Pub Date : 2024-04-04DOI: 10.1186/s42408-024-00263-1
John Craycroft, Callie Schweitzer
For at least four decades, practitioners have recognized advantages of aerial versus ground ignition for maximizing the effectiveness of prescribed fires. For example, larger areas can be ignited in less time, or ignition energy may be variously targeted over an area in accordance with the uneven distribution of fuels. The maturation of wireless communication, geopositioning systems, and unmanned aerial systems (UAS) has enhanced those advantages, and UAS approaches also provide further advantages relative to helicopter ignitions, such as reduced risk to human safety, lower operating costs, and higher operational flexibility. In a long running study at the Bankhead National Forest in northcentral Alabama, prescribed fire has been used for nearly 20 years. Most of the burns have been hand-ignited via drip torches, while some have been aerially ignited via helicopter. In March 2022, for the first time, a UAS was used to ignite prescribed fires across a landscape that included a long-term research stand. This field note relates comparisons of both fire behavior and fuel consumption metrics for the UAS-ignited burn versus previous burns on the same stand, and versus burns of other research stands in the same year. The UAS-ignited prescribed fire experienced burn effects similar to those from ground-ignited prescribed fires on the same stand in previous years, as well as those from ground-ignited prescribed fires on other stands in the same year. This post hoc analysis suggests that UAS ignition approaches may be sufficient for achieving prescribed burn goals, thereby enabling practitioners to realize the advantages offered by that ignition mode.
{"title":"Case study of UAS ignition of prescribed fire in a mixedwood on the William B. Bankhead National Forest, Alabama","authors":"John Craycroft, Callie Schweitzer","doi":"10.1186/s42408-024-00263-1","DOIUrl":"https://doi.org/10.1186/s42408-024-00263-1","url":null,"abstract":"For at least four decades, practitioners have recognized advantages of aerial versus ground ignition for maximizing the effectiveness of prescribed fires. For example, larger areas can be ignited in less time, or ignition energy may be variously targeted over an area in accordance with the uneven distribution of fuels. The maturation of wireless communication, geopositioning systems, and unmanned aerial systems (UAS) has enhanced those advantages, and UAS approaches also provide further advantages relative to helicopter ignitions, such as reduced risk to human safety, lower operating costs, and higher operational flexibility. In a long running study at the Bankhead National Forest in northcentral Alabama, prescribed fire has been used for nearly 20 years. Most of the burns have been hand-ignited via drip torches, while some have been aerially ignited via helicopter. In March 2022, for the first time, a UAS was used to ignite prescribed fires across a landscape that included a long-term research stand. This field note relates comparisons of both fire behavior and fuel consumption metrics for the UAS-ignited burn versus previous burns on the same stand, and versus burns of other research stands in the same year. The UAS-ignited prescribed fire experienced burn effects similar to those from ground-ignited prescribed fires on the same stand in previous years, as well as those from ground-ignited prescribed fires on other stands in the same year. This post hoc analysis suggests that UAS ignition approaches may be sufficient for achieving prescribed burn goals, thereby enabling practitioners to realize the advantages offered by that ignition mode.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1186/s42408-024-00266-y
M. Germino, Samuel “Jake” Price, Susan J. Prichard
{"title":"Vegetation, fuels, and fire-behavior responses to linear fuel-break treatments in and around burned sagebrush steppe: are we breaking the grass-fire cycle?","authors":"M. Germino, Samuel “Jake” Price, Susan J. Prichard","doi":"10.1186/s42408-024-00266-y","DOIUrl":"https://doi.org/10.1186/s42408-024-00266-y","url":null,"abstract":"","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1186/s42408-024-00260-4
Jeanne C. Chambers, Eva K. Strand, Lisa M. Ellsworth, Claire M. Tortorelli, Alexandra K. Urza, Michele R. Crist, Richard F. Miller, Matthew C. Reeves, Karen C. Short, Claire L. Williams
Sagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses. Our review revealed tradeoffs in woody fuel treatments between reducing canopy fuels vs. increasing understory herbaceous vegetation (fuels) and fire behavior. In pinyon-juniper expansion areas, all treatments decreased crown fire risk. Prescribed fire and cut and broadcast burn treatments reduced woody fuels long-term but had higher risk of invasion. Mechanical treatments left understory vegetation intact and increased native perennial plants. However, cut and leave treatments increased downed woody fuel and high-intensity wildfire risk, while cut and pile burn and mastication caused localized disturbances and annual grass invasion. Ecological outcomes depended on ecological resilience; sites with warm and dry conditions or depleted perennial native herbaceous species experienced lower recovery and resistance to invasive annual grasses. In invasive annual grass dominated areas, high-intensity targeted grazing reduced fine fuels but required retreatment or seeding; in intact ecosystems with relatively low shrub cover, dormant season targeted grazing reduced fine fuel and thus fire spread. Preemergent herbicides reduced annual grasses with differing effects in warm and dry vs. cool and moist environments. The information largely exists to make informed decisions on treatments to mitigate effects of wildfire and improve ecological resilience at local, project scales. Primary considerations are the short- vs long-term tradeoffs in fuels and fire behavior and thus fire severity and the likely ecological response.
{"title":"Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S.","authors":"Jeanne C. Chambers, Eva K. Strand, Lisa M. Ellsworth, Claire M. Tortorelli, Alexandra K. Urza, Michele R. Crist, Richard F. Miller, Matthew C. Reeves, Karen C. Short, Claire L. Williams","doi":"10.1186/s42408-024-00260-4","DOIUrl":"https://doi.org/10.1186/s42408-024-00260-4","url":null,"abstract":"Sagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses. Our review revealed tradeoffs in woody fuel treatments between reducing canopy fuels vs. increasing understory herbaceous vegetation (fuels) and fire behavior. In pinyon-juniper expansion areas, all treatments decreased crown fire risk. Prescribed fire and cut and broadcast burn treatments reduced woody fuels long-term but had higher risk of invasion. Mechanical treatments left understory vegetation intact and increased native perennial plants. However, cut and leave treatments increased downed woody fuel and high-intensity wildfire risk, while cut and pile burn and mastication caused localized disturbances and annual grass invasion. Ecological outcomes depended on ecological resilience; sites with warm and dry conditions or depleted perennial native herbaceous species experienced lower recovery and resistance to invasive annual grasses. In invasive annual grass dominated areas, high-intensity targeted grazing reduced fine fuels but required retreatment or seeding; in intact ecosystems with relatively low shrub cover, dormant season targeted grazing reduced fine fuel and thus fire spread. Preemergent herbicides reduced annual grasses with differing effects in warm and dry vs. cool and moist environments. The information largely exists to make informed decisions on treatments to mitigate effects of wildfire and improve ecological resilience at local, project scales. Primary considerations are the short- vs long-term tradeoffs in fuels and fire behavior and thus fire severity and the likely ecological response.\u0000","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}