Pub Date : 2023-03-14DOI: 10.21603/2308-4057-2023-1-561
E. Abakumov, R. Tembotov
No agriculture is possible without soil. This article reviews available data on the soils of the Baksan Gorge located in the Kabardino-Balkarian Republic, Russia. The research objective was to collect and analyze information on the soil composition and crop yields in this region of the Central Caucasus. The review covered the last five years of scientific publications cited in Scopus, Web of Science, and Elibrary. It also featured contemporary and archival documents on the soil composition and periglacial agriculture in the Baksan Gorge. The agriculture and cattle breeding started in the Central Caucasus in the first millennium BC when the local peoples began to develop these lands as highland pastures and, subsequently, for agricultural farming. During the second millennium BC, crop production became one of the most important economic sectors in the Central Caucasus. Corn, barley, wheat, and millet were the main agricultural crops in the Baksan Gorge. Millet has always been a traditional Kabardian crop, and millet farming occupied the largest flatland areas. Barley was the staple crop in the highlands. Currently, the list of local staple crops includes corn, wheat, and sunflower. Barley, oats, peas, potatoes, vegetables, berries, nuts, grapes, and annual herbs are also popular. The past fifteen years have seen an extensive development of intensive horticulture in the Baksan Gorge. Agricultural ecology and production problems depend on the localization of agriculture in the Central Caucasus. This research reviewed data on the effect of soil composition on the yield and value of agricultural crops in the Baksan Gorge of the Central Caucasus.
没有土壤就不可能有农业。本文回顾了位于俄罗斯卡巴尔迪尼奥·巴尔卡里亚共和国的巴克桑峡谷土壤的现有数据。研究目的是收集和分析有关中高加索地区土壤成分和作物产量的信息。该综述涵盖了Scopus、Web of Science和Elibrary引用的过去五年的科学出版物。它还收录了关于巴克桑峡谷土壤成分和冰缘农业的当代和档案文件。农业和养牛始于公元前一千年的中高加索地区,当时当地人开始将这些土地开发为高地牧场,随后用于农业。在公元前第二个千年期间,作物生产成为中高加索地区最重要的经济部门之一。玉米、大麦、小麦和小米是巴桑峡谷的主要农业作物。小米一直是卡巴迪的传统作物,小米种植占据了最大的平原地区。大麦是高地的主要作物。目前,当地主要作物包括玉米、小麦和向日葵。大麦、燕麦、豌豆、土豆、蔬菜、浆果、坚果、葡萄和一年生草本植物也很受欢迎。在过去的十五年里,巴克桑峡谷的集约园艺得到了广泛的发展。农业生态和生产问题取决于中高加索地区农业的本地化。本研究回顾了中高加索巴克桑峡谷土壤成分对农作物产量和价值影响的数据。
{"title":"Agriculture in the Baksan Gorge of the Central Caucasus, Kabardino-Balkaria, Russia","authors":"E. Abakumov, R. Tembotov","doi":"10.21603/2308-4057-2023-1-561","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-561","url":null,"abstract":"No agriculture is possible without soil. This article reviews available data on the soils of the Baksan Gorge located in the Kabardino-Balkarian Republic, Russia. The research objective was to collect and analyze information on the soil composition and crop yields in this region of the Central Caucasus. \u0000The review covered the last five years of scientific publications cited in Scopus, Web of Science, and Elibrary. It also featured contemporary and archival documents on the soil composition and periglacial agriculture in the Baksan Gorge. \u0000The agriculture and cattle breeding started in the Central Caucasus in the first millennium BC when the local peoples began to develop these lands as highland pastures and, subsequently, for agricultural farming. During the second millennium BC, crop production became one of the most important economic sectors in the Central Caucasus. Corn, barley, wheat, and millet were the main agricultural crops in the Baksan Gorge. Millet has always been a traditional Kabardian crop, and millet farming occupied the largest flatland areas. Barley was the staple crop in the highlands. Currently, the list of local staple crops includes corn, wheat, and sunflower. Barley, oats, peas, potatoes, vegetables, berries, nuts, grapes, and annual herbs are also popular. The past fifteen years have seen an extensive development of intensive horticulture in the Baksan Gorge. \u0000Agricultural ecology and production problems depend on the localization of agriculture in the Central Caucasus. This research reviewed data on the effect of soil composition on the yield and value of agricultural crops in the Baksan Gorge of the Central Caucasus.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42345324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-548
O. Romanova, T. Vjurtts, A. Mineykina, Yana Tukuser, Yu.S. Kulakov, V. Akhramenko, A. Soldatenko, E. Domblides
Haploid technologies are used to create homozygous lines for accelerated breeding. We aimed to optimize the technology for using the isolated microspore culture in vitro to obtain doubled haploids of the carrot (Daucus carota L.). We studied two carrot varieties with different responsiveness to embryogenesis, Altajskaya lakomka and Breeding line 17. Carrot microspores were isolated from buds and cultivated in liquid nutrient media supplemented with an antibiotic and activated carbon in vitro. They were exposed to different thermal treatments. The experiment showed the benefits of combining cold pre-treatment of buds (5°C for 1 day) with heat shock of isolated microspores in vitro (32°C for 2 days). The induction of embryogenesis on the NLN-13 medium was twice as high as on the MSm-13 medium. The use of 1% activated carbon in 0.5% agarose increased the yield of embryoids by more than 1.5 times. 100 mg/dm3 of ampicillin was found to be the most efficient concentration. After 30 days of cultivation under optimized conditions, the yield was 161.3 and 44.0 embryoids per Petri dish for the cultivar Altajskaya lakomka and Breeding line 17, respectively. The induction of carrot embryogenesis is determined by the type and duration of thermal stress, the composition of the nutrient medium, the use of activated carbon as a sorbent, the addition of β-lactam antibiotics, and the type of explant exposed to thermal treatment. Our technology enabled us to obtain homozygous doubled haploid lines of carrots during a year, and these lines were included in the breeding process to create F1 hybrids.
{"title":"Embryogenesis induction of carrot (Daucus carota L.) in isolated microspore culture","authors":"O. Romanova, T. Vjurtts, A. Mineykina, Yana Tukuser, Yu.S. Kulakov, V. Akhramenko, A. Soldatenko, E. Domblides","doi":"10.21603/2308-4057-2023-1-548","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-548","url":null,"abstract":"Haploid technologies are used to create homozygous lines for accelerated breeding. We aimed to optimize the technology for using the isolated microspore culture in vitro to obtain doubled haploids of the carrot (Daucus carota L.). \u0000We studied two carrot varieties with different responsiveness to embryogenesis, Altajskaya lakomka and Breeding line 17. Carrot microspores were isolated from buds and cultivated in liquid nutrient media supplemented with an antibiotic and activated carbon in vitro. They were exposed to different thermal treatments. \u0000The experiment showed the benefits of combining cold pre-treatment of buds (5°C for 1 day) with heat shock of isolated microspores in vitro (32°C for 2 days). The induction of embryogenesis on the NLN-13 medium was twice as high as on the MSm-13 medium. The use of 1% activated carbon in 0.5% agarose increased the yield of embryoids by more than 1.5 times. 100 mg/dm3 of ampicillin was found to be the most efficient concentration. After 30 days of cultivation under optimized conditions, the yield was 161.3 and 44.0 embryoids per Petri dish for the cultivar Altajskaya lakomka and Breeding line 17, respectively. \u0000The induction of carrot embryogenesis is determined by the type and duration of thermal stress, the composition of the nutrient medium, the use of activated carbon as a sorbent, the addition of β-lactam antibiotics, and the type of explant exposed to thermal treatment. Our technology enabled us to obtain homozygous doubled haploid lines of carrots during a year, and these lines were included in the breeding process to create F1 hybrids.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44193422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-556
L. Asyakina, Ekaterina Vorob’eva, L. Proskuryakova, M. Zharko
Abiotic and biotic stresses have a major impact on crop growth. Stress affects the root system and decreases the amount of nutrients in fruits. Modern agricultural technologies help replace mineral fertilizers with new generation biopreparation. Unlike chemical fertilizers, biofertilizers reduce the risk of adverse environmental impacts. Of special interest are extremophilic microorganisms able to survive in extreme conditions. We aimed to study the phytostimulating ability of extremophilic bacteria isolated from disturbed lands in the coal-mining region. We isolated microorganisms from disturbed lands and studied their cultural, morphological, and biochemical properties. Then, we determined their ability to synthesize indole-3-acetic acids. The extremophilic bacteria were identified and subjected to biocompatibility testing by co-cultivation. Next, we created consortia of pure cultures and analyzed biomass growth. Finally, the biopreparation was experimentally tested on Trifolium prantense L. seeds. We isolated 10 strains of microorganisms that synthesized 4.39 to 16.32 mg/mL of indole-3-acetic acid. The largest amounts of the acid were produced by Pantoea spp., Enterococcus faecium, Leclercia spp., Rothia endophytica, and Klebsiella oxytoca. A consortium of Pantoea spp., E. faecium, and R. endophytica at a ratio of 1:1:1 produced the largest amount of indole-3-acetic acid (15.59 mg/mL) and accumulated maximum biomass. The addition of 0.2% L-tryptophan to the nutrient medium increased the amount of indole-3-acetic acid to 18.45 mg/mL. When the T. prantense L. seeds were soaked in the biopreparation (consortium’s culture fluid) at a concentration of 2.5, the sprouts were 1.4 times longer on the 10th day of growth, compared to the control. The consortium of Pantoea spp., E. faecium, and R. endophytica (1:1:1) stimulated the growth of T. prantense L. seeds. Our findings can be further used to develop biofertilizers for agriculture.
{"title":"Evaluating extremophilic microorganisms in industrial regions","authors":"L. Asyakina, Ekaterina Vorob’eva, L. Proskuryakova, M. Zharko","doi":"10.21603/2308-4057-2023-1-556","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-556","url":null,"abstract":"Abiotic and biotic stresses have a major impact on crop growth. Stress affects the root system and decreases the amount of nutrients in fruits. Modern agricultural technologies help replace mineral fertilizers with new generation biopreparation. Unlike chemical fertilizers, biofertilizers reduce the risk of adverse environmental impacts. Of special interest are extremophilic microorganisms able to survive in extreme conditions. We aimed to study the phytostimulating ability of extremophilic bacteria isolated from disturbed lands in the coal-mining region. \u0000We isolated microorganisms from disturbed lands and studied their cultural, morphological, and biochemical properties. Then, we determined their ability to synthesize indole-3-acetic acids. The extremophilic bacteria were identified and subjected to biocompatibility testing by co-cultivation. Next, we created consortia of pure cultures and analyzed biomass growth. Finally, the biopreparation was experimentally tested on Trifolium prantense L. seeds. \u0000We isolated 10 strains of microorganisms that synthesized 4.39 to 16.32 mg/mL of indole-3-acetic acid. The largest amounts of the acid were produced by Pantoea spp., Enterococcus faecium, Leclercia spp., Rothia endophytica, and Klebsiella oxytoca. A consortium of Pantoea spp., E. faecium, and R. endophytica at a ratio of 1:1:1 produced the largest amount of indole-3-acetic acid (15.59 mg/mL) and accumulated maximum biomass. The addition of 0.2% L-tryptophan to the nutrient medium increased the amount of indole-3-acetic acid to 18.45 mg/mL. When the T. prantense L. seeds were soaked in the biopreparation (consortium’s culture fluid) at a concentration of 2.5, the sprouts were 1.4 times longer on the 10th day of growth, compared to the control. \u0000The consortium of Pantoea spp., E. faecium, and R. endophytica (1:1:1) stimulated the growth of T. prantense L. seeds. Our findings can be further used to develop biofertilizers for agriculture.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49580063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-554
M. Islam, R. Mustafa
Trace elements are dangerous to human health and there is a rising concern about the quality of processed foods in some parts of the world, especially in Iraq. The chemical composition (total sold, moisture, and ash) and concentrations of trace elements in canned fish (Skipjack tuna, Sardines, Tuna fish, Sardines, and Mackerel) from the Kalar market, Iraq were determined by using an inductively coupled plasma-optical emission spectrometer. The ranges obtained for the elements in mg/kg were as follows: Se (0.025–0.77), As (0.02–1.07), B (0.05–0.7), Ag (0.04–0.83), Ba (0.05–0.975), Mg (29.8–37.5), Mn (0.97–2.09), Cu (0.91–3.09), and Zn (5.12–11.7). The studied canned fishes pose no risk with respect to the estimated daily intake of Se, As, B, Ag, Ba, Mg, Mn, Cu, and Zn. The total target hazard quotients for the studied metals from individual fish species (except Fme, Fma, and Fsh) were more than one, which was responsible for noncarcinogenic risks. The target carcinogenic risk value for arsenic was also higher than the standard (10-4) set by the United States Environmental Protection Agency. It revealed that the consumption of canned fish causes a chronic cancer risk to humans.
{"title":"Assessment of trace elements in canned fish and health risk appraisal","authors":"M. Islam, R. Mustafa","doi":"10.21603/2308-4057-2023-1-554","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-554","url":null,"abstract":"Trace elements are dangerous to human health and there is a rising concern about the quality of processed foods in some parts of the world, especially in Iraq. \u0000The chemical composition (total sold, moisture, and ash) and concentrations of trace elements in canned fish (Skipjack tuna, Sardines, Tuna fish, Sardines, and Mackerel) from the Kalar market, Iraq were determined by using an inductively coupled plasma-optical emission spectrometer. \u0000The ranges obtained for the elements in mg/kg were as follows: Se (0.025–0.77), As (0.02–1.07), B (0.05–0.7), Ag (0.04–0.83), Ba (0.05–0.975), Mg (29.8–37.5), Mn (0.97–2.09), Cu (0.91–3.09), and Zn (5.12–11.7). The studied canned fishes pose no risk with respect to the estimated daily intake of Se, As, B, Ag, Ba, Mg, Mn, Cu, and Zn. The total target hazard quotients for the studied metals from individual fish species (except Fme, Fma, and Fsh) were more than one, which was responsible for noncarcinogenic risks. The target carcinogenic risk value for arsenic was also higher than the standard (10-4) set by the United States Environmental Protection Agency. \u0000It revealed that the consumption of canned fish causes a chronic cancer risk to humans.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48513027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-560
S. Sekhavatizadeh, Khadijeh Banisaeed, Mahboobeh Hasanzadeh, Sepideh Khalatbari-Limaki, Hanieh Amininezhad
Kashk is a perishable fermented dairy product. Since chemical preservatives are harmful for human health, we aimed to study lemongrass (Cymbopogon citratus L.) as a natural preservative. First, we assessed the phytochemical properties of lemongrass extract. Then, we added lemongrass extract and microencapsulated lemongrass extract to kashk samples. Finally, we analyzed their physicochemical and sensorial properties during 60 days of storage. Catechin (419.04 ± 0.07 mg/L), gallic acid (319.67 ± 0.03 mg/L), and chloregenic acid (4.190 ± 0.002 mg/L) were found to be the predominant phenolic constituents in lemongrass. Total phenolics, total flavonoids, and antioxidant activity (IC50) values of the lemongrass extract were 26.73 mg GA/g, 8.06 mg Quercetin/g, and 2751.331 mg/L, respectively. The beads were spherical in shape with a 35.03-nm average particle diameter and 47.81% microencapsulation efficiency. The pH of the supplemented kashks decreased during the storage time. They showed lower acid degree values than the control at the end of storage. The peroxide, p-anisidine, and thiobarbituric acid values of the sample fortified with microencapsulated lemongrass extract were 6.15, 4.76, and 44.12%, respectively, being the lowest among the samples. This kashk sample had the highest hardness (570.62 ± 21.87 g), adhesiveness (18.10 ± 4.36 mJ), and cohesiveness (0.56 ± 0.25) but the lowest chewiness (72.66 ± 3.08 mJ) among the samples. It also had a better sensory profile than the control samples. Our results indicated that microencapsulated lemongrass extract could be incorporated into kashk to ensure suitable sensorial and textural properties. Furthermore, it may delay fat oxidation and lipolysis during storage.
{"title":"Physicochemical properties of kashk supplemented with encapsulated lemongrass extract","authors":"S. Sekhavatizadeh, Khadijeh Banisaeed, Mahboobeh Hasanzadeh, Sepideh Khalatbari-Limaki, Hanieh Amininezhad","doi":"10.21603/2308-4057-2023-1-560","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-560","url":null,"abstract":"Kashk is a perishable fermented dairy product. Since chemical preservatives are harmful for human health, we aimed to study lemongrass (Cymbopogon citratus L.) as a natural preservative. \u0000First, we assessed the phytochemical properties of lemongrass extract. Then, we added lemongrass extract and microencapsulated lemongrass extract to kashk samples. Finally, we analyzed their physicochemical and sensorial properties during 60 days of storage. \u0000Catechin (419.04 ± 0.07 mg/L), gallic acid (319.67 ± 0.03 mg/L), and chloregenic acid (4.190 ± 0.002 mg/L) were found to be the predominant phenolic constituents in lemongrass. Total phenolics, total flavonoids, and antioxidant activity (IC50) values of the lemongrass extract were 26.73 mg GA/g, 8.06 mg Quercetin/g, and 2751.331 mg/L, respectively. The beads were spherical in shape with a 35.03-nm average particle diameter and 47.81% microencapsulation efficiency. The pH of the supplemented kashks decreased during the storage time. They showed lower acid degree values than the control at the end of storage. The peroxide, p-anisidine, and thiobarbituric acid values of the sample fortified with microencapsulated lemongrass extract were 6.15, 4.76, and 44.12%, respectively, being the lowest among the samples. This kashk sample had the highest hardness (570.62 ± 21.87 g), adhesiveness (18.10 ± 4.36 mJ), and cohesiveness (0.56 ± 0.25) but the lowest chewiness (72.66 ± 3.08 mJ) among the samples. It also had a better sensory profile than the control samples. \u0000Our results indicated that microencapsulated lemongrass extract could be incorporated into kashk to ensure suitable sensorial and textural properties. Furthermore, it may delay fat oxidation and lipolysis during storage.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47183382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-550
L. Krikunova, E. Meleshkina, I. Vitol, E. Dubinina, O. Obodeeva
Currently, there is an urgent need for domestic fermentation activators based on low-cost secondary raw materials. We aimed to study the effect of microbial enzyme preparations with different action on the hydrolysis of proteins and phytin of grain bran to obtain fermentation activators that could become an alternative to imported ones. We studied wheat and rye brans; microbial enzyme preparations with cytolytic, proteolytic, and phytase action; multi-enzyme compositions; and grain bran hydrolysates. Firstly, we determined the kinetic characteristics of enzyme preparations. Secondly, we evaluated their effectiveness in the hydrolysis of the brans. Thirdly, we developed multi-enzyme compositions. Finally, we determined the concentration of soluble forms of phosphorus and free amino acids in the hydrolysates. We determined optimal temperature and pH values for the enzyme preparations. The multi-enzyme compositions contributed to a high accumulation of reducing substances, water-soluble protein, and phosphorus. The concentration of free amino acids in the hydrolysates obtained under the action of the bran’s own enzymes was about 20% higher in the wheat samples, compared to the rye samples. However, when using multi-enzyme compositions in addition to the bran’s own enzymes, the concentration of free amino acids was 1.5 times higher in the rye hydrolysates, compared to the wheat hydrolysates. The use of multi-enzyme compositions under optimal conditions can double the content of phosphorus and free amino acids available for yeast, compared to the control. Our results can be used for further research into using grain bran hydrolysates as an alternative source of nitrogen and phosphorus nutrition for yeast at the fermentation stage of fruit distillate production.
{"title":"Grain bran hydrolysates in the production of fruit distillates","authors":"L. Krikunova, E. Meleshkina, I. Vitol, E. Dubinina, O. Obodeeva","doi":"10.21603/2308-4057-2023-1-550","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-550","url":null,"abstract":"Currently, there is an urgent need for domestic fermentation activators based on low-cost secondary raw materials. We aimed to study the effect of microbial enzyme preparations with different action on the hydrolysis of proteins and phytin of grain bran to obtain fermentation activators that could become an alternative to imported ones. \u0000We studied wheat and rye brans; microbial enzyme preparations with cytolytic, proteolytic, and phytase action; multi-enzyme compositions; and grain bran hydrolysates. Firstly, we determined the kinetic characteristics of enzyme preparations. Secondly, we evaluated their effectiveness in the hydrolysis of the brans. Thirdly, we developed multi-enzyme compositions. Finally, we determined the concentration of soluble forms of phosphorus and free amino acids in the hydrolysates. \u0000We determined optimal temperature and pH values for the enzyme preparations. The multi-enzyme compositions contributed to a high accumulation of reducing substances, water-soluble protein, and phosphorus. The concentration of free amino acids in the hydrolysates obtained under the action of the bran’s own enzymes was about 20% higher in the wheat samples, compared to the rye samples. However, when using multi-enzyme compositions in addition to the bran’s own enzymes, the concentration of free amino acids was 1.5 times higher in the rye hydrolysates, compared to the wheat hydrolysates. \u0000The use of multi-enzyme compositions under optimal conditions can double the content of phosphorus and free amino acids available for yeast, compared to the control. Our results can be used for further research into using grain bran hydrolysates as an alternative source of nitrogen and phosphorus nutrition for yeast at the fermentation stage of fruit distillate production.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43676376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-549
Safia Ali Haimoud, R. Allem
The abusive use of antibiotics causes the destruction of intestinal flora and the proliferation of antibiotic-resistant pathogens. Date palm is used in traditional medicine in the Saharan regions due to its biological properties. The study aimed to identify the phytochemical composition and assess the antibacterial activity of the methanolic extracts of three date cultivars from Algeria. Their total phenolic, flavonoid, and flavonol contents were measured spectrophotometrically. The phytochemical screening was conducted by HPLC fingerprinting using twenty-three pure phenolic compounds as standards. The antibacterial activity against pathogenic bacterial species was assessed using the disk diffusion method. The colorimetric methods showed that the total phenolic, flavonoid, and flavonol contents ranged from 2.13 ± 0.09 to 2.67 ± 0.02 mg GAE/100 g DW, 1.33 ± 0.21 to 1.55 ± 0.13 mg CEQ/100 g DW, and 0.41 ± 0.23 to 0.47 ± 0.05 mg REQ/100 g DW, respectively. HPLC fingerprinting showed that the extracts of date cultivars served as an excellent source of bioactive compounds (gallic acid, tannic acid, ferulic acid, vanillin, caffeine, quercetin, luteolin, rutin, aspegenin, isorhamnetin, and hesperidin). They also exhibited an antibacterial potential with an inhibition zone diameter ranging from 8.40 to 12.50 mm. The results clearly demonstrate the antibacterial potency of date palm fruits, which could be attributed to their considerable content of phenolic compounds such as gallic acid, rutin, quercetin, and luteolin.
滥用抗生素会导致肠道菌群的破坏和抗生素耐药性病原体的增殖。椰枣因其生物学特性在撒哈拉地区被用于传统医学。本研究旨在鉴定阿尔及利亚三个枣品种甲醇提取物的植物化学成分并评价其抗菌活性。用分光光度法测定了它们的总酚、黄酮和黄酮醇含量。以23种纯酚类化合物为标准品,采用高效液相色谱指纹图谱进行植物化学筛选。采用纸片扩散法对病原菌的抗菌活性进行了评价。比色法显示,总酚、黄酮和黄酮醇的含量范围分别为2.13±0.09至2.67±0.02 mg GAE/100 g DW、1.33±0.21至1.55±0.13 mg CEQ/100 g DW和0.41±0.23至0.47±0.05 mg REQ/100g DW。HPLC指纹图谱显示,椰枣品种的提取物是生物活性化合物(没食子酸、单宁酸、阿魏酸、香兰素、咖啡因、槲皮素、木犀草素、芦丁、白杨素、异鼠李素和橙皮苷)的良好来源。它们还表现出抗菌潜力,抑制区直径在8.40至12.50mm之间。结果清楚地证明了椰枣果实的抗菌效力,这可能归因于它们含有大量的酚类化合物,如没食子酸、芦丁、槲皮素和木犀草素。
{"title":"Algerian date palm (Phoenix dactylifera L.) fruit cultivars: HPLC fingerprinting and antibacterial activity","authors":"Safia Ali Haimoud, R. Allem","doi":"10.21603/2308-4057-2023-1-549","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-549","url":null,"abstract":"The abusive use of antibiotics causes the destruction of intestinal flora and the proliferation of antibiotic-resistant pathogens. Date palm is used in traditional medicine in the Saharan regions due to its biological properties. \u0000The study aimed to identify the phytochemical composition and assess the antibacterial activity of the methanolic extracts of three date cultivars from Algeria. Their total phenolic, flavonoid, and flavonol contents were measured spectrophotometrically. The phytochemical screening was conducted by HPLC fingerprinting using twenty-three pure phenolic compounds as standards. The antibacterial activity against pathogenic bacterial species was assessed using the disk diffusion method. \u0000The colorimetric methods showed that the total phenolic, flavonoid, and flavonol contents ranged from 2.13 ± 0.09 to 2.67 ± 0.02 mg GAE/100 g DW, 1.33 ± 0.21 to 1.55 ± 0.13 mg CEQ/100 g DW, and 0.41 ± 0.23 to 0.47 ± 0.05 mg REQ/100 g DW, respectively. HPLC fingerprinting showed that the extracts of date cultivars served as an excellent source of bioactive compounds (gallic acid, tannic acid, ferulic acid, vanillin, caffeine, quercetin, luteolin, rutin, aspegenin, isorhamnetin, and hesperidin). They also exhibited an antibacterial potential with an inhibition zone diameter ranging from 8.40 to 12.50 mm. \u0000The results clearly demonstrate the antibacterial potency of date palm fruits, which could be attributed to their considerable content of phenolic compounds such as gallic acid, rutin, quercetin, and luteolin.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43765675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-559
Pedro Arriaga-Lorenzo, Ema de Jesús Maldonado-Simán, R. Ramírez-Valverde, P. Martínez-Hernández, D. N. Tirado-González, L. A. Saavedra-Jiménez
The food cold chain is an effective tool that allows food markets to maintain food quality and reduce losses. Poor logistics may result in foodborne disease outbreaks and greenhouse gas emissions caused by organic matter decay. The ongoing pandemic of COVID-19 makes it necessary to study the chances of SARS-CoV-2 transmissions in food products. This study reviews cold chain logistics as a handy tool for avoiding food safety risks, including COVID-19. The cold chain of perishables and its proper management make it possible to maintain quality and safety at any stage of the food supply chain. The technology covers each link of the food chain to prevent microbial spoilage caused by temperature fluctuations and the contamination with SARS-CoV-2 associated with perishable foods. Given the lack of knowledge in this field in Latin America, the region needs new research to determine the impact of the cold chain on perishable foodstuffs. The perishable cold chain is only as strong as its weakest link, and the national and international markets require new traceability protocols to minimize the effect of COVID-19.
{"title":"Cold chain relevance in the food safety of perishable products","authors":"Pedro Arriaga-Lorenzo, Ema de Jesús Maldonado-Simán, R. Ramírez-Valverde, P. Martínez-Hernández, D. N. Tirado-González, L. A. Saavedra-Jiménez","doi":"10.21603/2308-4057-2023-1-559","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-559","url":null,"abstract":"The food cold chain is an effective tool that allows food markets to maintain food quality and reduce losses. Poor logistics may result in foodborne disease outbreaks and greenhouse gas emissions caused by organic matter decay. The ongoing pandemic of COVID-19 makes it necessary to study the chances of SARS-CoV-2 transmissions in food products. \u0000This study reviews cold chain logistics as a handy tool for avoiding food safety risks, including COVID-19. \u0000The cold chain of perishables and its proper management make it possible to maintain quality and safety at any stage of the food supply chain. The technology covers each link of the food chain to prevent microbial spoilage caused by temperature fluctuations and the contamination with SARS-CoV-2 associated with perishable foods. Given the lack of knowledge in this field in Latin America, the region needs new research to determine the impact of the cold chain on perishable foodstuffs. \u0000The perishable cold chain is only as strong as its weakest link, and the national and international markets require new traceability protocols to minimize the effect of COVID-19.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49387408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-553
Judith Ramos, N. A. Villacrés, É. Cavalheiro, H. A. Alarcón, A. Valderrama
Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera, were tested on sliced Hass avocados. The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile of halved Hass avocados. A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the KorsmeyerPeppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films. The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit wrapping materials.
{"title":"Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera","authors":"Judith Ramos, N. A. Villacrés, É. Cavalheiro, H. A. Alarcón, A. Valderrama","doi":"10.21603/2308-4057-2023-1-553","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-553","url":null,"abstract":"Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera, were tested on sliced Hass avocados. \u0000The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile of halved Hass avocados. \u0000A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the KorsmeyerPeppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films. \u0000The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit \u0000wrapping materials.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49001973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.21603/2308-4057-2023-1-551
Anatoly Kaledin, Marina Stepanova
Hazardous compounds accumulate in plants and animals as a result of anthropogenic impact. Trace elements, such as heavy metals, move up in the system of snow – soil – water – plant – animal. When contaminants accumulate in plants that serve as animal feed, they eventually accumulate in the animals that consume the feed because heavy metals usually enter living organisms via digestive tract, i.e., with food. In 2003–2021, we studied fodder plants grown and harvested by urban zoological organizations, e.g., zoos, nature corners, etc. This research covered the Central Federal District represented by the cities of Moscow, Ivanovo, Yaroslavl, and Uglich. The empirical part of the study relied on a combination of modern ecological, biochemical, and statistical methods. A KVANT-2AT atomic absorption spectrometer was used to define the trace elements and their quantities. Broccoli proved to be the most resistant feed vegetable to all the toxic elements in this study. Kohlrabi, sweet potato, and dill had low content of lead and cadmium, while garlic was highly resistant to cadmium and arsenic. Spinach, fennel, potatoes, beets, and bell peppers, which were used as fodder in metropolis conditions, exceeded the maximal permissible concentration of heavy metals. The samples obtained from the Moscow Zoo contained by 1.98 times more zinc, by 1.06 times more copper, and by 89.47 times more lead than average. The samples from Ivanovo accumulated the greatest extent of iron, which exceeded the average level by 3.26 times. The vegetables from Uglich and Ivanovo had the lowest concentration of zinc, which was by 67.86 and 62.70% below the average, respectively. The samples from Yaroslavl contained by 33.08% less copper. In 2003–2021, feed vegetables grown in the Central Federal District had an average increase in zinc, copper, and lead by 1.13, 1.45, and 2.80 times, respectively. The level of iron stayed almost the same throughout 2018–2021, while that of arsenic gradually decreased in concentration. The accumulation level of zinc, copper, iron, and arsenic in feed vegetables appeared to depend on the concentration of their water-soluble metal forms in the soil. Therefore, forage agriculture in urban areas requires constant chemical and toxicological tests to prevent contaminated feed from entering animal diet.
{"title":"Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions","authors":"Anatoly Kaledin, Marina Stepanova","doi":"10.21603/2308-4057-2023-1-551","DOIUrl":"https://doi.org/10.21603/2308-4057-2023-1-551","url":null,"abstract":"Hazardous compounds accumulate in plants and animals as a result of anthropogenic impact. Trace elements, such as heavy metals, move up in the system of snow – soil – water – plant – animal. When contaminants accumulate in plants that serve as animal feed, they eventually accumulate in the animals that consume the feed because heavy metals usually enter living organisms via digestive tract, i.e., with food. \u0000In 2003–2021, we studied fodder plants grown and harvested by urban zoological organizations, e.g., zoos, nature corners, etc. This research covered the Central Federal District represented by the cities of Moscow, Ivanovo, Yaroslavl, and Uglich. The empirical part of the study relied on a combination of modern ecological, biochemical, and statistical methods. A KVANT-2AT atomic absorption spectrometer was used to define the trace elements and their quantities. \u0000Broccoli proved to be the most resistant feed vegetable to all the toxic elements in this study. Kohlrabi, sweet potato, and dill had low content of lead and cadmium, while garlic was highly resistant to cadmium and arsenic. Spinach, fennel, potatoes, beets, and bell peppers, which were used as fodder in metropolis conditions, exceeded the maximal permissible concentration of heavy metals. The samples obtained from the Moscow Zoo contained by 1.98 times more zinc, by 1.06 times more copper, and by 89.47 times more lead than average. The samples from Ivanovo accumulated the greatest extent of iron, which exceeded the average level by 3.26 times. The vegetables from Uglich and Ivanovo had the lowest concentration of zinc, which was by 67.86 and 62.70% below the average, respectively. The samples from Yaroslavl contained by 33.08% less copper. In 2003–2021, feed vegetables grown in the Central Federal District had an average increase in zinc, copper, and lead by 1.13, 1.45, and 2.80 times, respectively. The level of iron stayed almost the same throughout 2018–2021, while that of arsenic gradually decreased in concentration. The accumulation level of zinc, copper, iron, and arsenic in feed vegetables appeared to depend on the concentration of their water-soluble metal forms in the soil. \u0000Therefore, forage agriculture in urban areas requires constant chemical and toxicological tests to prevent contaminated feed from entering animal diet.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49347251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}