Dora E Corzo Leon, Annika Scheynius, Donna M MacCallum, Carol A Munro
Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.
马拉色菌是人类皮肤微生物群中的主要共生酵母菌,与特应性湿疹(AE)等炎症性皮肤病有关。交配马拉色菌的马拉s 1过敏原是一种β-螺旋桨蛋白,可诱导特应性湿疹患者的IgE和T细胞反应。我们通过免疫电子显微镜证明,马拉s 1 主要位于交配马拉色菌酵母细胞壁中。抗马拉s 1抗体不能抑制交配酵母的生长,这表明马拉s 1可能不是抗真菌靶标。对预测的 Mala s 1 蛋白序列进行的硅分析发现了一个 KELCH 蛋白(β-螺旋桨蛋白的一个亚群)的指示基团。为了验证马拉s 1抗体与人类皮肤(KELCH)蛋白交叉反应的假设,我们检测了抗马拉s 1抗体与人类皮肤外植体的结合情况,并观察了表皮层的结合情况。通过免疫印迹法和蛋白质组学鉴定了抗马拉s 1抗体识别的人类靶标。我们认为 Mala s 1 是一种类似于 KELCH 的 β-螺旋桨蛋白,与人类皮肤蛋白具有相似性。Mala s 1的识别可能会引发交叉反应,从而导致与交配丝虫有关的皮肤疾病。
{"title":"Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin.","authors":"Dora E Corzo Leon, Annika Scheynius, Donna M MacCallum, Carol A Munro","doi":"10.1093/femsyr/foad028","DOIUrl":"10.1093/femsyr/foad028","url":null,"abstract":"<p><p>Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10116538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The antiaging properties of metformin used for the treatment of type-2 diabetes mellitus have been studied extensively, but there is more to discover regarding underlying mechanisms. Here, we show that metformin significantly prolongs the chronological lifespan (CLS) of Schizosaccharomyces pombe through mechanisms similar to those observed in mammalian cells and other model organisms. While the presence of metformin in the medium caused an increase in carbohydrate consumption and ATP production, it reduced reactive oxygen species production and alleviate oxidative damage parameters such as lipid peroxidation and carbonylated proteins. We also tested whether the effect of metformin changed with the time it was added to the medium and observed that the lifespan-prolonging effect of metformin was related to the glucose concentration in the medium and did not prolong lifespan when added after glucose was completely depleted in the medium. On the other hand, cells inoculated in glucose-free medium containing metformin also showed extended lifespan suggesting that mechanisms other than that solely depend on glucose availability may be involved in extending the lifespan. These results suggest that metformin prolongs lifespan especially affecting energy metabolism and stress resistance capacity and that fission yeast can be effectively used when investigating the antiaging mechanisms of metformin.
{"title":"Metformin extends the chronological lifespan of fission yeast by altering energy metabolism and stress resistance capacity.","authors":"Ceren Şeylan, Çağatay Tarhan","doi":"10.1093/femsyr/foad018","DOIUrl":"https://doi.org/10.1093/femsyr/foad018","url":null,"abstract":"<p><p>The antiaging properties of metformin used for the treatment of type-2 diabetes mellitus have been studied extensively, but there is more to discover regarding underlying mechanisms. Here, we show that metformin significantly prolongs the chronological lifespan (CLS) of Schizosaccharomyces pombe through mechanisms similar to those observed in mammalian cells and other model organisms. While the presence of metformin in the medium caused an increase in carbohydrate consumption and ATP production, it reduced reactive oxygen species production and alleviate oxidative damage parameters such as lipid peroxidation and carbonylated proteins. We also tested whether the effect of metformin changed with the time it was added to the medium and observed that the lifespan-prolonging effect of metformin was related to the glucose concentration in the medium and did not prolong lifespan when added after glucose was completely depleted in the medium. On the other hand, cells inoculated in glucose-free medium containing metformin also showed extended lifespan suggesting that mechanisms other than that solely depend on glucose availability may be involved in extending the lifespan. These results suggest that metformin prolongs lifespan especially affecting energy metabolism and stress resistance capacity and that fission yeast can be effectively used when investigating the antiaging mechanisms of metformin.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Maria Dos Santos, Fernanda Matias Albuini, Géssica Cabral Barros, Olinto Liparini Pereira, Wendel Batista da Silveira, Luciano Gomes Fietto
Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.
{"title":"Identification of the main proteins secreted by Kluyveromyces marxianus and their possible roles in antagonistic activity against fungi.","authors":"Ana Maria Dos Santos, Fernanda Matias Albuini, Géssica Cabral Barros, Olinto Liparini Pereira, Wendel Batista da Silveira, Luciano Gomes Fietto","doi":"10.1093/femsyr/foad007","DOIUrl":"https://doi.org/10.1093/femsyr/foad007","url":null,"abstract":"<p><p>Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10810127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sake yeasts have a range of brewing characteristics that are particularly beneficial for sake making including high ethanol fermentability, high proliferative capacity at low temperatures, lactic acid tolerance, and high ester productivity. On the other hand, sake yeasts also accumulate a diverse range of functional components. For example, significantly greater accumulation of S-adenosylmethionine (SAM), a compound that plays important regulatory roles in a range of biological processes as a major donor of methyl groups, occurs in sake yeasts compared to other microorganisms. Significantly greater accumulation of folate, a bioactive water-soluble vitamin (vitamin B9), also occurs in sake yeasts compared to laboratory yeasts, and the methyl group on SAM is supplied by folate. Accordingly, fully characterizing 'sake yeast identity' requires detailed understanding of the mechanisms underlying both the nutritional characteristics (functional components) and the brewing characteristics in sake yeasts. Therefore, this mini-review focuses on the accumulation of SAM and folate in sake yeast including descriptions of the genes known to contribute to SAM and folate accumulation and the underlying mechanisms.
{"title":"Importance and mechanisms of S-adenosylmethionine and folate accumulation in sake yeast.","authors":"Muneyoshi Kanai, Masaki Mizunuma, Tsutomu Fujii, Haruyuki Iefuji","doi":"10.1093/femsyr/foad004","DOIUrl":"https://doi.org/10.1093/femsyr/foad004","url":null,"abstract":"<p><p>Sake yeasts have a range of brewing characteristics that are particularly beneficial for sake making including high ethanol fermentability, high proliferative capacity at low temperatures, lactic acid tolerance, and high ester productivity. On the other hand, sake yeasts also accumulate a diverse range of functional components. For example, significantly greater accumulation of S-adenosylmethionine (SAM), a compound that plays important regulatory roles in a range of biological processes as a major donor of methyl groups, occurs in sake yeasts compared to other microorganisms. Significantly greater accumulation of folate, a bioactive water-soluble vitamin (vitamin B9), also occurs in sake yeasts compared to laboratory yeasts, and the methyl group on SAM is supplied by folate. Accordingly, fully characterizing 'sake yeast identity' requires detailed understanding of the mechanisms underlying both the nutritional characteristics (functional components) and the brewing characteristics in sake yeasts. Therefore, this mini-review focuses on the accumulation of SAM and folate in sake yeast including descriptions of the genes known to contribute to SAM and folate accumulation and the underlying mechanisms.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9072103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Carrau, Eduardo Dellacassa, Eduardo Boido, Karina Medina, Maria Jose Valera, Laura Fariña, Gabriel Perez, Valentina Martin, Fernando Alvarez-Valin, Lucia Balestrazzi
Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.
{"title":"Biology and physiology of Hanseniaspora vineae: metabolic diversity and increase flavour complexity for food fermentation.","authors":"Francisco Carrau, Eduardo Dellacassa, Eduardo Boido, Karina Medina, Maria Jose Valera, Laura Fariña, Gabriel Perez, Valentina Martin, Fernando Alvarez-Valin, Lucia Balestrazzi","doi":"10.1093/femsyr/foad010","DOIUrl":"https://doi.org/10.1093/femsyr/foad010","url":null,"abstract":"<p><p>Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9117502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amador Campos-Valdez, Manuel R Kirchmayr, Iliana Barrera-Martínez, Leticia Casas-Godoy
This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.3 g l-1 of fermentable sugars. A total of 62 yeast strains were screened for single-cell oil accumulation, identifying Rhodotorula mucilaginosa M1K4 as the most advantageous oleaginous yeast. M1K4 lipid production was optimized in liquid culture, and its fatty acid profile was analyzed, showing a high content of industrially valuable fatty acids, particularly palmitic (28%) and oleic (51%). Batch-culture of M1K4 in a 3-l reactor demonstrated the strain's ability to utilize wastepaper hydrolysate as a carbon source, with dry cell weight, total lipid and protein production of 17.7 g l-1, 4.5 g l-1, and 2.1 g l-1, respectively. Wastepaper as a substrate provides a sustainable solution for waste management and bioproduction. This research highlights the potential of R. mucilaginosa for lipid and protein production from wastepaper hydrolysate.
本研究调查了废纸水解物作为单细胞油和蛋白质生产的可持续和低成本碳源的潜力,以满足对替代原料和废物管理策略日益增长的需求。废纸以其高碳水化合物含量为特征,对其进行酶和化学酶处理以释放碳水化合物。化学-酶处理效果更好,产生65.3 g L-1的可发酵糖。筛选了62株单细胞油脂积累酵母菌株,确定粘红酵母M1K4是最有利的油脂酵母。在液体培养中优化了M1K4脂质的生产,并分析了其脂肪酸图谱,显示出高含量的工业价值脂肪酸,特别是棕榈酸(28%)和油酸(51%)。M1K4在3L反应器中的分批培养证明了该菌株利用废纸水解物作为碳源的能力,干细胞重量、总脂质和蛋白质产量分别为17.7g L-1、4.5g L-1和2.1g L-1。废纸作为基质为废物管理和生物生产提供了可持续的解决方案。这项研究强调了R.mucilaginosa从废纸水解物中生产脂质和蛋白质的潜力。
{"title":"Sustainable production of single-cell oil and protein from wastepaper hydrolysate: identification and optimization of a Rhodotorula mucilaginosa strain as a promising yeast.","authors":"Amador Campos-Valdez, Manuel R Kirchmayr, Iliana Barrera-Martínez, Leticia Casas-Godoy","doi":"10.1093/femsyr/foad044","DOIUrl":"10.1093/femsyr/foad044","url":null,"abstract":"<p><p>This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.3 g l-1 of fermentable sugars. A total of 62 yeast strains were screened for single-cell oil accumulation, identifying Rhodotorula mucilaginosa M1K4 as the most advantageous oleaginous yeast. M1K4 lipid production was optimized in liquid culture, and its fatty acid profile was analyzed, showing a high content of industrially valuable fatty acids, particularly palmitic (28%) and oleic (51%). Batch-culture of M1K4 in a 3-l reactor demonstrated the strain's ability to utilize wastepaper hydrolysate as a carbon source, with dry cell weight, total lipid and protein production of 17.7 g l-1, 4.5 g l-1, and 2.1 g l-1, respectively. Wastepaper as a substrate provides a sustainable solution for waste management and bioproduction. This research highlights the potential of R. mucilaginosa for lipid and protein production from wastepaper hydrolysate.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to <'CaTip41 regulates protein phosphatase 2A activity, CaRad53 deactivation and the recovery of DNA damage-induced filamentation to yeast form in Candida albicans'>.","authors":"Jinrong Feng, Yinong Duan, Wei Sun, Yongwei Qin, Zhong Zhuang, Dandan Zhu, Xiaolei Sun, Linghuo Jiang","doi":"10.1093/femsyr/foad040","DOIUrl":"https://doi.org/10.1093/femsyr/foad040","url":null,"abstract":"","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41144648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Botman, Sineka Kanagasabapathi, Philipp Savakis, Bas Teusink
Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.
{"title":"Using the AKAR3-EV biosensor to assess Sch9p- and PKA-signalling in budding yeast.","authors":"Dennis Botman, Sineka Kanagasabapathi, Philipp Savakis, Bas Teusink","doi":"10.1093/femsyr/foad029","DOIUrl":"10.1093/femsyr/foad029","url":null,"abstract":"<p><p>Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9775002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.
rouxii Zygosaccharomyces rouxii的基因组倍性是工业酵母研究领域的一个有趣的话题。然而,rouxii的基因组与其他Zygosaccharomyces物种之间的进化关系是复杂的,尚未完全了解。在这项研究中,我们确定了Z. rouxii NCYC 3042(也被称为“Z. pseudorouxii”)和Z. mellis CBS 736T的基因组序列。我们还对21株酵母菌的基因组进行了比较分析,其中包括9种Zygosaccharomyces的17株。比较基因组学结果显示,17株Zygosaccharomyces菌株可分为4个类群,包含9个基因组类型:(1) Z. rouxii、Z. mellis、Z. sapae、Z. siamensis和‘万能念珠菌’t-1属于rouxii类群,共享4个相关基因组型(rouxii -1 ~ rouxii -4); (2) Z. bailii、Z. parabailii和Z. pseudobailii属于bailii类群,共享3个相关基因组型(baili -1 ~ baili -3);(3、4)Z. bisporus和Z. kombuchaensis分别属于biporus类群和kombuchaensis类群,均具有单倍体基因组。Zygosaccharomyces基因组似乎通过进化事件获得了复杂性和多样性,如种间杂交、互易位和这9种基因组类型的二倍体化。
{"title":"The chromosomal evolutionary lineage of the genus Zygosaccharomyces.","authors":"Atsushi Sato, Yasuo Ohnishi","doi":"10.1093/femsyr/foad017","DOIUrl":"https://doi.org/10.1093/femsyr/foad017","url":null,"abstract":"<p><p>Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/e6/foad017.PMC10035502.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9352585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice contains numerous nutrients and biologically active compounds. The phytochemical composition of rice varies among cultivars, leading to diversities in biological activities. Fermentation is an efficient way of improving nutrient bioavailability and the functional properties of raw materials. It enhances and/or synthesizes the compounds with health-promoting or decreased antinutritive compounds during the fermentation process. Rice-based fermented products have been reported for enhancing various biological activities, including antioxidant, anti-cancer, anti-diabetes, anti-wrinkle and anti-melanogenesis activities. Melanogenesis, melanin biosynthesis, is the cause of human skin pigmentation; however, the accumulation of melanin leads to skin hyper-pigmentary disorders, such as freckles and melasma. In this review, the information on rice-based fermented products has been assembled to illustrate the fermented rice properties, especially melanogenesis inhibition activity, including functional roles of the microorganisms in the fermented rice products.
{"title":"Rice-based fermented products: the functional properties of the microorganisms in the defined starter contributing to melanogenesis inhibition activity.","authors":"Orrarat Sangkaew, Chulee Yompakdee","doi":"10.1093/femsyr/foad030","DOIUrl":"https://doi.org/10.1093/femsyr/foad030","url":null,"abstract":"<p><p>Rice contains numerous nutrients and biologically active compounds. The phytochemical composition of rice varies among cultivars, leading to diversities in biological activities. Fermentation is an efficient way of improving nutrient bioavailability and the functional properties of raw materials. It enhances and/or synthesizes the compounds with health-promoting or decreased antinutritive compounds during the fermentation process. Rice-based fermented products have been reported for enhancing various biological activities, including antioxidant, anti-cancer, anti-diabetes, anti-wrinkle and anti-melanogenesis activities. Melanogenesis, melanin biosynthesis, is the cause of human skin pigmentation; however, the accumulation of melanin leads to skin hyper-pigmentary disorders, such as freckles and melasma. In this review, the information on rice-based fermented products has been assembled to illustrate the fermented rice properties, especially melanogenesis inhibition activity, including functional roles of the microorganisms in the fermented rice products.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9661130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}