime was fuel limited. After 1970, fires became larger and more frequent. This shift was associated with the enactment of the Bhutan Forest Act in 1969, which regulated grazing and implemented a policy of strict fire exclusion in government-reserved forests. This likely led to a large buildup of fuels, particularly after La Niña years. Historical patterns of grazing and low-intensity fires prior to the Forest Act kept fuel loads low and disconnected. The cessation of most human activities in these forests after 1969 resulted in an increase in fuel loads and connectivity within the landscape. This has greatly reshaped fire regimes in the chir pine forests of eastern Bhutan over the past half century. ","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1186/s42408-024-00274-y
Benjamin Wagner, Patrick J. Baker, Craig R. Nitschke
Tree hollows are an important habitat resource used by arboreal fauna for nesting and denning. Hollows form when trees mature and are exposed to decay and physical damage. In the absence of excavating fauna, hollow formation can take up to 200 years in Australian temperate Eucalyptus forests, making tree hollows a critical but slow forming habitat feature. The increasing frequency and severity of wildfires due to climate change has led to increased concern about the landscape-scale loss of nesting space for arboreal fauna, including endangered species such as the folivorous southern greater glider (Petauroides volans). To understand patterns of nesting resource availability, we assessed drivers of hollow occurrence in southeastern Australian mixed-species Eucalyptus forests and quantified the effects of an unprecedented large-scale wildfire, the 2019/2020 Black Summer bushfires, on hollow occurrence and abundance. Tree size and shape, as well as site productivity and topography, were important predictors for hollow occurrence both before and after the fires. The occurrence of the southern greater glider was strongly dependent on high proportions of hollow-bearing trees. While high fire severities had a negative impact on southern greater glider occurrence, the number of hollow-dependent arboreal species was not affected. While the wildfires significantly reduced hollow abundance, we did not find significant effects on hollow occurrence. Fires altered the relationship between tree size and hollow occurrence expressed as a change in the probability of hollow occurrence, with a higher likelihood at smaller tree sizes after the fires. Our findings suggest that post-fire nesting space may be reduced at the tree-scale, while at the stand-scale, hollow-bearing trees persist as biological legacies. These persisting trees can support the recovery of hollow-dependent arboreal fauna, such as the endangered southern greater glider by providing denning and nesting space. Hollow-bearing trees that survived the fires have the potential to form new hollows faster compared to undisturbed mature trees.
{"title":"How an unprecedented wildfire shaped tree hollow occurrence and abundance—implications for arboreal fauna","authors":"Benjamin Wagner, Patrick J. Baker, Craig R. Nitschke","doi":"10.1186/s42408-024-00274-y","DOIUrl":"https://doi.org/10.1186/s42408-024-00274-y","url":null,"abstract":"Tree hollows are an important habitat resource used by arboreal fauna for nesting and denning. Hollows form when trees mature and are exposed to decay and physical damage. In the absence of excavating fauna, hollow formation can take up to 200 years in Australian temperate Eucalyptus forests, making tree hollows a critical but slow forming habitat feature. The increasing frequency and severity of wildfires due to climate change has led to increased concern about the landscape-scale loss of nesting space for arboreal fauna, including endangered species such as the folivorous southern greater glider (Petauroides volans). To understand patterns of nesting resource availability, we assessed drivers of hollow occurrence in southeastern Australian mixed-species Eucalyptus forests and quantified the effects of an unprecedented large-scale wildfire, the 2019/2020 Black Summer bushfires, on hollow occurrence and abundance. Tree size and shape, as well as site productivity and topography, were important predictors for hollow occurrence both before and after the fires. The occurrence of the southern greater glider was strongly dependent on high proportions of hollow-bearing trees. While high fire severities had a negative impact on southern greater glider occurrence, the number of hollow-dependent arboreal species was not affected. While the wildfires significantly reduced hollow abundance, we did not find significant effects on hollow occurrence. Fires altered the relationship between tree size and hollow occurrence expressed as a change in the probability of hollow occurrence, with a higher likelihood at smaller tree sizes after the fires. Our findings suggest that post-fire nesting space may be reduced at the tree-scale, while at the stand-scale, hollow-bearing trees persist as biological legacies. These persisting trees can support the recovery of hollow-dependent arboreal fauna, such as the endangered southern greater glider by providing denning and nesting space. Hollow-bearing trees that survived the fires have the potential to form new hollows faster compared to undisturbed mature trees.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1186/s42408-024-00264-0
Joseph L Crockett, M. Hurteau
{"title":"Climate limits vegetation green-up more than slope, soil erodibility, and immediate precipitation following high-severity wildfire","authors":"Joseph L Crockett, M. Hurteau","doi":"10.1186/s42408-024-00264-0","DOIUrl":"https://doi.org/10.1186/s42408-024-00264-0","url":null,"abstract":"","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1186/s42408-024-00272-0
L. Kobziar, J. Hiers, Claire M. Belcher, William J. Bond, Carolyn A. Enquist, E. L. Loudermilk, J. Miesel, Joseph J. O’Brien, J. Pausas, Sharon Hood, Robert Keane, Penelope Morgan, Melissa R. A. Pingree, Karin L. Riley, Hugh D Safford, Francisco Seijo, J. Varner, Tamara Wall, A. Watts
{"title":"Principles of fire ecology","authors":"L. Kobziar, J. Hiers, Claire M. Belcher, William J. Bond, Carolyn A. Enquist, E. L. Loudermilk, J. Miesel, Joseph J. O’Brien, J. Pausas, Sharon Hood, Robert Keane, Penelope Morgan, Melissa R. A. Pingree, Karin L. Riley, Hugh D Safford, Francisco Seijo, J. Varner, Tamara Wall, A. Watts","doi":"10.1186/s42408-024-00272-0","DOIUrl":"https://doi.org/10.1186/s42408-024-00272-0","url":null,"abstract":"","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1186/s42408-024-00270-2
M. Ortega, Francisco Rodríguez y Silva, Juan Ramón Molina
{"title":"Modeling fuel break effectiveness in southern Spain wildfires","authors":"M. Ortega, Francisco Rodríguez y Silva, Juan Ramón Molina","doi":"10.1186/s42408-024-00270-2","DOIUrl":"https://doi.org/10.1186/s42408-024-00270-2","url":null,"abstract":"","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140667704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1186/s42408-024-00271-1
Gavin M. Jones, Marion A. Clément, Christopher E. Latimer, Marilyn E. Wright, Jamie S. Sanderlin, Shaula J. Hedwall, Rebecca Kirby
Changing fire regimes have the potential to threaten wildlife populations and communities. Understanding species’ responses to novel fire regimes is critical to formulating effective management and conservation strategies in an era of rapid change. Here, we examined the empirical effects of recent and historical wildfire activity on Mexican spotted owl (Strix occidentalis lucida) populations in the southwestern United States. Using region-wide, standardized detection/non-detection data of Mexican spotted owl breeding pairs collected from 2015 to 2022, we found (i) higher rates of pair occupancy at sites that experienced more frequent fires in the three decades prior to the initiation of our study, and (ii) lower rates of local persistence at sites that experienced more extensive high-severity fire during the study. Historical fire regimes throughout much of our study area were characterized by high fire frequencies and limited high-severity components, indicating that Mexican spotted owls responded to wildfire in a manner consistent with their evolutionary environment. Management activities such as prescribed burning and mechanical thinning that aim to reduce stand-replacing fire risk and re-introduce the potential for frequent-fire regimes will likely benefit Mexican spotted owl conservation objectives, as well as promote more resilient forest landscapes.
不断变化的火灾机制有可能威胁野生动物种群和群落。在快速变化的时代,了解物种对新的火灾机制的反应对于制定有效的管理和保护策略至关重要。在这里,我们研究了最近和历史上的野火活动对美国西南部墨西哥斑头鸺鹠(Strix occidentalis lucida)种群的实证影响。利用从2015年到2022年收集的全地区墨西哥斑鸮繁殖对的标准化检测/未检测数据,我们发现:(i)在研究开始前的三十年间,火灾发生频率较高的地点,繁殖对的占有率较高;(ii)在研究期间,火灾发生频率较高的地点,繁殖对的持续率较低。在我们研究区域的大部分地区,历史火灾机制的特点是火灾频率较高,而严重程度较高的成分有限,这表明墨西哥斑鸮对野火的反应方式与其进化环境相一致。规定燃烧和机械疏伐等旨在降低林分替代火灾风险并重新引入频繁火灾机制的管理活动可能会有利于墨西哥斑鸮的保护目标,并促进森林景观更具复原力。
{"title":"Frequent burning and limited stand-replacing fire supports Mexican spotted owl pair occupancy","authors":"Gavin M. Jones, Marion A. Clément, Christopher E. Latimer, Marilyn E. Wright, Jamie S. Sanderlin, Shaula J. Hedwall, Rebecca Kirby","doi":"10.1186/s42408-024-00271-1","DOIUrl":"https://doi.org/10.1186/s42408-024-00271-1","url":null,"abstract":"Changing fire regimes have the potential to threaten wildlife populations and communities. Understanding species’ responses to novel fire regimes is critical to formulating effective management and conservation strategies in an era of rapid change. Here, we examined the empirical effects of recent and historical wildfire activity on Mexican spotted owl (Strix occidentalis lucida) populations in the southwestern United States. Using region-wide, standardized detection/non-detection data of Mexican spotted owl breeding pairs collected from 2015 to 2022, we found (i) higher rates of pair occupancy at sites that experienced more frequent fires in the three decades prior to the initiation of our study, and (ii) lower rates of local persistence at sites that experienced more extensive high-severity fire during the study. Historical fire regimes throughout much of our study area were characterized by high fire frequencies and limited high-severity components, indicating that Mexican spotted owls responded to wildfire in a manner consistent with their evolutionary environment. Management activities such as prescribed burning and mechanical thinning that aim to reduce stand-replacing fire risk and re-introduce the potential for frequent-fire regimes will likely benefit Mexican spotted owl conservation objectives, as well as promote more resilient forest landscapes.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study deals with wildfires in marginal areas of the Mediterranean climatic and biogeographical regions (Northern Mediterranean) where fires were not common. The aim of the research was to determine the differences in floristic composition and traits at different intensities of fire damage and to analyze the changes in forest ecosystems during the wildfires that took place in the summer of 2022. The study included both the zonal forests and non-native black pine (Pinus nigra) forests. Remote sensing techniques linked to the vegetation data sampled in the field during the 2023 vegetation season, the very first season after the fires, were also used in the fire assessment. The study confirmed that satellite data analysis, orthophoto interpretation, and on-site vegetation sampling provide equivalent information on fire severity, opening up the possibility of transferring knowledge to similar post-fire sites without field sampling in the future. TWINSPAN classification analysis divided the sampled plots into clusters based on tree species prevalence and fire severity. The diagnostic species of the clusters were calculated using a fidelity measure. Ordination revealed that the first axis on the detrended correspondence analysis (DCA) correlated with wildfire severity. Ecological conditions and strategies, life forms, chorotypes, seed dispersal classes, and regeneration traits were analyzed along this gradient. We found that post-fire sites became warmer, drier, and lighter, which favored the growth of ruderal, theropytic, cosmopolitan, anemochorous and post-fire emergent species. After the fire, a “wave” of annual ruderal species was observed. The results indicate that post-fire recovery can be left to natural processes without human intervention, except in the case of non-native pine stands where planting or seeding may be necessary. Otherwise, it is essential to control the possible occurrence of invasive species. Isolated adaptations of species to fire have also been observed, such as heat-stimulated germination. Such adaptations could develop in regions exposed to frequent fires and where fires act as an evolutionary factor.
{"title":"Response of vulnerable karst forest ecosystems under different fire severities in the Northern Dinaric Karst mountains (Slovenia)","authors":"Lucia Čahojová, Aljaž Jakob, Mateja Breg Valjavec, Andraž Čarni","doi":"10.1186/s42408-024-00267-x","DOIUrl":"https://doi.org/10.1186/s42408-024-00267-x","url":null,"abstract":"This study deals with wildfires in marginal areas of the Mediterranean climatic and biogeographical regions (Northern Mediterranean) where fires were not common. The aim of the research was to determine the differences in floristic composition and traits at different intensities of fire damage and to analyze the changes in forest ecosystems during the wildfires that took place in the summer of 2022. The study included both the zonal forests and non-native black pine (Pinus nigra) forests. Remote sensing techniques linked to the vegetation data sampled in the field during the 2023 vegetation season, the very first season after the fires, were also used in the fire assessment. The study confirmed that satellite data analysis, orthophoto interpretation, and on-site vegetation sampling provide equivalent information on fire severity, opening up the possibility of transferring knowledge to similar post-fire sites without field sampling in the future. TWINSPAN classification analysis divided the sampled plots into clusters based on tree species prevalence and fire severity. The diagnostic species of the clusters were calculated using a fidelity measure. Ordination revealed that the first axis on the detrended correspondence analysis (DCA) correlated with wildfire severity. Ecological conditions and strategies, life forms, chorotypes, seed dispersal classes, and regeneration traits were analyzed along this gradient. We found that post-fire sites became warmer, drier, and lighter, which favored the growth of ruderal, theropytic, cosmopolitan, anemochorous and post-fire emergent species. After the fire, a “wave” of annual ruderal species was observed. The results indicate that post-fire recovery can be left to natural processes without human intervention, except in the case of non-native pine stands where planting or seeding may be necessary. Otherwise, it is essential to control the possible occurrence of invasive species. Isolated adaptations of species to fire have also been observed, such as heat-stimulated germination. Such adaptations could develop in regions exposed to frequent fires and where fires act as an evolutionary factor.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1186/s42408-024-00268-w
Javier Pérez, Cecilia Brand, Alberto Alonso, Alaia Sarasa, Diana Rojo, Francisco Correa-Araneda, Luz Boyero
Wildfires have strong impacts on terrestrial and aquatic ecosystems, whose frequency, severity, and intensity are increasing with climate change. Moreover, the expansion of exotic monoculture plantations, such as those of eucalypts, increases this risk. When wildfires do not cause the disappearance of riparian vegetation, they still imply the fall of leaf litter exposed to the fire (i.e., crown scorch), which consequences for ecosystems are unknown. To explore how these leaf litter inputs may affect stream ecosystem functioning, we conducted a microcosm experiment where we quantified the decomposition of leaf litter from three tree species (alder, oak, and eucalypt) under two conditions (control litter simulating natural entries and litter subjected to 150 °C for 3 h mimicking exposure to fire). We also examined the interaction between this factor and a temperature rise (which is often associated to the loss of riparian vegetation caused by the wildfire) by manipulating water temperature (10, 12.5, and 15 °C). Finally, we explored the effects of these variables on the growth of a common detritivore, the caddisfly Sericostoma pyrenaicum. Control alder presented the highest decomposition rates, which were notably reduced due to fire exposure. On the contrary, eucalypt litter decomposition was even slower than that of oak and hardly showed any effect derived from fire exposure. The different leaf litter types determined detritivore growth, to a greater extent than variation related to warming, which generally had negligible effects. Our study shows the negative effects of wildfires on stream ecosystem functioning even when they only involve brief exposure of leaf litter to the fire. Effects are greater on the most palatable native species, which represents the highest quality input in streams of the study area. Our results highlight the importance of protecting riparian forests, especially those composed of native species, against wildfires.
野火对陆地和水生生态系统有很大影响,随着气候变化,野火的频率、严重程度和强度都在增加。此外,桉树等外来单一种植园的扩张也增加了这一风险。当野火没有导致河岸植被消失时,它们仍意味着暴露在火中的落叶(即树冠焦枯)的掉落,而这对生态系统的影响尚不清楚。为了探索这些落叶的输入会如何影响溪流生态系统的功能,我们进行了一个微观世界实验,在两种条件下(模拟自然进入的对照落叶和模拟火灾暴露的 150 °C 3 小时的落叶)量化了三种树种(赤杨、橡树和桉树)落叶的分解情况。我们还通过调节水温(10、12.5 和 15 °C)研究了这一因素与温度上升(通常与野火造成的河岸植被损失有关)之间的相互作用。最后,我们还探讨了这些变量对一种常见的食腐动物--笛簧片蝇(Sericostoma pyrenaicum)生长的影响。对照组桤木的分解率最高,但由于受到火灾影响,分解率明显降低。相反,桉树落叶的分解速度比橡树还要慢,而且几乎没有受到火灾的影响。不同的落叶类型决定了食腐动物的生长,其影响程度大于与气候变暖有关的变化,后者的影响一般可以忽略不计。我们的研究表明,野火对溪流生态系统的功能有负面影响,即使野火只涉及枯落叶的短暂暴露。对最适口的本地物种的影响更大,而这些物种代表了研究区域溪流中最高质量的投入。我们的研究结果突显了保护河岸森林,尤其是由本地物种组成的河岸森林免受野火影响的重要性。
{"title":"Wildfires alter stream ecosystem functioning through effects on leaf litter","authors":"Javier Pérez, Cecilia Brand, Alberto Alonso, Alaia Sarasa, Diana Rojo, Francisco Correa-Araneda, Luz Boyero","doi":"10.1186/s42408-024-00268-w","DOIUrl":"https://doi.org/10.1186/s42408-024-00268-w","url":null,"abstract":"Wildfires have strong impacts on terrestrial and aquatic ecosystems, whose frequency, severity, and intensity are increasing with climate change. Moreover, the expansion of exotic monoculture plantations, such as those of eucalypts, increases this risk. When wildfires do not cause the disappearance of riparian vegetation, they still imply the fall of leaf litter exposed to the fire (i.e., crown scorch), which consequences for ecosystems are unknown. To explore how these leaf litter inputs may affect stream ecosystem functioning, we conducted a microcosm experiment where we quantified the decomposition of leaf litter from three tree species (alder, oak, and eucalypt) under two conditions (control litter simulating natural entries and litter subjected to 150 °C for 3 h mimicking exposure to fire). We also examined the interaction between this factor and a temperature rise (which is often associated to the loss of riparian vegetation caused by the wildfire) by manipulating water temperature (10, 12.5, and 15 °C). Finally, we explored the effects of these variables on the growth of a common detritivore, the caddisfly Sericostoma pyrenaicum. Control alder presented the highest decomposition rates, which were notably reduced due to fire exposure. On the contrary, eucalypt litter decomposition was even slower than that of oak and hardly showed any effect derived from fire exposure. The different leaf litter types determined detritivore growth, to a greater extent than variation related to warming, which generally had negligible effects. Our study shows the negative effects of wildfires on stream ecosystem functioning even when they only involve brief exposure of leaf litter to the fire. Effects are greater on the most palatable native species, which represents the highest quality input in streams of the study area. Our results highlight the importance of protecting riparian forests, especially those composed of native species, against wildfires.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1186/s42408-024-00265-z
S. Sydorenko, V. Gumeniuk, F. De Miguel-Díez, O. Soshenskiy, I. Budzinskyi, V. Koren
There is a clearly increasing trend of wildfires that become catastrophic in some countries such as the United States, Australia, Russia, Portugal, Greece, and Spain. Fuel is one of the key components that influences fire behavior and its effects. Assessing the fuel load and distribution of its components in the landscape provides effective fire management treatments in terms of fire prevention campaigns on a scientific basis. This study aims to evaluate the litter, duff, and herb fuels in highly flammable coniferous forest types in Ukrainian Polissia. To estimate relationships between forestry variables that reflect the characteristics of the pine stand (DBH, height of the stand, age, relative density, stock of the plantation etc.) and the load of litter, duff, and herb fuels (CWD, FWD, litter, live grass, etc.), correlation analysis was used. To analyze difference between groups of sampling plots that have different forests, we use generalized linear mixed models including random effects of sampling plot type. Cluster analysis was performed using k-means partitioning method and Calinski-Harabasz criterion. To assess the significance of individual variables on which the variation of forest fuel depends, the random forest algorithm was used; for variable selection, we used two parameters: the percent increase in mean squared error and the Gini impurity index. The research revealed that in the pine forest stands, the stock of litter and duff varies from 15.5 (15 years) to 140 ton/ha (139 years). When modeling, the humidity level of the forest site (soil) significantly affects the dynamics of forest fuel accumulation. In fresh types of forest-growing conditions, the forest litter stock increases to the age of 80–90 years; then, it strongly decreases, while in wet forest types, continuous forest fuel stock accumulation is established during the entire growth period. Moreover, the results showed that the forest fuel load was influenced by the soil fertility. The stock of live and dead herbaceous fuel in fresh and wet conditions is not statistically different, and soil moisture has not had a significant impact. Fine woody debris stocks were more dependent on stand productivity and practically does not depend on the soil fertility index, site moisture content, and its age and ranged from 0.4 to 1.9 t/ha (1 h), from 0.1 to 2.2 t/ha (10 h), and from 0 to 1.6 t/ha (100 h). The obtained results enabled to develop mathematical models for estimating litter and duff stocks in the Polissia forest stands based on stand characteristic and the soil humidity level. Moreover, the results will serve as basis to develop local forest fuel models as well as to determine potential fire hazards and a fire behavior modeling process in coniferous forests of that region. These models constitute the basis for the national set of fuel model development for each nature zone of Ukraine.
{"title":"Assessment of the surface forest fuel load in the Ukrainian Polissia","authors":"S. Sydorenko, V. Gumeniuk, F. De Miguel-Díez, O. Soshenskiy, I. Budzinskyi, V. Koren","doi":"10.1186/s42408-024-00265-z","DOIUrl":"https://doi.org/10.1186/s42408-024-00265-z","url":null,"abstract":"There is a clearly increasing trend of wildfires that become catastrophic in some countries such as the United States, Australia, Russia, Portugal, Greece, and Spain. Fuel is one of the key components that influences fire behavior and its effects. Assessing the fuel load and distribution of its components in the landscape provides effective fire management treatments in terms of fire prevention campaigns on a scientific basis. This study aims to evaluate the litter, duff, and herb fuels in highly flammable coniferous forest types in Ukrainian Polissia. To estimate relationships between forestry variables that reflect the characteristics of the pine stand (DBH, height of the stand, age, relative density, stock of the plantation etc.) and the load of litter, duff, and herb fuels (CWD, FWD, litter, live grass, etc.), correlation analysis was used. To analyze difference between groups of sampling plots that have different forests, we use generalized linear mixed models including random effects of sampling plot type. Cluster analysis was performed using k-means partitioning method and Calinski-Harabasz criterion. To assess the significance of individual variables on which the variation of forest fuel depends, the random forest algorithm was used; for variable selection, we used two parameters: the percent increase in mean squared error and the Gini impurity index. The research revealed that in the pine forest stands, the stock of litter and duff varies from 15.5 (15 years) to 140 ton/ha (139 years). When modeling, the humidity level of the forest site (soil) significantly affects the dynamics of forest fuel accumulation. In fresh types of forest-growing conditions, the forest litter stock increases to the age of 80–90 years; then, it strongly decreases, while in wet forest types, continuous forest fuel stock accumulation is established during the entire growth period. Moreover, the results showed that the forest fuel load was influenced by the soil fertility. The stock of live and dead herbaceous fuel in fresh and wet conditions is not statistically different, and soil moisture has not had a significant impact. Fine woody debris stocks were more dependent on stand productivity and practically does not depend on the soil fertility index, site moisture content, and its age and ranged from 0.4 to 1.9 t/ha (1 h), from 0.1 to 2.2 t/ha (10 h), and from 0 to 1.6 t/ha (100 h). The obtained results enabled to develop mathematical models for estimating litter and duff stocks in the Polissia forest stands based on stand characteristic and the soil humidity level. Moreover, the results will serve as basis to develop local forest fuel models as well as to determine potential fire hazards and a fire behavior modeling process in coniferous forests of that region. These models constitute the basis for the national set of fuel model development for each nature zone of Ukraine.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}