Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-590
I. Evdokimov, A. Malkova, A. Irkitova, M. Shirmanov, Dmitrii Dementev
One of the problems in sea farming is infections that cause mass mortality of crustaceans. To fight infections and improve sanitary conditions, farmers are actively using probiotic preparations. We aimed to study the effect of a new probiotic based on Bacillus toyonensis B-13249 and Bacillus pumilus B-13250 strains on the incubation of Artemia franciscana cysts. Another purpose was to test a possibility of using a convolutional neural network for fast automatic counting of cysts, nauplii, and embryos. A pilot batch of the probiotic was prepared at the Prombiotech Engineering Center, Altai State University, from two strains of spore bacteria from the Center’s collection: B. toyonensis B-13249 and B. pumilus B-13250. The recommended amount of the probiotic was experimentally determined as 0.1 per 2 g of cysts. This concentration increased the number of hatched cysts by 1.4 and 10% in the batches from Lake Bolshoye Yarovoye (Z29.04) and from Lake Kuchuk (C9). It also increased the biomass yield to 7.40 ± 0.69 and 6.80 ± 0.43 g in these two batches, respectively, compared to the control samples where the yields were 5.30 ± 0.60 and 4.60 ± 0.50 g, respectively. The robot counter reduced the sample processing time 15 times and saved the data for further use. The probiotic based on B. toyonensis B-13249 and B. pumilus B-13250 had a positive effect on the hatching rate and biomass yield of A. franciscana. The new method for rapid counting of Artemia, which was based on the convolutional neural network and developed as an application of the Artemeter-1 robot, reduced the processing time and lowered labor costs.
{"title":"Effect of a new probiotic on Artemia cysts determined by a convolutional neural network","authors":"I. Evdokimov, A. Malkova, A. Irkitova, M. Shirmanov, Dmitrii Dementev","doi":"10.21603/2308-4057-2024-1-590","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-590","url":null,"abstract":"One of the problems in sea farming is infections that cause mass mortality of crustaceans. To fight infections and improve sanitary conditions, farmers are actively using probiotic preparations. We aimed to study the effect of a new probiotic based on Bacillus toyonensis B-13249 and Bacillus pumilus B-13250 strains on the incubation of Artemia franciscana cysts. Another purpose was to test a possibility of using a convolutional neural network for fast automatic counting of cysts, nauplii, and embryos. \u0000A pilot batch of the probiotic was prepared at the Prombiotech Engineering Center, Altai State University, from two strains of spore bacteria from the Center’s collection: B. toyonensis B-13249 and B. pumilus B-13250. \u0000The recommended amount of the probiotic was experimentally determined as 0.1 per 2 g of cysts. This concentration increased the number of hatched cysts by 1.4 and 10% in the batches from Lake Bolshoye Yarovoye (Z29.04) and from Lake Kuchuk (C9). It also increased the biomass yield to 7.40 ± 0.69 and 6.80 ± 0.43 g in these two batches, respectively, compared to the control samples where the yields were 5.30 ± 0.60 and 4.60 ± 0.50 g, respectively. The robot counter reduced the sample processing time 15 times and saved the data for further use. \u0000The probiotic based on B. toyonensis B-13249 and B. pumilus B-13250 had a positive effect on the hatching rate and biomass yield of A. franciscana. The new method for rapid counting of Artemia, which was based on the convolutional neural network and developed as an application of the Artemeter-1 robot, reduced the processing time and lowered labor costs.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47041563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-588
N. Eremeeva
Nanotechnology is important in food packaging because it increases shelf life, enhances food safety, and improves sensory characteristics and nutrient availability. We aimed to review scientific publications on the synthesis of nanoparticles, as well as their properties and applications in the food industry. Research and review articles published from 2020 to 2022 were obtained from the database using the keywords “nanoparticles”, “film”, and “food”. They were on the synthesis of metal and metal oxide nanoparticles and their uses in food films and coatings. We reviewed methods for synthesizing inorganic nanoparticles from metals and their compounds (silver, zinc, iron, etc.), as well as described their antimicrobial action against foodborne pathogens. By incorporating nanoparticles into films, we can create new materials with strong antimicrobial properties in vitro. Nanoparticles can be used to develop both polymer and biopolymer films, as well as their mixtures. Composite coatings can work synergistically with metal nanoparticles to create multifunctional food packaging systems that can act as compatibilizers. Particular attention was paid to metal nanoparticles in food coatings. We found that nanoparticles reduce the rate of microbial spoilage and inhibit lipid oxidation, thereby increasing the shelf life of raw materials and ready-to-eat foods. The safety of using nanoparticles in food coatings is an important concern. Therefore, we also considered the migration of nanoparticles from the coating into the food product. Incorporating nanoparticles into polymer and biopolymer films can create new materials with antimicrobial properties against foodborne pathogens. Such composite films can effectively extend the shelf life of food products. However, the undesirable migration of metal ions into the food product may limit the use of such films.
{"title":"Nanoparticles of metals and their compounds in films and coatings: A review","authors":"N. Eremeeva","doi":"10.21603/2308-4057-2024-1-588","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-588","url":null,"abstract":"Nanotechnology is important in food packaging because it increases shelf life, enhances food safety, and improves sensory characteristics and nutrient availability. We aimed to review scientific publications on the synthesis of nanoparticles, as well as their properties and applications in the food industry. \u0000Research and review articles published from 2020 to 2022 were obtained from the database using the keywords “nanoparticles”, “film”, and “food”. They were on the synthesis of metal and metal oxide nanoparticles and their uses in food films and coatings. \u0000We reviewed methods for synthesizing inorganic nanoparticles from metals and their compounds (silver, zinc, iron, etc.), as well as described their antimicrobial action against foodborne pathogens. By incorporating nanoparticles into films, we can create new materials with strong antimicrobial properties in vitro. Nanoparticles can be used to develop both polymer and biopolymer films, as well as their mixtures. Composite coatings can work synergistically with metal nanoparticles to create multifunctional food packaging systems that can act as compatibilizers. Particular attention was paid to metal nanoparticles in food coatings. We found that nanoparticles reduce the rate of microbial spoilage and inhibit lipid oxidation, thereby increasing the shelf life of raw materials and ready-to-eat foods. The safety of using nanoparticles in food coatings is an important concern. Therefore, we also considered the migration of nanoparticles from the coating into the food product. \u0000Incorporating nanoparticles into polymer and biopolymer films can create new materials with antimicrobial properties against foodborne pathogens. Such composite films can effectively extend the shelf life of food products. However, the undesirable migration of metal ions into the food product may limit the use of such films.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48534118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-583
Emmanuel Kormla Danyo, Maria Ivantsova, Irina Selezneva
There are two main types of radiation: ionizing and non-ionizing. Radiations are widely distributed in the earth’s crust with small amounts found in water, soil, and rocks. Humans can also produce them through military, scientific, and industrial activities. Ionizing and nonionizing radiations have a wide application in the food industry and medicine. γ-rays, X-rays, and electron beams are the main sources of radiation used in the food industry for food processing. This review discusses advantages and disadvantages of ionizing radiation on microorganisms and its potential applications in the food industry. We also looked at its advantages and disadvantages.
Studies have revealed that ionizing radiation is used in the food industry to inactivate microorganisms in food products to improve hygiene, safety, and extend shelf life. Microorganisms such as bacteria and fungi are susceptible to high doses of irradiation. However, some bacterial and fungal species have developed an exceptional ability to withstand the deleterious effect of radiation. These organisms have developed effective mechanisms to repair DNA damage resulting from radiation exposure.
Currently, radiation has become a promising technology for the food industry, since fruits, tubers, and bulbs can be irradiated to delay ripening or prevent sprouting to extend their shelf life.
{"title":"Ionizing radiation effects on microorganisms and its applications in the food industry","authors":"Emmanuel Kormla Danyo, Maria Ivantsova, Irina Selezneva","doi":"10.21603/2308-4057-2024-1-583","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-583","url":null,"abstract":"There are two main types of radiation: ionizing and non-ionizing. Radiations are widely distributed in the earth’s crust with small amounts found in water, soil, and rocks. Humans can also produce them through military, scientific, and industrial activities. Ionizing and nonionizing radiations have a wide application in the food industry and medicine. γ-rays, X-rays, and electron beams are the main sources of radiation used in the food industry for food processing. This review discusses advantages and disadvantages of ionizing radiation on microorganisms and its potential applications in the food industry. We also looked at its advantages and disadvantages. 
 Studies have revealed that ionizing radiation is used in the food industry to inactivate microorganisms in food products to improve hygiene, safety, and extend shelf life. Microorganisms such as bacteria and fungi are susceptible to high doses of irradiation. However, some bacterial and fungal species have developed an exceptional ability to withstand the deleterious effect of radiation. These organisms have developed effective mechanisms to repair DNA damage resulting from radiation exposure. 
 Currently, radiation has become a promising technology for the food industry, since fruits, tubers, and bulbs can be irradiated to delay ripening or prevent sprouting to extend their shelf life.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135831950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-596
Nasim Azizpour, Seyed Hadi Razavi, Mehran Azizpour, Esmaeil Khazaei Poul
In this study, we aimed to investigate the impact of three different post-packaging pasteurization temperatures (55, 65, and 75°C) on the physicochemical (pH, drip loss, texture profile, and color), microbial (lactic acid bacteria, mesophilic and psychrotrophic bacteria, as well as mold and yeast), and sensory (odor, taste, texture, color, slime, exudates, swelling, and overall acceptability) characteristics of vacuum-packed beef ham during 30 days of storage at two different temperatures (5 and 12°C).
Lactic acid bacteria and total mesophilic and psychrotrophic counts were reduced to zero by post-packaging pasteurization at 65 and 75°C. Higher post-packaging pasteurization temperatures resulted in a significant increase in drip loss in the treated samples at 65 and 75°C, as well as a small rise in pH in all the samples. Furthermore, higher post-packaging pasteurization temperatures decreased lightness, yellowness, and h° values while increasing redness and ΔE. During post-packaging pasteurization, Chroma remained constant. The textural profile analysis revealed that post-packaging pasteurization and storage had a significant impact on the texture of beef ham. The sensory analysis showed no changes after post-packaging pasteurization in the samples, and the sensory parameters remained stable during their storage at 65 and 75 °C.
Finally, our investigation showed that 65°C is an optimal post-packaging pasteurization temperature for increasing the shelf-life of beef ham under refrigeration.
{"title":"The effect of post-packaging pasteurization on physicochemical and microbial properties of beef ham","authors":"Nasim Azizpour, Seyed Hadi Razavi, Mehran Azizpour, Esmaeil Khazaei Poul","doi":"10.21603/2308-4057-2024-1-596","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-596","url":null,"abstract":"In this study, we aimed to investigate the impact of three different post-packaging pasteurization temperatures (55, 65, and 75°C) on the physicochemical (pH, drip loss, texture profile, and color), microbial (lactic acid bacteria, mesophilic and psychrotrophic bacteria, as well as mold and yeast), and sensory (odor, taste, texture, color, slime, exudates, swelling, and overall acceptability) characteristics of vacuum-packed beef ham during 30 days of storage at two different temperatures (5 and 12°C).
 Lactic acid bacteria and total mesophilic and psychrotrophic counts were reduced to zero by post-packaging pasteurization at 65 and 75°C. Higher post-packaging pasteurization temperatures resulted in a significant increase in drip loss in the treated samples at 65 and 75°C, as well as a small rise in pH in all the samples. Furthermore, higher post-packaging pasteurization temperatures decreased lightness, yellowness, and h° values while increasing redness and ΔE. During post-packaging pasteurization, Chroma remained constant. The textural profile analysis revealed that post-packaging pasteurization and storage had a significant impact on the texture of beef ham. The sensory analysis showed no changes after post-packaging pasteurization in the samples, and the sensory parameters remained stable during their storage at 65 and 75 °C.
 Finally, our investigation showed that 65°C is an optimal post-packaging pasteurization temperature for increasing the shelf-life of beef ham under refrigeration.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135832459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-592
M. Perevozchikova, I. Domsky, A. Sergeyev
Comparative studies that feature the physiology of wild and domestic animals replenish the fundamental knowledge in the field of biology and adaptive potential, thus increasing the efficiency of domestication. Semi-free conditions and artificial environment create prerequisites for epidemics and stress. However, early detection can prevent critical situations. This research provides new data on moose biology and physiology by establishing age and sex hematological parameters. The study featured moose blood samples (n = 55) obtained in the Kirov Region in the northeast of European Russia. Hematological tests relied on a veterinary version of a MicroCC-20 Plus automatic analyzer (High Technology). This research was the first of its kind to introduce a comparative hematological analysis of local European moose according to age and sex. Adults and calves demonstrated significant differences (p < 0.05) in red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean concentration hemoglobin, mean corpuscular hemoglobin concentration, platelet distribution width, red blood cell distribution width, platelet crit, platelets, leukocytes, and eosinophils. Females and males also had significant differences (p < 0.05) in red blood cells, hemoglobin, mean corpuscular volume, red blood cell distribution width, platelet distribution width, platelets, and eosinophil content. The single- and multivariate analysis made it possible to establish the effect of physiological factors on the blood parameters in moose. The hematological values were in line with the most indicators reported in other publications on wild artiodactyls. The existing differences in blood parameters depended on the species, habitat, food supply, age, and sex.
{"title":"Hematological parameters of free-ranging moose Alces alces (Linnaeus 1758) (Ruminantia, Cervidae)","authors":"M. Perevozchikova, I. Domsky, A. Sergeyev","doi":"10.21603/2308-4057-2024-1-592","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-592","url":null,"abstract":"Comparative studies that feature the physiology of wild and domestic animals replenish the fundamental knowledge in the field of biology and adaptive potential, thus increasing the efficiency of domestication. Semi-free conditions and artificial environment create prerequisites for epidemics and stress. However, early detection can prevent critical situations. This research provides new data on moose biology and physiology by establishing age and sex hematological parameters. \u0000The study featured moose blood samples (n = 55) obtained in the Kirov Region in the northeast of European Russia. Hematological tests relied on a veterinary version of a MicroCC-20 Plus automatic analyzer (High Technology). \u0000This research was the first of its kind to introduce a comparative hematological analysis of local European moose according to age and sex. Adults and calves demonstrated significant differences (p < 0.05) in red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean concentration hemoglobin, mean corpuscular hemoglobin concentration, platelet distribution width, red blood cell distribution width, platelet crit, platelets, leukocytes, and eosinophils. Females and males also had significant differences (p < 0.05) in red blood cells, hemoglobin, mean corpuscular volume, red blood cell distribution width, platelet distribution width, platelets, and eosinophil content. The single- and multivariate analysis made it possible to establish the effect of physiological factors on the blood parameters in moose. \u0000The hematological values were in line with the most indicators reported in other publications on wild artiodactyls. The existing differences in blood parameters depended on the species, habitat, food supply, age, and sex.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49210484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-591
Maria Romanova, Anastasiia Dolbunova, Yulia Epishkina, S. Evdokimova, Mikhail Kozlovskiy, A. Kuznetsov, N. Khromova, A. Beloded
Biodegradable polymers, specifically polylactide, are an important part of food packaging and medical devices. Microbiological synthesis uses cheap renewable raw materials and industrial waste to produce a high yield of lactic acid, the monomer of polylactide. This method needs new effective lactic acid producing strains, e.g., thermophilic bacteria. The research involved thermophilic bacterial strains isolated from soil and compost samples. Their ability to produce organic acids and extracellular enzymes was tested using the method of high-performance liquid chromatography (HPLC) and microbiological tests respectively. The real-time polymerase chain reaction method (PCR) detected L-lactate dehydrogenase structural genes of L-lactate dehydrogenase of Bacillaceae. Strain T7.1 was fermented using glucose and yeast extract as carbon and nitrogen sources, respectively. The optical purity of lactic acid was evaluated using quantitative gas chromatography on a chiral column to separate lactate isomers. The molecular genetic analysis of the 16S rRNA gene sequence was applied to identify strain T7.1. The chromatographic analysis proved that 10 out of 13 isolated thermophilic strains were effective lactic acid producers. They demonstrated proteolytic, amylolytic, or cellulase activities. During the fermentation, strain T7.1 produced 81 g/L of lactic acid with a peak productivity at 1.58 g/(L·h). The optical purity of the product exceeded 99.9% L-lactate. The genetic analysis identified strain T7.1 as Weizmannia coagulans (Bacillus coagulans). The research revealed a promising thermophilic producer of optically pure L-lactic acid. Further research is needed to optimize the cultivation conditions, design an effective and cheap nutrient medium, and develop engineering and technological solutions to increase the yield.
{"title":"A thermophilic L-lactic acid producer of high optical purity: isolation and identification","authors":"Maria Romanova, Anastasiia Dolbunova, Yulia Epishkina, S. Evdokimova, Mikhail Kozlovskiy, A. Kuznetsov, N. Khromova, A. Beloded","doi":"10.21603/2308-4057-2024-1-591","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-591","url":null,"abstract":"Biodegradable polymers, specifically polylactide, are an important part of food packaging and medical devices. Microbiological synthesis uses cheap renewable raw materials and industrial waste to produce a high yield of lactic acid, the monomer of polylactide. This method needs new effective lactic acid producing strains, e.g., thermophilic bacteria. \u0000The research involved thermophilic bacterial strains isolated from soil and compost samples. Their ability to produce organic acids and extracellular enzymes was tested using the method of high-performance liquid chromatography (HPLC) and microbiological tests respectively. The real-time polymerase chain reaction method (PCR) detected L-lactate dehydrogenase structural genes of L-lactate dehydrogenase of Bacillaceae. Strain T7.1 was fermented using glucose and yeast extract as carbon and nitrogen sources, respectively. The optical purity of lactic acid was evaluated using quantitative gas chromatography on a chiral column to separate lactate isomers. The molecular genetic analysis of the 16S rRNA gene sequence was applied to identify strain T7.1. \u0000The chromatographic analysis proved that 10 out of 13 isolated thermophilic strains were effective lactic acid producers. They demonstrated proteolytic, amylolytic, or cellulase activities. During the fermentation, strain T7.1 produced 81 g/L of lactic acid with a peak productivity at 1.58 g/(L·h). The optical purity of the product exceeded 99.9% L-lactate. The genetic analysis identified strain T7.1 as Weizmannia coagulans (Bacillus coagulans). \u0000The research revealed a promising thermophilic producer of optically pure L-lactic acid. Further research is needed to optimize the cultivation conditions, design an effective and cheap nutrient medium, and develop engineering and technological solutions to increase the yield.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43576683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-584
Tatsiana Halavach, Vladimir Kurchenko, Ekaterina Tarun, Roman Romanovich, Natalia Mushkevich, Alexander Kazimirov, Aleksei Lodygin, Ivan Evdokimov
Chitosan reacts with amino acids and hydrolyzed whey proteins to produce biologically active complexes that can be used in functional foods. The research objective was to obtain chitosan biocomposites with peptides and amino acids with improved antioxidant and sensory properties.
The research featured biocomposites of chitosan and succinylated chitosan with whey peptides and amino acids. The methods of pH metry and spectrophotometry were employed to study the interaction parameters between polysaccharides and peptides, while colorimetry and spectrophotometry served to describe the amino acids content. The antiradical effect was determined by the method of fluorescence recovery. Pure compounds and their complexes underwent a sensory evaluation for bitterness.
Chitosan and succinylated chitosan formed complexes with whey peptides and such proteinogenic amino acids as arginine, valine, leucine, methionine, and tryptophan. The equimolar binding of tryptophan, leucine, and valine occurred in an aqueous chitosan solution (in terms of glucosamine). Methionine appeared to be the least effective in chitosan interaction, while arginine failed to complex both with chitosan and succinylated chitosan. Chitosan and succinylated chitosan biocomposites with peptides and leucine, methionine, and valine proved to be less bitter that the original substances. The samples with arginine maintained the same sensory properties. Chitosan complexes with tryptophan and peptides increased their antioxidant activity by 1.7 and 2.0 times, respectively, while their succinylated chitosan complexes demonstrated a 1.5 fold increase.
Chitosan and succinylated chitosan biocomplexes with tryptophan and whey protein peptides had excellent antioxidant and sensory properties. However, chitosan proved more effective than succinylated chitosan, probably, because it was richer in protonated amino groups, which interacted with negatively charged amino acids groups.
{"title":"Chitosan complexes with amino acids and whey peptides: Sensory and antioxidant properties","authors":"Tatsiana Halavach, Vladimir Kurchenko, Ekaterina Tarun, Roman Romanovich, Natalia Mushkevich, Alexander Kazimirov, Aleksei Lodygin, Ivan Evdokimov","doi":"10.21603/2308-4057-2024-1-584","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-584","url":null,"abstract":"Chitosan reacts with amino acids and hydrolyzed whey proteins to produce biologically active complexes that can be used in functional foods. The research objective was to obtain chitosan biocomposites with peptides and amino acids with improved antioxidant and sensory properties. 
 The research featured biocomposites of chitosan and succinylated chitosan with whey peptides and amino acids. The methods of pH metry and spectrophotometry were employed to study the interaction parameters between polysaccharides and peptides, while colorimetry and spectrophotometry served to describe the amino acids content. The antiradical effect was determined by the method of fluorescence recovery. Pure compounds and their complexes underwent a sensory evaluation for bitterness. 
 Chitosan and succinylated chitosan formed complexes with whey peptides and such proteinogenic amino acids as arginine, valine, leucine, methionine, and tryptophan. The equimolar binding of tryptophan, leucine, and valine occurred in an aqueous chitosan solution (in terms of glucosamine). Methionine appeared to be the least effective in chitosan interaction, while arginine failed to complex both with chitosan and succinylated chitosan. Chitosan and succinylated chitosan biocomposites with peptides and leucine, methionine, and valine proved to be less bitter that the original substances. The samples with arginine maintained the same sensory properties. Chitosan complexes with tryptophan and peptides increased their antioxidant activity by 1.7 and 2.0 times, respectively, while their succinylated chitosan complexes demonstrated a 1.5 fold increase.
 Chitosan and succinylated chitosan biocomplexes with tryptophan and whey protein peptides had excellent antioxidant and sensory properties. However, chitosan proved more effective than succinylated chitosan, probably, because it was richer in protonated amino groups, which interacted with negatively charged amino acids groups.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135832821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-599
Olga Belashova, Oksana Kozlova, Natalia Velichkovich, Anna Fokina, Vladimir Yustratov, Andrey Petrov
In addition to studying bioactive organic compounds in plants, it is increasingly important to determine the biological role of elements in plants growing in environmentally unfavorable areas. One of such regions in Russia is Kuzbass with its intensively developing chemical, metallurgical, and coal mining sectors. In this study, we assessed the plant materials of red clover (Trifolium pratense L.), alsike clover (Trifolium hybridum L.), and white clover (Trifolium repens L.) collected from their natural populations in Kuzbass.
The qualitative and quantitative composition of heavy metals in the clover samples was determined voltammetrically. The contents of molybdenum and phosphorus were measured by the photocolorimetric method. Total nitrogen and protein were determined by the Kjeldahl method. Nickel, cobalt, and chromium were quantified by spectrophotometry.
We analyzed the plant materials of the clover samples for heavy metals and found that the content of lead was the least in red clover and the highest in alsike clover. Copper varied in a larger range and was minimal in red clover compared to that in alsike and white clover. Zinc was found at higher concentrations of in white and red clover compared to that in alsike clover. The levels of cadmium exceeded the maximum permissible concentrations in all the clover samples. We also revealed that the clover samples contained different amounts of various amino acids, including arginine, valine, lysine, glycine, aspartic acid, and alanine.
The plant materials of the clover species growing in Kuzbass can be used to improve the fertility of soil and nitrogen regime. However, the clover species should not be used in bulk feed for farm animals because of high concentrations of cadmium.
{"title":"A phytochemical study of the clover growing in Kuzbass","authors":"Olga Belashova, Oksana Kozlova, Natalia Velichkovich, Anna Fokina, Vladimir Yustratov, Andrey Petrov","doi":"10.21603/2308-4057-2024-1-599","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-599","url":null,"abstract":"In addition to studying bioactive organic compounds in plants, it is increasingly important to determine the biological role of elements in plants growing in environmentally unfavorable areas. One of such regions in Russia is Kuzbass with its intensively developing chemical, metallurgical, and coal mining sectors. In this study, we assessed the plant materials of red clover (Trifolium pratense L.), alsike clover (Trifolium hybridum L.), and white clover (Trifolium repens L.) collected from their natural populations in Kuzbass.
 The qualitative and quantitative composition of heavy metals in the clover samples was determined voltammetrically. The contents of molybdenum and phosphorus were measured by the photocolorimetric method. Total nitrogen and protein were determined by the Kjeldahl method. Nickel, cobalt, and chromium were quantified by spectrophotometry.
 We analyzed the plant materials of the clover samples for heavy metals and found that the content of lead was the least in red clover and the highest in alsike clover. Copper varied in a larger range and was minimal in red clover compared to that in alsike and white clover. Zinc was found at higher concentrations of in white and red clover compared to that in alsike clover. The levels of cadmium exceeded the maximum permissible concentrations in all the clover samples. We also revealed that the clover samples contained different amounts of various amino acids, including arginine, valine, lysine, glycine, aspartic acid, and alanine.
 The plant materials of the clover species growing in Kuzbass can be used to improve the fertility of soil and nitrogen regime. However, the clover species should not be used in bulk feed for farm animals because of high concentrations of cadmium.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135832488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-594
Do Viet Phuong, Luu Thao Nguyen
The Vietnamese food industry produces a lot of coffee pulp, which is a valuable and abundant source of agricultural by-products. It contains a lot of cellulose, which can be converted into bioethanol. However, coffee pulp needs an extensive pretreatment to reduce the amount of lignin and hemicellulose while retaining the initial cellulose composition. This study compared several pre-hydrolysis and pre-fermentation pretreatment methods which involved H2SO4, NaOH, microwaves, and white rot fungus Phanerochaete chrysosporium. The hemicellulose dropped by 43.8% after the acidic pretreatment, by 47.1% after the alkaline pretreatment, and by 12.8% after the microbial pretreatment. The lignin contents dropped by 4.2, 76.6, and 50.2% after acidic, alkaline, and microbial pretreatment, respectively. The removal of hemicellulose and lignin in the coffee pulp was much more efficient when two or three of the pretreatment methods were combined. The microwave-assisted acid and alkaline pretreatment was the most efficient method: it removed 71.3% of hemicellulose and 79.2% of lignin. The combined method also had the highest amount of reducing sugars and glucose in hydrolysate. Additionally, concentrations of such yeast inhibitors as 5-hydroxymethyl-2-furaldehyde (HMF) and furfural were 2.11 and 3.37 g/L, respectively. The acid pretreatment was effective only in removing hemicellulose while the alkaline pretreatment was effective in lignin removal; the fungal pretreatment had low results for both hemicellulose and lignin removals. Therefore, the combined pretreatment method was found optimal for coffee pulp.
{"title":"Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency","authors":"Do Viet Phuong, Luu Thao Nguyen","doi":"10.21603/2308-4057-2024-1-594","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-594","url":null,"abstract":"The Vietnamese food industry produces a lot of coffee pulp, which is a valuable and abundant source of agricultural by-products. It contains a lot of cellulose, which can be converted into bioethanol. However, coffee pulp needs an extensive pretreatment to reduce the amount of lignin and hemicellulose while retaining the initial cellulose composition. This study compared several pre-hydrolysis and pre-fermentation pretreatment methods which involved H2SO4, NaOH, microwaves, and white rot fungus Phanerochaete chrysosporium. \u0000The hemicellulose dropped by 43.8% after the acidic pretreatment, by 47.1% after the alkaline pretreatment, and by 12.8% after the microbial pretreatment. The lignin contents dropped by 4.2, 76.6, and 50.2% after acidic, alkaline, and microbial pretreatment, respectively. The removal of hemicellulose and lignin in the coffee pulp was much more efficient when two or three of the pretreatment methods were combined. The microwave-assisted acid and alkaline pretreatment was the most efficient method: it removed 71.3% of hemicellulose and 79.2% of lignin. The combined method also had the highest amount of reducing sugars and glucose in hydrolysate. Additionally, concentrations of such yeast inhibitors as 5-hydroxymethyl-2-furaldehyde (HMF) and furfural were 2.11 and 3.37 g/L, respectively. \u0000The acid pretreatment was effective only in removing hemicellulose while the alkaline pretreatment was effective in lignin removal; the fungal pretreatment had low results for both hemicellulose and lignin removals. Therefore, the combined pretreatment method was found optimal for coffee pulp.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46669395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.21603/2308-4057-2024-1-585
Jaishankar Prasad, Aishwarya Dixit, Sujata P. Sharma, Anjelina W. Mwakosya, Anka T. Petkoska, Ashutosh Upadhyay, Nishant Kumar
Recently, there has been an increasing trend in the food and pharmaceutical industries towards using nanotechnological approaches to drug delivery and active packaging (edible coatings and films). In the food sector, nanoemulsions are the most promising technology for delivering active components and improving the barrier, mechanical, and biological properties of packaging to ensure the safety and quality of food products, as well as extend their shelf life.
For this review, we used several databases (Google Scholar, Science Direct, PubMed, Web of Science, Scopus, Research Gate, etc.) to collect information about nanoemulsions and their role in edible packaging.
We searched for articles published between 2015 and 2022 and described different scientific approaches to developing active packaging systems based on nanoemulsions, as well as their high-energy and low-energy synthesis methods. We also reviewed the uses of different types of essential oil-based nanoemulsions in the packaging of food products to prolong their shelf life and ensure safety. Non-migratory active packaging and active-release packaging systems were also discussed, as well as their advantages and disadvantages.
最近,在食品和制药工业中,使用纳米技术方法进行药物输送和活性包装(可食用涂层和薄膜)的趋势越来越明显。在食品领域,纳米乳液是最有前途的技术,可以提供有效成分,改善包装的屏障、机械和生物特性,以确保食品的安全和质量,并延长其保质期。
在这篇综述中,我们使用了几个数据库(Google Scholar, Science Direct, PubMed, Web of Science, Scopus, Research Gate等)来收集有关纳米乳液及其在可食用包装中的作用的信息。& # x0D;我们检索了2015年至2022年间发表的文章,描述了基于纳米乳液开发活性包装系统的不同科学方法,以及它们的高能和低能合成方法。我们亦研究了不同种类的精油基纳米乳液在食品包装上的用途,以延长食品的保质期和确保安全。讨论了非迁移型主动包装和主动释放型包装的优缺点。
{"title":"Nanoemulsion-based active packaging for food products","authors":"Jaishankar Prasad, Aishwarya Dixit, Sujata P. Sharma, Anjelina W. Mwakosya, Anka T. Petkoska, Ashutosh Upadhyay, Nishant Kumar","doi":"10.21603/2308-4057-2024-1-585","DOIUrl":"https://doi.org/10.21603/2308-4057-2024-1-585","url":null,"abstract":"Recently, there has been an increasing trend in the food and pharmaceutical industries towards using nanotechnological approaches to drug delivery and active packaging (edible coatings and films). In the food sector, nanoemulsions are the most promising technology for delivering active components and improving the barrier, mechanical, and biological properties of packaging to ensure the safety and quality of food products, as well as extend their shelf life.
 For this review, we used several databases (Google Scholar, Science Direct, PubMed, Web of Science, Scopus, Research Gate, etc.) to collect information about nanoemulsions and their role in edible packaging. 
 We searched for articles published between 2015 and 2022 and described different scientific approaches to developing active packaging systems based on nanoemulsions, as well as their high-energy and low-energy synthesis methods. We also reviewed the uses of different types of essential oil-based nanoemulsions in the packaging of food products to prolong their shelf life and ensure safety. Non-migratory active packaging and active-release packaging systems were also discussed, as well as their advantages and disadvantages.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135831951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}