This study developed a highly sensitive microbiological method utilizing a novel microtiter plate to screen 10 sulfonamides in chicken muscles, eggs, and prawns. This plate was fabricated from agar incorporating trimethoprim and spread with Bacillus megaterium. After residue detection by bioassay, the same test solutions were analyzed by LC-MS/MS for accurate identification and quantification. It also proved eco-friendly compared to using other quantitative methods. The residual drugs were extracted with McIlvaine buffer and purified using an Oasis® MCX cartridge. A triethylamine/methanol/water (0.5:75:24.5, v/v/v) mixture was used as the eluate. The obtained LOD values of the bioassay ranged from 5 to 25 µg kg-1 allowing the detection of the target drugs at the MRLs established in Japan. Adhering to ISO/IEC 17025 standards, the performance of the bioassay was evaluated. Based on the inhibition zone size in bioassay results, quality control yielded a Z score within ±2, indicating reasonable control over the screening process. Proficiency testing of a chicken muscle sample spiked with sulfadimidine demonstrated the inhibition zone detection of the bioassay and quantified value alignment of LC-MS/MS with reference values. In a surveillance study of 91 samples, sulfamethoxazole was detected in one prawn sample.
{"title":"Development and performance evaluation of a microbiological method for screening and LC-MS/MS for conformation of sulfonamides in animal-derived foods.","authors":"Maki Kanda, Kotaro Sekimura, Souichi Yoshikawa, Hiroshi Hayashi, Yumi Ohba, Hiroshi Koike, Yoko Matsushima, Momoka Hayashi, Chieko Nagano, Takeo Sasamoto","doi":"10.1080/19440049.2024.2368903","DOIUrl":"10.1080/19440049.2024.2368903","url":null,"abstract":"<p><p>This study developed a highly sensitive microbiological method utilizing a novel microtiter plate to screen 10 sulfonamides in chicken muscles, eggs, and prawns. This plate was fabricated from agar incorporating trimethoprim and spread with <i>Bacillus megaterium</i>. After residue detection by bioassay, the same test solutions were analyzed by LC-MS/MS for accurate identification and quantification. It also proved eco-friendly compared to using other quantitative methods. The residual drugs were extracted with McIlvaine buffer and purified using an Oasis<sup>®</sup> MCX cartridge. A triethylamine/methanol/water (0.5:75:24.5, v/v/v) mixture was used as the eluate. The obtained LOD values of the bioassay ranged from 5 to 25 µg kg-<sup>1</sup> allowing the detection of the target drugs at the MRLs established in Japan. Adhering to ISO/IEC 17025 standards, the performance of the bioassay was evaluated. Based on the inhibition zone size in bioassay results, quality control yielded a Z score within ±2, indicating reasonable control over the screening process. Proficiency testing of a chicken muscle sample spiked with sulfadimidine demonstrated the inhibition zone detection of the bioassay and quantified value alignment of LC-MS/MS with reference values. In a surveillance study of 91 samples, sulfamethoxazole was detected in one prawn sample.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"900-913"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-10DOI: 10.1080/19440049.2024.2357706
Sofie Schryvers, Liesbeth Jacxsens, Siska Croubels, Sigrid Vonck, Bram Miserez, Jet Van De Steene, Graciele Necchi Rohers, Mia Eeckhout
Lupins are used in animal feed because of their excellent nutritional composition. Australian and European Lupinus angustifolius seeds are incorporated in compound feed of calves for veal production in Belgium. To investigate the co-occurrence of quinolizidine alkaloids (QAs) and phomopsin A (PHO A) in lupin seeds and lupin-containing feed, and the potential transfer to animal-derived foods, representative samples were obtained from various actors in the chain. A UHPLC-MS/MS method was validated for the simultaneous quantification of seven QAs and PHO A in relevant matrices. Results indicate highly consistent total QA (TQA) levels in Australian lupins (173 ± 24 mg/kg) (n = 25), while European samples showed a high variability (1442 ± 1497 mg/kg) (n = 15). PHO A was detected in 7 of 40 samples. Lupin-containing feed had a mean TQA content of 42 ± 28 mg/kg (n = 20). An in vivo feeding trial demonstrated the transfer of QAs to muscle and liver of calves that were fed the lupin-containing feed. Highest concentrations were found for lupanine in liver tissue samples (67 ± 46 µg/kg). PHO A concentrations were below the LOD in all feed and tissue samples. These results indicate that animal-derived foods (veal meat/liver) are a potential route for QAs to enter the food chain.
{"title":"Quinolizidine alkaloids and phomopsin A in animal feed containing lupins: co-occurrence and carry-over into veal products.","authors":"Sofie Schryvers, Liesbeth Jacxsens, Siska Croubels, Sigrid Vonck, Bram Miserez, Jet Van De Steene, Graciele Necchi Rohers, Mia Eeckhout","doi":"10.1080/19440049.2024.2357706","DOIUrl":"10.1080/19440049.2024.2357706","url":null,"abstract":"<p><p>Lupins are used in animal feed because of their excellent nutritional composition. Australian and European <i>Lupinus angustifolius</i> seeds are incorporated in compound feed of calves for veal production in Belgium. To investigate the co-occurrence of quinolizidine alkaloids (QAs) and phomopsin A (PHO A) in lupin seeds and lupin-containing feed, and the potential transfer to animal-derived foods, representative samples were obtained from various actors in the chain. A UHPLC-MS/MS method was validated for the simultaneous quantification of seven QAs and PHO A in relevant matrices. Results indicate highly consistent total QA (TQA) levels in Australian lupins (173 ± 24 mg/kg) (<i>n</i> = 25), while European samples showed a high variability (1442 ± 1497 mg/kg) (<i>n</i> = 15). PHO A was detected in 7 of 40 samples. Lupin-containing feed had a mean TQA content of 42 ± 28 mg/kg (<i>n</i> = 20). An <i>in vivo</i> feeding trial demonstrated the transfer of QAs to muscle and liver of calves that were fed the lupin-containing feed. Highest concentrations were found for lupanine in liver tissue samples (67 ± 46 µg/kg). PHO A concentrations were below the LOD in all feed and tissue samples. These results indicate that animal-derived foods (veal meat/liver) are a potential route for QAs to enter the food chain.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"885-899"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-08DOI: 10.1080/19440049.2024.2358509
Stephen W C Chung, Melissa P S Liu, Kenny K C Wong, Gabriel Y S Chan
Polyaromatic hydrocarbons (PAHs) are ubiquitous in the environment and food. The Joint FAO/WHO Expert Committee on Food Additives concluded 13 individual PAHs are carcinogenic and genotoxic in vitro and in vivo. Food is recognized as the main source of exposure to PAHs for adult non-smokers, which contributed to more than 90% of total exposure. In this study, 300 food samples were collected in Hong Kong, analysed the levels of 16 European Union priority PAHs, the dietary exposure to these PAHs by the local adult population from these food items, and the associated health risk. The most predominant detectable PAH was chrysene (CHR) (14.4%), followed by benzo[c]fluorene (11.2%), benzo[a]anthracene (BaA) (10.6%) and benzo[b]fluoranthene (BbFA) (7.8%). The dietary exposures for average consumers of benzo[a]pyrene (BaP) and PAH4 (sum of BaP, CHR, BaA and BbFA) were 0.13-0.90 and 1.4-4.2 ng/kg bw/day respectively for lower and upper bound approaches. Cereal and its products contributed more than 50% to BaP and PAH4 for average consumers in a lower-bound approach. The margin of exposure (MOE) approach was used to assess the health risks of consumers. The calculated MOE values for both BaP and PAH4 of the average and high consumers (90th percentile) were >50,000, indicating a low concern for the health of the Hong Kong population.
{"title":"Dietary exposure to polyaromatic hydrocarbons of the Hong Kong population.","authors":"Stephen W C Chung, Melissa P S Liu, Kenny K C Wong, Gabriel Y S Chan","doi":"10.1080/19440049.2024.2358509","DOIUrl":"10.1080/19440049.2024.2358509","url":null,"abstract":"<p><p>Polyaromatic hydrocarbons (PAHs) are ubiquitous in the environment and food. The Joint FAO/WHO Expert Committee on Food Additives concluded 13 individual PAHs are carcinogenic and genotoxic <i>in vitro</i> and <i>in vivo</i>. Food is recognized as the main source of exposure to PAHs for adult non-smokers, which contributed to more than 90% of total exposure. In this study, 300 food samples were collected in Hong Kong, analysed the levels of 16 European Union priority PAHs, the dietary exposure to these PAHs by the local adult population from these food items, and the associated health risk. The most predominant detectable PAH was chrysene (CHR) (14.4%), followed by benzo[c]fluorene (11.2%), benzo[a]anthracene (BaA) (10.6%) and benzo[b]fluoranthene (BbFA) (7.8%). The dietary exposures for average consumers of benzo[a]pyrene (BaP) and PAH4 (sum of BaP, CHR, BaA and BbFA) were 0.13-0.90 and 1.4-4.2 ng/kg bw/day respectively for lower and upper bound approaches. Cereal and its products contributed more than 50% to BaP and PAH4 for average consumers in a lower-bound approach. The margin of exposure (MOE) approach was used to assess the health risks of consumers. The calculated MOE values for both BaP and PAH4 of the average and high consumers (90th percentile) were >50,000, indicating a low concern for the health of the Hong Kong population.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"969-978"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-16DOI: 10.1080/19440049.2024.2350012
Wenting Wang, Min-Chul Shin, Sang-Hee Jeong, Jeong-Ran Min, Jong-Su Seo, Jong-Hwan Kim
Clopidol is extensively used in livestock farming and residues of this antibiotic can persist in animal tissues, posing a risk to humans and the environment. In this study, we investigated the depletion of clopidol in various edible tissues of chickens (muscle, liver, kidney, fat, and eggs) using liquid chromatography-tandem mass spectrometry after the administration of a clopidol-contaminated diet (at 250 mg kg-1 for the high (1x) dose). After 14 d of exposure, the clopidol concentrations were highest in eggs (median: 9.83 mg/kg), followed by liver (3.56 mg/kg), kidney (3.01 mg/kg), muscle (1.56 mg/kg), and fat (0.727 mg/kg) at low exposure group, indicating that clopidol accumulated primarily in eggs rather than the other edible tissues. In addition, the maternal transfer ratios were estimated, and the transfer efficiencies of clopidol in muscle (egg-to-tissue ratio, ETR:1.81) and fat (2.06-58.2) were higher than those in liver (0.731-31.1) and kidney (0.832-38.9). Furthermore, we conducted a cumulative risk assessment for clopidol in edible chicken tissues using the hazard quotient (HQ) method. This assessment revealed that the exposure levels for Korean consumers pose an acceptable risk. However, for eggs from the 1x dose exposure group, the HQ values were greater than 1 for all age groups, particularly for young children (<18 y), suggesting that the higher daily consumption of eggs combined with the higher clopidol residues in eggs resulted in higher HQ values, which requires further attention. The findings of this study can assist in the management and monitoring of clopidol residues in chicken tissues and eggs.
{"title":"Insights into tissue accumulation, depletion, and health risk assessment of clopidol in poultry.","authors":"Wenting Wang, Min-Chul Shin, Sang-Hee Jeong, Jeong-Ran Min, Jong-Su Seo, Jong-Hwan Kim","doi":"10.1080/19440049.2024.2350012","DOIUrl":"10.1080/19440049.2024.2350012","url":null,"abstract":"<p><p>Clopidol is extensively used in livestock farming and residues of this antibiotic can persist in animal tissues, posing a risk to humans and the environment. In this study, we investigated the depletion of clopidol in various edible tissues of chickens (muscle, liver, kidney, fat, and eggs) using liquid chromatography-tandem mass spectrometry after the administration of a clopidol-contaminated diet (at 250 mg kg<sup>-1</sup> for the high (1x) dose). After 14 d of exposure, the clopidol concentrations were highest in eggs (median: 9.83 mg/kg), followed by liver (3.56 mg/kg), kidney (3.01 mg/kg), muscle (1.56 mg/kg), and fat (0.727 mg/kg) at low exposure group, indicating that clopidol accumulated primarily in eggs rather than the other edible tissues. In addition, the maternal transfer ratios were estimated, and the transfer efficiencies of clopidol in muscle (egg-to-tissue ratio, ETR:1.81) and fat (2.06-58.2) were higher than those in liver (0.731-31.1) and kidney (0.832-38.9). Furthermore, we conducted a cumulative risk assessment for clopidol in edible chicken tissues using the hazard quotient (HQ) method. This assessment revealed that the exposure levels for Korean consumers pose an acceptable risk. However, for eggs from the 1x dose exposure group, the HQ values were greater than 1 for all age groups, particularly for young children (<18 y), suggesting that the higher daily consumption of eggs combined with the higher clopidol residues in eggs resulted in higher HQ values, which requires further attention. The findings of this study can assist in the management and monitoring of clopidol residues in chicken tissues and eggs.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"771-781"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-28DOI: 10.1080/19440049.2024.2354496
Gabriel Leung, Melissa A McKinney, Varoujan Yaylayan, Stéphane Bayen
Flame retardants (FRs) are commonly added to commercial products to achieve flammability resistance. Since most of them are not chemically bonded to the materials, they could be leached to the environment during the production and disposal cycle. These FRs were categorised based on their chemical nature, including brominated, organophosphorus-, mineral- and nitrogen-based. This review summarised the abiotic degradation reactions of these four classes of FRs, with a focus on thermal and photodegradation reactions in environmental and food matrices. Only 24 papers have reported related information on abiotic degradation reactions that could be useful for predicting possible degradation pathways, and most focused on brominated FRs. Most studies also investigated the thermal degradation of FRs under high temperatures (>400 °C), which exceeds the normal cooking temperature at 100-300 °C. For photodegradation, studies have used up to five times the energy typically used in UV radiation during food processing. It is recommended that future studies investigate the fate of these FRs in foods under more realistic processing conditions, to provide a more comprehensive picture of the estimated consumption of FRs and their degradation products from foods, and facilitate a better risk assessment of the use of these novel FRs.
阻燃剂(FRs)通常被添加到商业产品中,以达到阻燃的效果。由于大多数阻燃剂都没有与材料发生化学键合,因此在生产和处置周期中可能会渗入环境中。这些阻燃剂根据其化学性质进行分类,包括溴基、有机磷基、矿物基和氮基。本综述总结了这四类溴化阻燃剂的非生物降解反应,重点是环境和食品基质中的热降解和光降解反应。仅有 24 篇论文报告了非生物降解反应的相关信息,这些信息可能有助于预测可能的降解途径,其中大部分论文侧重于溴化阻燃剂。大多数研究还调查了阻燃剂在高温(>400 °C)条件下的热降解情况,这超过了 100-300 °C 的正常烹饪温度。在光降解方面,研究使用的能量是食品加工过程中通常使用的紫外线辐射能量的五倍。建议今后的研究在更现实的加工条件下调查这些荧光阻隔物在食品中的去向,以便更全面地了解荧光阻隔物及其降解产物在食品中的估计消耗量,促进对使用这些新型荧光阻隔物进行更好的风险评估。
{"title":"Abiotic degradations of legacy and novel flame retardants in environmental and food matrices - a review.","authors":"Gabriel Leung, Melissa A McKinney, Varoujan Yaylayan, Stéphane Bayen","doi":"10.1080/19440049.2024.2354496","DOIUrl":"10.1080/19440049.2024.2354496","url":null,"abstract":"<p><p>Flame retardants (FRs) are commonly added to commercial products to achieve flammability resistance. Since most of them are not chemically bonded to the materials, they could be leached to the environment during the production and disposal cycle. These FRs were categorised based on their chemical nature, including brominated, organophosphorus-, mineral- and nitrogen-based. This review summarised the abiotic degradation reactions of these four classes of FRs, with a focus on thermal and photodegradation reactions in environmental and food matrices. Only 24 papers have reported related information on abiotic degradation reactions that could be useful for predicting possible degradation pathways, and most focused on brominated FRs. Most studies also investigated the thermal degradation of FRs under high temperatures (>400 °C), which exceeds the normal cooking temperature at 100-300 °C. For photodegradation, studies have used up to five times the energy typically used in UV radiation during food processing. It is recommended that future studies investigate the fate of these FRs in foods under more realistic processing conditions, to provide a more comprehensive picture of the estimated consumption of FRs and their degradation products from foods, and facilitate a better risk assessment of the use of these novel FRs.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"811-832"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-30DOI: 10.1080/19440049.2024.2357350
Krista Bouma, Dita Kalsbeek-van Wijk, Lodewijk Steendam, Dick T H M Sijm, Theo de Rijk, Ruben Kause, Ron Hoogenboom, Stefan van Leeuwen
As a result of the European Single Use Plastic Directive and as part of the transition to a circular economy, plastic food contact materials (FCMs) are being replaced, often by renewable plant-based materials. This research aimed to identify which chemical substances are present in plant-based materials. In 2022 a total of 28 samples of the latter materials from the Dutch market were analysed for 313 active substances from plant protection products, 47 per- and polyfluoralkyl substances (PFASs) and 27 heavy metals and other elements. Ten samples contained plant protection products that are not authorised in the EU. Most materials contained PFASs at trace or even high levels. Three out of four investigated sugar cane materials contained 6:2 fluorotelomer alcohol at levels up to 1.7 mg/kg. High contents of aluminium, manganese, iron, zinc, and barium were found. Other heavy metals, such as arsenic, lead and mercury were found in relatively low contents. A broad GC-MS screening was performed, which revealed the presence of plant extractable, plasticisers, antioxidants and hydrocarbons, which were not all authorised for FCMs, but may be present as non-intentionally added substances.
{"title":"Plant-based food contact materials: presence of hazardous substances.","authors":"Krista Bouma, Dita Kalsbeek-van Wijk, Lodewijk Steendam, Dick T H M Sijm, Theo de Rijk, Ruben Kause, Ron Hoogenboom, Stefan van Leeuwen","doi":"10.1080/19440049.2024.2357350","DOIUrl":"10.1080/19440049.2024.2357350","url":null,"abstract":"<p><p>As a result of the European Single Use Plastic Directive and as part of the transition to a circular economy, plastic food contact materials (FCMs) are being replaced, often by renewable plant-based materials. This research aimed to identify which chemical substances are present in plant-based materials. In 2022 a total of 28 samples of the latter materials from the Dutch market were analysed for 313 active substances from plant protection products, 47 per- and polyfluoralkyl substances (PFASs) and 27 heavy metals and other elements. Ten samples contained plant protection products that are not authorised in the EU. Most materials contained PFASs at trace or even high levels. Three out of four investigated sugar cane materials contained 6:2 fluorotelomer alcohol at levels up to 1.7 mg/kg. High contents of aluminium, manganese, iron, zinc, and barium were found. Other heavy metals, such as arsenic, lead and mercury were found in relatively low contents. A broad GC-MS screening was performed, which revealed the presence of plant extractable, plasticisers, antioxidants and hydrocarbons, which were not all authorised for FCMs, but may be present as non-intentionally added substances.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"846-855"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-30DOI: 10.1080/19440049.2024.2358518
Tapan Parsain, Ajay Tripathi, Archana Tiwari
A low-cost and effective method is reported to identify water and synthetic milk adulteration of cow's milk using coffee ring patterns. The cow's milk samples were diluted with tap water (TW), distilled water (DW) and mineral water (MW) and drop cast onto glass slides to observe coffee ring patterns. The area of the ring, total particle area and average particle diameter were extracted from these patterns. For each ring, the ratio of total particle area versus total ring area was calculated. The area ratio, regardless of water adulterants, follows an exponential model with respect to average particle diameter. Unlike TW, the ratio for DW and MW adulterated milk are clustered and classified together with respect to the particle diameter. These results were independent of dilution level and are used for adulterant classification. The ring of milk adulterated using synthetic milk gave multiple concentric rings, flower-like structures, and oil globules throughout the dilution level. An Alexnet model was used to classify water and synthetic milk adulterants in authentic milk. The trained model could achieve 96.7% and 95.8% accuracy for binary and tertiary classification respectively. These results enable us to distinguish synthetic milk from pure milk and segregate DW and MW with respect to TW adulterated milk.
{"title":"Detection of milk adulteration using coffee ring effect and convolutional neural network.","authors":"Tapan Parsain, Ajay Tripathi, Archana Tiwari","doi":"10.1080/19440049.2024.2358518","DOIUrl":"10.1080/19440049.2024.2358518","url":null,"abstract":"<p><p>A low-cost and effective method is reported to identify water and synthetic milk adulteration of cow's milk using coffee ring patterns. The cow's milk samples were diluted with tap water (TW), distilled water (DW) and mineral water (MW) and drop cast onto glass slides to observe coffee ring patterns. The area of the ring, total particle area and average particle diameter were extracted from these patterns. For each ring, the ratio of total particle area versus total ring area was calculated. The area ratio, regardless of water adulterants, follows an exponential model with respect to average particle diameter. Unlike TW, the ratio for DW and MW adulterated milk are clustered and classified together with respect to the particle diameter. These results were independent of dilution level and are used for adulterant classification. The ring of milk adulterated using synthetic milk gave multiple concentric rings, flower-like structures, and oil globules throughout the dilution level. An Alexnet model was used to classify water and synthetic milk adulterants in authentic milk. The trained model could achieve 96.7% and 95.8% accuracy for binary and tertiary classification respectively. These results enable us to distinguish synthetic milk from pure milk and segregate DW and MW with respect to TW adulterated milk.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"730-741"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-10DOI: 10.1080/19440049.2024.2352858
Stephen W C Chung
Chromium occurs naturally in different oxidation states. Amongst them, hexavalent chromium is classified as both genotoxic and carcinogenic while trivalent chromium can be considered as an essential element. Therefore, speciation analysis is essential when conducting dietary exposure assessment. Several critical reviews have been published on chromium speciation analysis in foodstuffs in the last decade. However, a method that can account for species interconversion during the extraction procedure has not been reported in the reviews. In recent years, an online method using species-specific isotope dilution mass spectrometry has been developed for the simultaneous determination of trivalent and hexavalent chromium in foodstuffs. Apart from that, new methods based on offline analytical techniques, to analyse trivalent and hexavalent chromium separately, are still under development. Therefore, one of the objectives of this paper is to review these recently published analytical methods and assess whether they are fit for chromium speciation analysis in foodstuffs. Additionally, an objective is also to assess whether their limits of detection are sufficiently low for dietary exposure assessment with respect to the neoplastic effects of hexavalent chromium. Moreover, possible future research gaps are identified based on the current knowledge and existing literature.
{"title":"Update on chromium speciation analysis in foods: a review of advances in analytical methods and dietary exposure assessment.","authors":"Stephen W C Chung","doi":"10.1080/19440049.2024.2352858","DOIUrl":"10.1080/19440049.2024.2352858","url":null,"abstract":"<p><p>Chromium occurs naturally in different oxidation states. Amongst them, hexavalent chromium is classified as both genotoxic and carcinogenic while trivalent chromium can be considered as an essential element. Therefore, speciation analysis is essential when conducting dietary exposure assessment. Several critical reviews have been published on chromium speciation analysis in foodstuffs in the last decade. However, a method that can account for species interconversion during the extraction procedure has not been reported in the reviews. In recent years, an online method using species-specific isotope dilution mass spectrometry has been developed for the simultaneous determination of trivalent and hexavalent chromium in foodstuffs. Apart from that, new methods based on offline analytical techniques, to analyse trivalent and hexavalent chromium separately, are still under development. Therefore, one of the objectives of this paper is to review these recently published analytical methods and assess whether they are fit for chromium speciation analysis in foodstuffs. Additionally, an objective is also to assess whether their limits of detection are sufficiently low for dietary exposure assessment with respect to the neoplastic effects of hexavalent chromium. Moreover, possible future research gaps are identified based on the current knowledge and existing literature.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"782-789"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-23DOI: 10.1080/19440049.2024.2354494
Igor Tessele, Thaís R Dal Molin, Jocinei Dognini, Simone Noremberg, Leandro M de Carvalho
Dietary supplements are drastically growing as a category of consumer products all over the world. The abuse of supplements marketed for slimming purposes and physical fitness has been observed worldwide in recent years, which raises concerns in terms of public health. In this study, different types of dietary supplements marketed and delivered through the e-commerce were studied for the determination of thallium as a hazardous inorganic contaminant. The total content of thallium was determined by a sensitive voltammetric method after a microwave-assisted oxidative digestion of the sample. In addition, a comparative spectrometric method was applied for validation of the results in the samples. The maximum concentration found for thallium was found to be 2.89 mg kg-1, which well agree with the comparative measurement. Considering the 32 studied formulations, it can be pointed out that ∼24% of the of dietary supplements presented Tl concentrations at concentrations higher than 1 mg kg-1. The results permitted the assessment of the health risk related to thallium from contaminated samples, based on the calculation of the estimated daily intake (EDI) and the risk quotient (HQ). The highest daily intake of thallium was calculated as 82.0 µg day-1 in a protein-based supplement, which is equivalent to an EDI of 1.17 µg kg-1 day-1. This work highlights the need to develop regulations on the limits of toxic elements such as thallium in widely consumed dietary supplements, as well as an in-depth look at the adverse effects caused by this element in the human body.
{"title":"Investigation of thallium as a contaminant in dietary supplements marketed for weight loss and physical fitness.","authors":"Igor Tessele, Thaís R Dal Molin, Jocinei Dognini, Simone Noremberg, Leandro M de Carvalho","doi":"10.1080/19440049.2024.2354494","DOIUrl":"10.1080/19440049.2024.2354494","url":null,"abstract":"<p><p>Dietary supplements are drastically growing as a category of consumer products all over the world. The abuse of supplements marketed for slimming purposes and physical fitness has been observed worldwide in recent years, which raises concerns in terms of public health. In this study, different types of dietary supplements marketed and delivered through the <i>e</i>-commerce were studied for the determination of thallium as a hazardous inorganic contaminant. The total content of thallium was determined by a sensitive voltammetric method after a microwave-assisted oxidative digestion of the sample. In addition, a comparative spectrometric method was applied for validation of the results in the samples. The maximum concentration found for thallium was found to be 2.89 mg kg<sup>-1</sup>, which well agree with the comparative measurement. Considering the 32 studied formulations, it can be pointed out that ∼24% of the of dietary supplements presented Tl concentrations at concentrations higher than 1 mg kg<sup>-1</sup>. The results permitted the assessment of the health risk related to thallium from contaminated samples, based on the calculation of the estimated daily intake (EDI) and the risk quotient (HQ). The highest daily intake of thallium was calculated as 82.0 µg day<sup>-1</sup> in a protein-based supplement, which is equivalent to an EDI of 1.17 µg kg<sup>-1 </sup>day<sup>-1</sup>. This work highlights the need to develop regulations on the limits of toxic elements such as thallium in widely consumed dietary supplements, as well as an in-depth look at the adverse effects caused by this element in the human body.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"800-810"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-09DOI: 10.1080/19440049.2024.2342450
Shaofang Song, Yufei Liu, Weiwei Zhang, Yan Li, Yuhua Zhang, Yanyan Wang, Jinheng Zeng, Xinhong Pan
Lead and its compounds can have cumulative harmful effects on the nervous, cardiovascular, and other systems, and especially affect the brain development of children. We collected 4918 samples from 15 food categories in 11 districts of Guangzhou, China, from 2017 to 2022, to investigate the extent of lead contamination in commercial foods and assess the health risk from dietary lead intake of the residents. Lead was measured in the samples using inductively coupled plasma mass spectrometry. Dietary exposure to lead was calculated based on the food consumption survey of Guangzhou residents in 2011, and the health risk of the population was evaluated using the margin of exposure (MOE) method. Lead was detected in 76.5% of the overall samples, with an average lead content of 29.4 µg kg-1. The highest lead level was found in bivalves. The mean daily dietary lead intakes were as follows: 0.44, 0.34, 0.25, and 0.28 µg kg-1 body weight (bw) day-1 for groups aged 3-6, 7-17, 18-59, and ≥ 60 years, respectively. Rice and rice products, leafy vegetables, and wheat flour and wheat products were identified as the primary sources of dietary lead exposure, accounting for 73.1%. The MOE values demonstrated the following tendency: younger age groups had lower MOEs, and 95% confidence ranges for the groups aged 3-6 and 7-17 began at 0.6 and 0.7, respectively, indicating the potential health risk of children, while those for other age groups were all above 1.0. Continued efforts are needed to reduce dietary lead exposure in Guangzhou.
{"title":"Probabilistic risk assessment of dietary exposure to lead in residents of Guangzhou, China.","authors":"Shaofang Song, Yufei Liu, Weiwei Zhang, Yan Li, Yuhua Zhang, Yanyan Wang, Jinheng Zeng, Xinhong Pan","doi":"10.1080/19440049.2024.2342450","DOIUrl":"10.1080/19440049.2024.2342450","url":null,"abstract":"<p><p>Lead and its compounds can have cumulative harmful effects on the nervous, cardiovascular, and other systems, and especially affect the brain development of children. We collected 4918 samples from 15 food categories in 11 districts of Guangzhou, China, from 2017 to 2022, to investigate the extent of lead contamination in commercial foods and assess the health risk from dietary lead intake of the residents. Lead was measured in the samples using inductively coupled plasma mass spectrometry. Dietary exposure to lead was calculated based on the food consumption survey of Guangzhou residents in 2011, and the health risk of the population was evaluated using the margin of exposure (MOE) method. Lead was detected in 76.5% of the overall samples, with an average lead content of 29.4 µg kg<sup>-1</sup>. The highest lead level was found in bivalves. The mean daily dietary lead intakes were as follows: 0.44, 0.34, 0.25, and 0.28 µg kg<sup>-1</sup> body weight (bw) day<sup>-1</sup> for groups aged 3-6, 7-17, 18-59, and ≥ 60 years, respectively. Rice and rice products, leafy vegetables, and wheat flour and wheat products were identified as the primary sources of dietary lead exposure, accounting for 73.1%. The MOE values demonstrated the following tendency: younger age groups had lower MOEs, and 95% confidence ranges for the groups aged 3-6 and 7-17 began at 0.6 and 0.7, respectively, indicating the potential health risk of children, while those for other age groups were all above 1.0. Continued efforts are needed to reduce dietary lead exposure in Guangzhou.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"790-799"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}