The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.
{"title":"Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8.","authors":"Kiran Kumari, Jyotirmayee Dey, Soumya Ranjan Mahapatra, Ying Ma, Parva Kumar Sharma, Namrata Misra, Rajnish Prakash Singh","doi":"10.1007/s12223-024-01152-5","DOIUrl":"10.1007/s12223-024-01152-5","url":null,"abstract":"<p><p>The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-02-20DOI: 10.1007/s12223-024-01142-7
Karina Arellano, Juwhan Lim, Jorge Enrique Vazquez Bucheli, Haryung Park, Svetoslav Dimitrov Todorov, Wilhelm Heinrich Holzapfel
The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of "uncovering" novel and safe probiotic strains.
{"title":"Identification of safe putative probiotics from various food products.","authors":"Karina Arellano, Juwhan Lim, Jorge Enrique Vazquez Bucheli, Haryung Park, Svetoslav Dimitrov Todorov, Wilhelm Heinrich Holzapfel","doi":"10.1007/s12223-024-01142-7","DOIUrl":"10.1007/s12223-024-01142-7","url":null,"abstract":"<p><p>The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of \"uncovering\" novel and safe probiotic strains.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s12223-024-01196-7
Xiaoxuan Li, Jian Wang, Yi Lv, Lei Zhao, Weitao Jiang, Jinhui Lv, Xin Xu, Yajing Yu, Yusong Liu, Xuesen Chen, Chengmiao Yin, Zhiquan Mao
Apple replant disease (ARD) is a significant factor restricting the healthy development of the apple industry. Biological control is an important and sustainable method for mitigating ARD. In this study, a strain of Paenibacillus polymyxa GRY-11 was isolated and screened from the rhizosphere soil of healthy apple trees in old apple orchards in Shandong Province, China, and the effects of strain GRY-11 on soil microbial community and ARD were studied. The result showed that P. polymyxa GRY-11 could effectively inhibit the growth of the main pathogenic fungi that caused ARD, and the inhibition rates of the strain against Fusarium moniliforme, Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum were 80.00%, 71.60%, 75.00%, and 70.00%, respectively. In addition, the fermentation supernatant played an active role in suppressing the growth of pathogenic fungi. The results of the pot experiment showed that the bacterial fertilizer of the GRY-11 promoted the growth of Malus hupehensis seedlings, improved the activity of protective enzymes in plant roots, enhanced the soil enzyme content, and optimized the soil microbial environment. In general, the GRY-11 can be used as an effective microbial preparation to alleviate ARD. Our study offers novel perspectives for the prevention of ARD.
{"title":"Screening and identification of Paenibacillus polymyxa GRY-11 and its biological control potential against apple replant disease.","authors":"Xiaoxuan Li, Jian Wang, Yi Lv, Lei Zhao, Weitao Jiang, Jinhui Lv, Xin Xu, Yajing Yu, Yusong Liu, Xuesen Chen, Chengmiao Yin, Zhiquan Mao","doi":"10.1007/s12223-024-01196-7","DOIUrl":"https://doi.org/10.1007/s12223-024-01196-7","url":null,"abstract":"<p><p>Apple replant disease (ARD) is a significant factor restricting the healthy development of the apple industry. Biological control is an important and sustainable method for mitigating ARD. In this study, a strain of Paenibacillus polymyxa GRY-11 was isolated and screened from the rhizosphere soil of healthy apple trees in old apple orchards in Shandong Province, China, and the effects of strain GRY-11 on soil microbial community and ARD were studied. The result showed that P. polymyxa GRY-11 could effectively inhibit the growth of the main pathogenic fungi that caused ARD, and the inhibition rates of the strain against Fusarium moniliforme, Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum were 80.00%, 71.60%, 75.00%, and 70.00%, respectively. In addition, the fermentation supernatant played an active role in suppressing the growth of pathogenic fungi. The results of the pot experiment showed that the bacterial fertilizer of the GRY-11 promoted the growth of Malus hupehensis seedlings, improved the activity of protective enzymes in plant roots, enhanced the soil enzyme content, and optimized the soil microbial environment. In general, the GRY-11 can be used as an effective microbial preparation to alleviate ARD. Our study offers novel perspectives for the prevention of ARD.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-25DOI: 10.1007/s12223-024-01156-1
Sevil Basbuga, Selcuk Basbuga, Canan Can, Fatih Yayla
This study identified the phenotypic and genotypic characteristics of the bacteria that nodulate wild Lathyrus and Vicia species natural distribution in the Gaziantep province of Turkey. Principle component analysis of phenotypic features revealed that rhizobial isolates were highly resistant to stress factors such as high salt, pH and temperature. They were found to be highly sensitive to the concentrations (mg/mL) of the antibiotics neomycin 10, kanamycin, and tetracycline 5, as well as the heavy metals Ni 10, and Cu 10, and 5. As a result of REP-PCR analysis, it was determined that the rhizobial isolates were quite diverse, and 5 main groups and many subgroups being found. All of the isolates nodulating wild Vicia species were found to be related to Rhizobium sp., and these isolates were found to be in Clades II, III, IV, and V of the phylogenetic tree based on 16S rRNA. The isolates that nodulated wild Lathyrus species were in Clades I, II, IV, V, VI, VII, and VIII, and they were closely related to Rhizobium leguminasorum, Rhizobium sp., Phyllobacterium sp., Serratia sp., and Pseudomonas sp. According to the genetic analyses, the isolates could not be classified at the species level, the similarity ratio was low, they formed a distinct group that was supported by strong bootstrap values in the phylogenetic tree, and the differences discovered in the network analysis revealed the diversity among the isolates and gave important findings that these isolates may be new species.
{"title":"Phenotypic and genotypic diversity of root nodule bacteria from wild Lathyrus and Vicia species in Gaziantep, Turkey.","authors":"Sevil Basbuga, Selcuk Basbuga, Canan Can, Fatih Yayla","doi":"10.1007/s12223-024-01156-1","DOIUrl":"10.1007/s12223-024-01156-1","url":null,"abstract":"<p><p>This study identified the phenotypic and genotypic characteristics of the bacteria that nodulate wild Lathyrus and Vicia species natural distribution in the Gaziantep province of Turkey. Principle component analysis of phenotypic features revealed that rhizobial isolates were highly resistant to stress factors such as high salt, pH and temperature. They were found to be highly sensitive to the concentrations (mg/mL) of the antibiotics neomycin 10, kanamycin, and tetracycline 5, as well as the heavy metals Ni 10, and Cu 10, and 5. As a result of REP-PCR analysis, it was determined that the rhizobial isolates were quite diverse, and 5 main groups and many subgroups being found. All of the isolates nodulating wild Vicia species were found to be related to Rhizobium sp., and these isolates were found to be in Clades II, III, IV, and V of the phylogenetic tree based on 16S rRNA. The isolates that nodulated wild Lathyrus species were in Clades I, II, IV, V, VI, VII, and VIII, and they were closely related to Rhizobium leguminasorum, Rhizobium sp., Phyllobacterium sp., Serratia sp., and Pseudomonas sp. According to the genetic analyses, the isolates could not be classified at the species level, the similarity ratio was low, they formed a distinct group that was supported by strong bootstrap values in the phylogenetic tree, and the differences discovered in the network analysis revealed the diversity among the isolates and gave important findings that these isolates may be new species.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-21DOI: 10.1007/s12223-024-01154-3
Nisha Thakur, Amarjit K Nath, Amit Sharma
Tannase-producing filamentous fungi residing alongside tannin-rich ambient in the Northwest Himalayas were isolated at laboratory conditions and further identified by 18S ribosomal RNA gene sequencing. Five most potent tannase producing strains (EI ≥ 2.0), designated Aspergillus fumigatus AN1, Fusarium redolens AN2, Penicillium crustosum AN3, Penicillium restrictum AN4, and Penicillium commune AN5, were characterized. The strain Penicillium crustosum AN3 exhibited a maximum zone dia (25.66 mm ± 0.38). During solid-state fermentation, a maximal amount of tannase was attained with Penicillium crustosum AN3 using pine needles (substrate) by adopting response surface methodology for culture parameter optimization. Gel filtration chromatography yielded 46.48% of the partially purified enzyme with 3.94-fold of tannase purification. We found two subunits in enzyme-117.76 KDa and 88.51 KDa, respectively, in the SDS-PAGE. Furthermore, the characterization of partially purified tannase revealed a maximum enzyme activity of 8.36 U/mL at 30 °C using a substrate concentration (methyl gallate) of 10 mM. To broaden the knowledge of crude enzyme application, dye degradation studies were subjected to extracellular crude tannase from Penicillium crustosum AN3 where the maximum degradation achieved at a low enzyme concentration (5 ppm).
{"title":"Optimization of production conditions, isolation, purification, and characterization of tannase from filamentous fungi.","authors":"Nisha Thakur, Amarjit K Nath, Amit Sharma","doi":"10.1007/s12223-024-01154-3","DOIUrl":"10.1007/s12223-024-01154-3","url":null,"abstract":"<p><p>Tannase-producing filamentous fungi residing alongside tannin-rich ambient in the Northwest Himalayas were isolated at laboratory conditions and further identified by 18S ribosomal RNA gene sequencing. Five most potent tannase producing strains (EI ≥ 2.0), designated Aspergillus fumigatus AN1, Fusarium redolens AN2, Penicillium crustosum AN3, Penicillium restrictum AN4, and Penicillium commune AN5, were characterized. The strain Penicillium crustosum AN3 exhibited a maximum zone dia (25.66 mm ± 0.38). During solid-state fermentation, a maximal amount of tannase was attained with Penicillium crustosum AN3 using pine needles (substrate) by adopting response surface methodology for culture parameter optimization. Gel filtration chromatography yielded 46.48% of the partially purified enzyme with 3.94-fold of tannase purification. We found two subunits in enzyme-117.76 KDa and 88.51 KDa, respectively, in the SDS-PAGE. Furthermore, the characterization of partially purified tannase revealed a maximum enzyme activity of 8.36 U/mL at 30 °C using a substrate concentration (methyl gallate) of 10 mM. To broaden the knowledge of crude enzyme application, dye degradation studies were subjected to extracellular crude tannase from Penicillium crustosum AN3 where the maximum degradation achieved at a low enzyme concentration (5 ppm).</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.
{"title":"Characterization of heavy metal-associated bacteria from petroleum-contaminated soil and their resistogram and antibiogram analysis.","authors":"Abdul Basit, Saiqa Andleeb, Iram Liaqat, Nasra Ashraf, Shaukat Ali, Anum Naseer, Aisha Nazir, Fahad Kiyani","doi":"10.1007/s12223-024-01135-6","DOIUrl":"10.1007/s12223-024-01135-6","url":null,"abstract":"<p><p>The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-19DOI: 10.1007/s12223-024-01189-6
Fu-Chia Chen, Fu-Chieh Chen, Taichi Motoda
Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
Sarcodon aspratus (Berk.) S. Ito 是一种日本地方菜肴,具有独特的香味,对过敏性疾病有效。然而,其栽培仍然很困难。最近,共存细菌被认为是菌丝生长和子实体形成的重要因素。因此,我们在阿斯普拉菌子实体及其附着土壤中进行了 16S rRNA 扩增子测序,以了解阿斯普拉菌子实体中的细菌群落。与土壤组相比,子实体组显示出较低的α多样性,细菌群落结构也有显著差异。此外,通过线性判别分析效应大小(LEfSe)分析,子实体组中的全缘菌-根瘤菌-副根菌-根瘤菌相对丰度最高,也是天南星果实体内潜在的共生细菌。在 Cantharellus cibarius 的子实体中也发现了这种全缘菌-根瘤菌-副根菌-根瘤菌支系相对丰度最高的现象。这些研究结果表明,全缘根瘤菌-气象根瘤菌-配位根瘤菌-根瘤菌在 S. aspratus 子实体的细菌群落中起着关键作用。S. aspratus 和 C. cibarius 子实体中的细菌可能呈现出类似的共存模式。
{"title":"A finding of potential coexisting bacteria and characterization of the bacterial communities in the fruiting body of Sarcodon aspratus.","authors":"Fu-Chia Chen, Fu-Chieh Chen, Taichi Motoda","doi":"10.1007/s12223-024-01189-6","DOIUrl":"10.1007/s12223-024-01189-6","url":null,"abstract":"<p><p>Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-08DOI: 10.1007/s12223-024-01177-w
M Amrutha Lakshmi, Ajesh B R, Pradeep Manyam, Shaik Javeedvali, Amjada S Khan, Dauda Wadzani Palnam, A Kandan
Ganoderma sp., the fungal agent causing basal stem rot (BSR), poses a severe threat to global oil palm production. Alarming increases in BSR occurrences within oil palm growing zones are attributed to varying effectiveness in its current management strategies. Asymptomatic progression of the disease and the continuous monoculture of oil palm pose challenges for prompt and effective management. Therefore, the development of precise, early, and timely detection techniques is crucial for successful BSR management. Conventional methods such as visual assessments, culture-based assays, and biochemical and physiological approaches prove time-consuming and lack specificity. Serological-based diagnostic methods, unsuitable for fungal diagnostics due to low sensitivity, assay affinity, cross-contamination which further underscores the need for improved techniques. Molecular PCR-based assays, utilizing universal, genus-specific, and species-specific primers, along with functional primers, can overcome the limitations of conventional and serological methods in fungal diagnostics. Recent advancements, including real-time PCR, biosensors, and isothermal amplification methods, facilitate accurate, specific, and sensitive Ganoderma detection. Comparative whole genomic analysis enables high-resolution discrimination of Ganoderma at the strain level. Additionally, omics tools such as transcriptomics, proteomics, and metabolomics can identify potential biomarkers for early detection of Ganoderma infection. Innovative on-field diagnostic techniques, including remote methods like volatile organic compounds profiling, tomography, hyperspectral and multispectral imaging, terrestrial laser scanning, and Red-Green-Blue cameras, contribute to a comprehensive diagnostic approach. Ultimately, the development of point-of-care, early, and cost-effective diagnostic techniques accessible to farmers is vital for the timely management of BSR in oil palm plantations.
{"title":"Traditional to technological advancements in Ganoderma detection methods in oil palm.","authors":"M Amrutha Lakshmi, Ajesh B R, Pradeep Manyam, Shaik Javeedvali, Amjada S Khan, Dauda Wadzani Palnam, A Kandan","doi":"10.1007/s12223-024-01177-w","DOIUrl":"10.1007/s12223-024-01177-w","url":null,"abstract":"<p><p>Ganoderma sp., the fungal agent causing basal stem rot (BSR), poses a severe threat to global oil palm production. Alarming increases in BSR occurrences within oil palm growing zones are attributed to varying effectiveness in its current management strategies. Asymptomatic progression of the disease and the continuous monoculture of oil palm pose challenges for prompt and effective management. Therefore, the development of precise, early, and timely detection techniques is crucial for successful BSR management. Conventional methods such as visual assessments, culture-based assays, and biochemical and physiological approaches prove time-consuming and lack specificity. Serological-based diagnostic methods, unsuitable for fungal diagnostics due to low sensitivity, assay affinity, cross-contamination which further underscores the need for improved techniques. Molecular PCR-based assays, utilizing universal, genus-specific, and species-specific primers, along with functional primers, can overcome the limitations of conventional and serological methods in fungal diagnostics. Recent advancements, including real-time PCR, biosensors, and isothermal amplification methods, facilitate accurate, specific, and sensitive Ganoderma detection. Comparative whole genomic analysis enables high-resolution discrimination of Ganoderma at the strain level. Additionally, omics tools such as transcriptomics, proteomics, and metabolomics can identify potential biomarkers for early detection of Ganoderma infection. Innovative on-field diagnostic techniques, including remote methods like volatile organic compounds profiling, tomography, hyperspectral and multispectral imaging, terrestrial laser scanning, and Red-Green-Blue cameras, contribute to a comprehensive diagnostic approach. Ultimately, the development of point-of-care, early, and cost-effective diagnostic techniques accessible to farmers is vital for the timely management of BSR in oil palm plantations.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The primary aim of this study was to investigate the alterations in the microbial community of KK-Ay mice following antibiotic treatment. A comparative analysis of the gut microbiota was conducted between KK-Ay mice treated with antibiotics and those without treatment. The microbial community dynamics in antibiotic-treated KK-Ay mice were meticulously assessed over an eight-week period using 16S rDNA sequencing analysis. Simultaneously, dynamic renal function measurements were performed. The results demonstrated a marked decrease in bacterial DNA abundance following antibiotic intervention, coupled with a substantial reduction in bacterial diversity and a profound alteration in microbial composition. These observed microbiota changes persisted in the KK-Ay mice throughout the eight-week post-antibiotic treatment period. Particularly noteworthy was the reemergence of bacterial populations after two weeks or more, resulting in a microbiota composition resembling that of untreated KK-Ay mice. This transition was characterized by a significant increase in the abundance of clostridia at the class level, Lachnospirales and Oscillospirales at the order level, and Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Concurrently, there was a notable decrease in Clostridia_UCG-014. The observed alterations in the gut microbiota of antibiotic-treated KK-Ay mice suggest a dynamic response to antibiotic intervention and subsequent restoration towards the original untreated state.
{"title":"Gut microbiota dynamics in KK-Ay mice: restoration following antibiotic treatment.","authors":"Jinni Hong, Tingting Fu, Weizhen Liu, Miao Yu, Yanshan Lin, Cunyun Min, Datao Lin","doi":"10.1007/s12223-024-01157-0","DOIUrl":"10.1007/s12223-024-01157-0","url":null,"abstract":"<p><p>The primary aim of this study was to investigate the alterations in the microbial community of KK-Ay mice following antibiotic treatment. A comparative analysis of the gut microbiota was conducted between KK-Ay mice treated with antibiotics and those without treatment. The microbial community dynamics in antibiotic-treated KK-Ay mice were meticulously assessed over an eight-week period using 16S rDNA sequencing analysis. Simultaneously, dynamic renal function measurements were performed. The results demonstrated a marked decrease in bacterial DNA abundance following antibiotic intervention, coupled with a substantial reduction in bacterial diversity and a profound alteration in microbial composition. These observed microbiota changes persisted in the KK-Ay mice throughout the eight-week post-antibiotic treatment period. Particularly noteworthy was the reemergence of bacterial populations after two weeks or more, resulting in a microbiota composition resembling that of untreated KK-Ay mice. This transition was characterized by a significant increase in the abundance of clostridia at the class level, Lachnospirales and Oscillospirales at the order level, and Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Concurrently, there was a notable decrease in Clostridia_UCG-014. The observed alterations in the gut microbiota of antibiotic-treated KK-Ay mice suggest a dynamic response to antibiotic intervention and subsequent restoration towards the original untreated state.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-02-23DOI: 10.1007/s12223-024-01141-8
Bayram Çetin, Merve Usal, Hatice Şanlıdere Aloğlu, Annemarie Busch, Enes Dertli, Amir Abdulmawjood
In the present study, the evolution of the physicochemical and microbiological characteristics of lactic acid bacteria (LAB) in traditional Kırklareli white brined cheese collected from 14 different cheese manufacturing facilities were investigated on different days of the 90-day ripening period. The obtained LAB within the species Lactococcus (Lc.) lactis, Latilactobacillus (Lt.) curvatus, Lactobacillus (Lb.) casei and Lb. plantarum, Enterococcus (E.) durans, E. faecium, E. faecalis, Streptococcus macedonicus, and Weissella paramesenteroides were characterized in terms of their influence on technological properties and their potential as starter cultures for traditional white brined cheese production. The results of the microbiological and physicochemical investigations showed that a few selected isolates of Lc. lactis, Lb. casei, and Lb. plantarum had certain functions as starter germs. Moderate acidification capacity, antibacterial activity and proteolytic activity, which are characteristic of their use as starter lactic acid bacteria, were found. Importantly, antibiotic resistance among selected Lc. lactis, Lb. casei, and Lb. plantarum isolates was extremely low, whereas some of these isolates demonstrated antibacterial activity against major foodborne pathogenic bacteria. Based on the results obtained in this study, selected Lc. and Lb. isolates can also be considered as starter culture in traditional cheese production.
{"title":"Characterization and technological functions of different lactic acid bacteria from traditionally produced Kırklareli white brined cheese during the ripening period.","authors":"Bayram Çetin, Merve Usal, Hatice Şanlıdere Aloğlu, Annemarie Busch, Enes Dertli, Amir Abdulmawjood","doi":"10.1007/s12223-024-01141-8","DOIUrl":"10.1007/s12223-024-01141-8","url":null,"abstract":"<p><p>In the present study, the evolution of the physicochemical and microbiological characteristics of lactic acid bacteria (LAB) in traditional Kırklareli white brined cheese collected from 14 different cheese manufacturing facilities were investigated on different days of the 90-day ripening period. The obtained LAB within the species Lactococcus (Lc.) lactis, Latilactobacillus (Lt.) curvatus, Lactobacillus (Lb.) casei and Lb. plantarum, Enterococcus (E.) durans, E. faecium, E. faecalis, Streptococcus macedonicus, and Weissella paramesenteroides were characterized in terms of their influence on technological properties and their potential as starter cultures for traditional white brined cheese production. The results of the microbiological and physicochemical investigations showed that a few selected isolates of Lc. lactis, Lb. casei, and Lb. plantarum had certain functions as starter germs. Moderate acidification capacity, antibacterial activity and proteolytic activity, which are characteristic of their use as starter lactic acid bacteria, were found. Importantly, antibiotic resistance among selected Lc. lactis, Lb. casei, and Lb. plantarum isolates was extremely low, whereas some of these isolates demonstrated antibacterial activity against major foodborne pathogenic bacteria. Based on the results obtained in this study, selected Lc. and Lb. isolates can also be considered as starter culture in traditional cheese production.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}