Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.
{"title":"Solid-state fermentation of brown seaweeds for the production of alginate lyase using marine bacterium Enterobacter tabaci RAU2C.","authors":"Ramya Petchimuthu, Subharaga Venkatesh, Suriyalakshmi Kannan, Vanavil Balakrishnan","doi":"10.1007/s12223-024-01150-7","DOIUrl":"10.1007/s12223-024-01150-7","url":null,"abstract":"<p><p>Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-02-15DOI: 10.1007/s12223-024-01145-4
Wenbin Xiong, Bingxin Liu, Han Lu, Xinchun Liu
Nocardia spp., which belongs to one of the Nocardio-form filamentous bacteria, is usually surface hydrophobic and when overproduced attaches to the surface of bubbles under the action of surfactants, allowing the stable presence of foam on the surface of aeration tanks, leading to the occurrence of sludge-foaming events. Two novel phages, P69 and KYD2, were isolated from the environment, and their hosts were Nocardia transvalensis and Nocardia carnea, respectively. These two phages are Siphophages-like with long tails. An aeration tank pilot plant was constructed in the laboratory to simulate sludge foaming, and these two strains of phage were applied. Compared with the reactor not dosed with phage, the application of phage could reduce the host level in the reactor, resulting in the highest decrease in turbidity by more than 68% and sludge volume index by more than 25%. The time for surface foam disappearance was 9 h earlier than that of the control group (the group with the same concentration of Nocardia carnea but no bacteriophage applied), significantly improving water quality. The phage can effectively inhibit the propagation of Nocardia in the actual sludge-foaming event, control the sludge foaming, and improve the effluent quality. It provides a novel and relatively economical solution for controlling sludge foaming in sewage treatment plants in the future, shows that the phages have potential application value in the prevention and control of Nocardia, and provides another way to control the sludge-foaming event caused by the excessive reproduction of Nocardia in the future.
{"title":"Two novel bacteriophages isolated from the environment that can help control activated sludge foaming.","authors":"Wenbin Xiong, Bingxin Liu, Han Lu, Xinchun Liu","doi":"10.1007/s12223-024-01145-4","DOIUrl":"10.1007/s12223-024-01145-4","url":null,"abstract":"<p><p>Nocardia spp., which belongs to one of the Nocardio-form filamentous bacteria, is usually surface hydrophobic and when overproduced attaches to the surface of bubbles under the action of surfactants, allowing the stable presence of foam on the surface of aeration tanks, leading to the occurrence of sludge-foaming events. Two novel phages, P69 and KYD2, were isolated from the environment, and their hosts were Nocardia transvalensis and Nocardia carnea, respectively. These two phages are Siphophages-like with long tails. An aeration tank pilot plant was constructed in the laboratory to simulate sludge foaming, and these two strains of phage were applied. Compared with the reactor not dosed with phage, the application of phage could reduce the host level in the reactor, resulting in the highest decrease in turbidity by more than 68% and sludge volume index by more than 25%. The time for surface foam disappearance was 9 h earlier than that of the control group (the group with the same concentration of Nocardia carnea but no bacteriophage applied), significantly improving water quality. The phage can effectively inhibit the propagation of Nocardia in the actual sludge-foaming event, control the sludge foaming, and improve the effluent quality. It provides a novel and relatively economical solution for controlling sludge foaming in sewage treatment plants in the future, shows that the phages have potential application value in the prevention and control of Nocardia, and provides another way to control the sludge-foaming event caused by the excessive reproduction of Nocardia in the future.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s12223-024-01200-0
Jaewoo Yoon, Mina Yasumoto-Hirose, Hiroaki Kasai
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
{"title":"Flagellimonas algarum sp. nov., isolated from dense mats of filamentous algae.","authors":"Jaewoo Yoon, Mina Yasumoto-Hirose, Hiroaki Kasai","doi":"10.1007/s12223-024-01200-0","DOIUrl":"https://doi.org/10.1007/s12223-024-01200-0","url":null,"abstract":"<p><p>A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77<sup>T</sup>, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77<sup>T</sup> is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704<sup>T</sup> with sequence similarity of 95.5%. The main fatty acids were iso-C<sub>15:1</sub> G, iso-C<sub>15:0</sub>, and iso-C<sub>17:0</sub> 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77<sup>T</sup> was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77<sup>T</sup> and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77<sup>T</sup> with the strain of F. nanhaiensis SM1704<sup>T</sup> was 16.8%. The genome of the strain DF-77<sup>T</sup> revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77<sup>T</sup> (= KCTC 72791<sup>T</sup> = NBRC 114251<sup>T</sup>).</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s12223-024-01198-5
Kaneez Fatima, Hareem Mohsin, Maryam Afzal
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
{"title":"Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation.","authors":"Kaneez Fatima, Hareem Mohsin, Maryam Afzal","doi":"10.1007/s12223-024-01198-5","DOIUrl":"https://doi.org/10.1007/s12223-024-01198-5","url":null,"abstract":"<p><p>With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s12223-024-01201-z
Nanditha S, Manjunatha C, Shivakumara K T, Ramya R S, Kandan A, Prasannakumar M K, Pramesh D, Sushil S N
The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples. A region specific to B. subtilis which codes for shikimate dehydrogenase was identified through in silico analysis. We employed conventional PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and qPCR for specific detection of B. subtilis in soil samples and biopesticide formulations. Specificity tests showed that the PCR primers amplified an amplicon of 521 bp in four strains of B. subtilis only, and no amplification was found in negative control samples. Similarly, the LAMP assay showed sky blue colour in all four strains of B. subtilis and violet colour in negative control samples. Whereas in the RPA assay, upon the addition of SYBR Green dye, a bright green colour was seen in B. subtilis strains, while a brick-red colour was observed in negative control samples by visualizing under a UV transilluminator. The qPCR assay showed specific amplifications with a Ct value of 12 for B. subtilis strains and no amplification in negative control samples. In the sensitivity test, PCR could amplify DNA of B. subtilis up to 500 pg/µL. DNA concentration as low as 10 pg/µL was enough to show the colour change in the LAMP as well as the RPA assays, whereas the qPCR assay showed sensitivity till 100 pg/µL. All four diagnostic assays developed in the study have been validated in soil samples and B. subtilis-based biopesticides. Compared to conventional PCR, the qPCR assay has the advantage of quantification and visualizing the result in real-time, whereas LAMP and RPA assays have the benefits of being colourimetric and less time-consuming. The other advantages are that the results can be visualized with the naked eye, and these assays do not require a costly thermal cycler and gel documentation system. Hence, LAMP and RPA assays are highly suitable for developing point-of-need diagnostic kits and, in turn, help regulators assess the quality of biopesticides in the market.
{"title":"Development of point-of-need colourimetric, isothermal diagnostic assays for specific detection of Bacillus subtilis using shikimate dehydrogenase gene.","authors":"Nanditha S, Manjunatha C, Shivakumara K T, Ramya R S, Kandan A, Prasannakumar M K, Pramesh D, Sushil S N","doi":"10.1007/s12223-024-01201-z","DOIUrl":"https://doi.org/10.1007/s12223-024-01201-z","url":null,"abstract":"<p><p>The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples. A region specific to B. subtilis which codes for shikimate dehydrogenase was identified through in silico analysis. We employed conventional PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and qPCR for specific detection of B. subtilis in soil samples and biopesticide formulations. Specificity tests showed that the PCR primers amplified an amplicon of 521 bp in four strains of B. subtilis only, and no amplification was found in negative control samples. Similarly, the LAMP assay showed sky blue colour in all four strains of B. subtilis and violet colour in negative control samples. Whereas in the RPA assay, upon the addition of SYBR Green dye, a bright green colour was seen in B. subtilis strains, while a brick-red colour was observed in negative control samples by visualizing under a UV transilluminator. The qPCR assay showed specific amplifications with a Ct value of 12 for B. subtilis strains and no amplification in negative control samples. In the sensitivity test, PCR could amplify DNA of B. subtilis up to 500 pg/µL. DNA concentration as low as 10 pg/µL was enough to show the colour change in the LAMP as well as the RPA assays, whereas the qPCR assay showed sensitivity till 100 pg/µL. All four diagnostic assays developed in the study have been validated in soil samples and B. subtilis-based biopesticides. Compared to conventional PCR, the qPCR assay has the advantage of quantification and visualizing the result in real-time, whereas LAMP and RPA assays have the benefits of being colourimetric and less time-consuming. The other advantages are that the results can be visualized with the naked eye, and these assays do not require a costly thermal cycler and gel documentation system. Hence, LAMP and RPA assays are highly suitable for developing point-of-need diagnostic kits and, in turn, help regulators assess the quality of biopesticides in the market.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s12223-024-01197-6
Jinghao Ma, Rana Abdul Basit, Sihan Yuan, Xuan Zhao, Xiaoyan Liu, Guangsen Fan
Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFaeT132C−D143C with excellent thermal stability in Escherichia coli by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-d-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFaeT132C−D143C activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFaeT132C−D143C activity, was analyzed by Plackett–Burman design. We identified the main factors affecting the fermentation conditions of E. coli expressing BpFaeT132C−D143C as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFaeT132C−D143C was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFaeT132C−D143C activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFaeT132C−D143C in E. coli was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFaeT132C−D143C in degrading agricultural waste transformation applications.
{"title":"Optimization of fermentation conditions for the production of recombinant feruloyl esterase BpFaeT132C−D143C","authors":"Jinghao Ma, Rana Abdul Basit, Sihan Yuan, Xuan Zhao, Xiaoyan Liu, Guangsen Fan","doi":"10.1007/s12223-024-01197-6","DOIUrl":"https://doi.org/10.1007/s12223-024-01197-6","url":null,"abstract":"<p>Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFae<sup>T132C−D143C</sup> with excellent thermal stability in <i>Escherichia coli</i> by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-<span>d</span>-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFae<sup>T132C−D143C</sup> activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFae<sup>T132C−D143C</sup> activity, was analyzed by Plackett–Burman design. We identified the main factors affecting the fermentation conditions of <i>E. coli</i> expressing BpFae<sup>T132C−D143C</sup> as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFae<sup>T132C−D143C</sup> was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFae<sup>T132C−D143C</sup> activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFae<sup>T132C−D143C</sup> in <i>E. coli</i> was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFae<sup>T132C−D143C</sup> in degrading agricultural waste transformation applications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
{"title":"Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems.","authors":"Rasanpreet Kaur, Saurabh Gupta, Vishal Tripathi, Alok Bharadwaj","doi":"10.1007/s12223-024-01194-9","DOIUrl":"https://doi.org/10.1007/s12223-024-01194-9","url":null,"abstract":"<p><p>The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s12223-024-01195-8
Nandni, Savita Rani, Indu Dhiman, Leela Wati
Biopriming seeds with beneficial bacteria has potential to enhance seed germination. Therefore, in this investigation, five sulphur-oxidizing bacterial cultures, viz., Pantoea dispersa SOB2, Bacillus velezensis SN06, Bacillus cereus SN20, Bacillus tropicus SN16, and Bacillus megaterium SN11, were evaluated for different plant growth-promoting traits and their impact on Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Among these, three bacterial cultures Pantoea dispersa SOB2, Bacillus velezensis SN06, and Bacillus megaterium SN11 evinced potential for mineral solubilization on solid medium where Pantoea dispersa SOB2 had the maximum solubilization indices-3.06, 5.14, and 2.48 for phosphate, zinc, and potassium respectively. The culture also displayed higher indole acetic acid (113.12 µg/mL), gibberellic acid (162.66 µg/mL), ammonia (5.23 µg/mL), and siderophore (69.53%) production than other bacterial cultures whereas Bacillus cereus SN20 showed maximum exopolysaccharide production (9.26 g/L). Bacterial culture Pantoea dispersa SOB2 significantly ameliorated the germination rate (3.73 no./day) and relative seed germination (208%) of Brassica juncea L., while Bacillus velezensis SN06 and Bacillus cereus SN20 followed with germination rate and relative seed germination of 2.86 no./day and 207%, respectively. Pantoea dispersa SOB2 displayed lowest mean germination time 2.91 days followed by Bacillus megaterium SN11 with 3.19 days. Biopriming with sulphur-oxidizing bacterial cultures, germination parameters of Vigna radiata L. were also markedly improved. Pantoea dispersa SOB2 demonstrated the highest germination rate (6.72 no./day), relative seed germination (115.56%), and minimum mean generation time (1.73 days). Bacillus velezensis SN06 inoculation had a beneficial effect on the seedling growth of Vigna radiata L., whereas Pantoea dispersa SOB2 greatly aided the seedling growth of Brassica juncea L. Results corroborated a prominent positive correlation between seed germination and plant growth-promoting traits. This is the first study on Pantoea dispersa as sulphur oxidizer, displaying plant growth promoting traits and seed germination potential. The potent sulphur-oxidizing bacterial cultures possessing plant growth promoting activities enhanced seed germination under in vitro conditions that could be further explored in field as biofertilizers to enhance the growth and yield of Brassica juncea L. and Vigna radiata L. crop.
{"title":"Biopriming with multifarious sulphur-oxidizing bacteria improve in vitro Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination.","authors":"Nandni, Savita Rani, Indu Dhiman, Leela Wati","doi":"10.1007/s12223-024-01195-8","DOIUrl":"https://doi.org/10.1007/s12223-024-01195-8","url":null,"abstract":"<p><p>Biopriming seeds with beneficial bacteria has potential to enhance seed germination. Therefore, in this investigation, five sulphur-oxidizing bacterial cultures, viz., Pantoea dispersa SOB2, Bacillus velezensis SN06, Bacillus cereus SN20, Bacillus tropicus SN16, and Bacillus megaterium SN11, were evaluated for different plant growth-promoting traits and their impact on Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Among these, three bacterial cultures Pantoea dispersa SOB2, Bacillus velezensis SN06, and Bacillus megaterium SN11 evinced potential for mineral solubilization on solid medium where Pantoea dispersa SOB2 had the maximum solubilization indices-3.06, 5.14, and 2.48 for phosphate, zinc, and potassium respectively. The culture also displayed higher indole acetic acid (113.12 µg/mL), gibberellic acid (162.66 µg/mL), ammonia (5.23 µg/mL), and siderophore (69.53%) production than other bacterial cultures whereas Bacillus cereus SN20 showed maximum exopolysaccharide production (9.26 g/L). Bacterial culture Pantoea dispersa SOB2 significantly ameliorated the germination rate (3.73 no./day) and relative seed germination (208%) of Brassica juncea L., while Bacillus velezensis SN06 and Bacillus cereus SN20 followed with germination rate and relative seed germination of 2.86 no./day and 207%, respectively. Pantoea dispersa SOB2 displayed lowest mean germination time 2.91 days followed by Bacillus megaterium SN11 with 3.19 days. Biopriming with sulphur-oxidizing bacterial cultures, germination parameters of Vigna radiata L. were also markedly improved. Pantoea dispersa SOB2 demonstrated the highest germination rate (6.72 no./day), relative seed germination (115.56%), and minimum mean generation time (1.73 days). Bacillus velezensis SN06 inoculation had a beneficial effect on the seedling growth of Vigna radiata L., whereas Pantoea dispersa SOB2 greatly aided the seedling growth of Brassica juncea L. Results corroborated a prominent positive correlation between seed germination and plant growth-promoting traits. This is the first study on Pantoea dispersa as sulphur oxidizer, displaying plant growth promoting traits and seed germination potential. The potent sulphur-oxidizing bacterial cultures possessing plant growth promoting activities enhanced seed germination under in vitro conditions that could be further explored in field as biofertilizers to enhance the growth and yield of Brassica juncea L. and Vigna radiata L. crop.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s12223-024-01191-y
Devendra Singh, Kuldeep Singh Jadon, Aman Verma, Rajesh Kumar Kakani
Present study was aimed to develop an efficient microbial consortium for combating Alternaria blight disease in cumin. The research involved isolating biocontrol agents against Alternaria burnsii, characterizing their biocontrol and growth promotion traits, and assessing compatibility. A pot experiment was conducted during rabi season of 2022-2023 to evaluate the bioefficacy of four biocontrol agents (1F, 16B, 31B, and 223B) individually and in consortium, focusing on disease severity, plant growth promotion, and defense responses in cumin challenged with A. burnsii. Microbial isolates 1F, 16B, 31B, and 223B significantly inhibited A. burnsii growth in dual plate assays (~ 86%), displaying promising biocontrol and plant growth promotion activities. They were identified as Trichoderma afroharzianum 1F, Aneurinibacillus aneurinilyticus 16B, Pseudomonas lalkuanensis 31B, and Bacillus licheniformis 223B, respectively. The excellent compatibility was observed among all selected biocontrol agents. Cumin plants treated with consortia of 1F + 16B + 31B + 223B showed least percent disease index (32.47%) and highest percent disease control (64.87%). Consortia of biocontrol agents significantly enhanced production of secondary metabolites (total phenol, flavonoids, antioxidant, and tannin) and activation of antioxidant-defense enzymes (POX, PPOX, CAT, SOD, PAL, and TAL) compared to individual biocontrol treatment and infected control. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual biocontrol agent and infected control treatment. The four-microbe consortium significantly enhanced chlorophyll (154%), carotenoid content (88%), plant height (78.77%), dry weight (72.81%), and seed yield (104%) compared to infected control. Based on these findings, this environmentally friendly four-microbe consortium may be recommended for managing Alternaria blight in cumin.
{"title":"Harnessing nature's defenders: unveiling the potential of microbial consortia for plant defense induction against Alternaria blight in cumin.","authors":"Devendra Singh, Kuldeep Singh Jadon, Aman Verma, Rajesh Kumar Kakani","doi":"10.1007/s12223-024-01191-y","DOIUrl":"https://doi.org/10.1007/s12223-024-01191-y","url":null,"abstract":"<p><p>Present study was aimed to develop an efficient microbial consortium for combating Alternaria blight disease in cumin. The research involved isolating biocontrol agents against Alternaria burnsii, characterizing their biocontrol and growth promotion traits, and assessing compatibility. A pot experiment was conducted during rabi season of 2022-2023 to evaluate the bioefficacy of four biocontrol agents (1F, 16B, 31B, and 223B) individually and in consortium, focusing on disease severity, plant growth promotion, and defense responses in cumin challenged with A. burnsii. Microbial isolates 1F, 16B, 31B, and 223B significantly inhibited A. burnsii growth in dual plate assays (~ 86%), displaying promising biocontrol and plant growth promotion activities. They were identified as Trichoderma afroharzianum 1F, Aneurinibacillus aneurinilyticus 16B, Pseudomonas lalkuanensis 31B, and Bacillus licheniformis 223B, respectively. The excellent compatibility was observed among all selected biocontrol agents. Cumin plants treated with consortia of 1F + 16B + 31B + 223B showed least percent disease index (32.47%) and highest percent disease control (64.87%). Consortia of biocontrol agents significantly enhanced production of secondary metabolites (total phenol, flavonoids, antioxidant, and tannin) and activation of antioxidant-defense enzymes (POX, PPOX, CAT, SOD, PAL, and TAL) compared to individual biocontrol treatment and infected control. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual biocontrol agent and infected control treatment. The four-microbe consortium significantly enhanced chlorophyll (154%), carotenoid content (88%), plant height (78.77%), dry weight (72.81%), and seed yield (104%) compared to infected control. Based on these findings, this environmentally friendly four-microbe consortium may be recommended for managing Alternaria blight in cumin.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
{"title":"Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection.","authors":"Saurabh Soni, Lokesh Gambhir, Gaurav Sharma, Asha Sharma, Neha Kapoor","doi":"10.1007/s12223-024-01192-x","DOIUrl":"https://doi.org/10.1007/s12223-024-01192-x","url":null,"abstract":"<p><p>Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}