首页 > 最新文献

Friction最新文献

英文 中文
Lubrication condition monitoring of journal bearings in diesel engine based on thermoelectricity 基于热电的柴油发动机轴颈轴承润滑状况监测
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-16 DOI: 10.1007/s40544-024-0897-0
Yuhao Lv, Hao Liu, Zhigang Chen, Weijie Chang, Hui Zhang, Hulin Li

There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines. The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings. First, the generation mechanism of thermoelectric potential on bearings is clarified. Then, both experimental and simulation studies are done, and a strong correlation between lubrication and thermoelectric potential is shown. The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential. Generally, the thermoelectric potential increases with temperature. However, a small film thickness ratio (when the film thickness ratio is less than 4) will suppress the thermoelectric potential. Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results. Moreover, the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.

在柴油发动机领域,仍然缺乏有效的润滑状态监测方法。本文提出了一种新颖的热电方法来划分轴承的润滑状态。首先,阐明了轴承热电动势的产生机理。然后,进行了实验和模拟研究,结果表明润滑和热电动势之间存在很强的相关性。薄膜厚度和温度被进一步证实是影响热电动势的重要因素。一般来说,热电动势随温度升高而增加。然而,较小的膜厚比(当膜厚比小于 4 时)会抑制热电动势。通过热电动势可以区分轴承的三种典型润滑状态,并得到 Stribeck 曲线结果的支持。此外,通过对表面形貌和成分的分析,证实了润滑对轴承的重要影响。
{"title":"Lubrication condition monitoring of journal bearings in diesel engine based on thermoelectricity","authors":"Yuhao Lv, Hao Liu, Zhigang Chen, Weijie Chang, Hui Zhang, Hulin Li","doi":"10.1007/s40544-024-0897-0","DOIUrl":"https://doi.org/10.1007/s40544-024-0897-0","url":null,"abstract":"<p>There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines. The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings. First, the generation mechanism of thermoelectric potential on bearings is clarified. Then, both experimental and simulation studies are done, and a strong correlation between lubrication and thermoelectric potential is shown. The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential. Generally, the thermoelectric potential increases with temperature. However, a small film thickness ratio (when the film thickness ratio is less than 4) will suppress the thermoelectric potential. Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results. Moreover, the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"96 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-multilayered ZrN-Ag/Mo-S-N film design for stable anti-frictional performance at a wide range of temperatures 纳米多层 ZrN-Ag/Mo-S-N 薄膜设计可在宽温度范围内实现稳定的抗摩擦性能
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-15 DOI: 10.1007/s40544-024-0943-y
Hongbo Ju, Jing Luan, Junhua Xu, Albano Cavaleiro, Manuel Evaristo, Filipe Fernandes

A multilayer film, composed by ZrN-Ag (20 nm) and Mo-S-N (10 nm) layers, combining the intrinsic lubricant characteristics of each layer was deposited using DC magnetron sputtering system, to promote lubrication in a wide-range of temperatures. The results showed that the ZrN-Ag/Mo-S-N multilayer film exhibited a sharp interface between the different layers. A face-centered cubic (fcc) dual-phases of ZrN and Ag co-existed in the ZrN-Ag layers, whilst the Mo-S-N layers displayed a mixture of hexagonal close-packed MoS2 (hcp-MoS2) nano-particles and an amorphous phase. The multilayer film exhibited excellent room temperature (RT) triblogical behavior, as compared to the individual monolayer film, due to the combination of a relative high hardness with the low friction properties of both layers. The reorientation of MoS2 parallel to the sliding direction also contributed to the enhanced anti-frictional performance at RT. At 400 °C, the reorientation of MoS2 as well as the formation of MoO3 phase were responsible for the lubrication, whilst the hard t-ZrO2 phase promoted abrasion and, consequently, led to increasing wear rate. At 600 °C, the Ag2MoO4 double-metal oxide was the responsible for the low friction and wear-resistance; furthermore, the observed transformation from t-ZrO2 to m-ZrO2, could also have contributed to the better tribological performance.

利用直流磁控溅射系统沉积了一层由 ZrN-Ag(20 nm)层和 Mo-S-N(10 nm)层组成的多层薄膜,结合了各层固有的润滑特性,以促进在宽温度范围内的润滑。结果表明,ZrN-Ag/Mo-S-N 多层薄膜在不同层之间呈现出尖锐的界面。在 ZrN-Ag 层中,ZrN 和 Ag 的面心立方(ccc)双相共存,而 Mo-S-N 层则显示出六方紧密堆积 MoS2(hcp-MoS2)纳米颗粒和无定形相的混合物。与单独的单层薄膜相比,多层薄膜具有出色的室温(RT)三积行为,这是因为两层薄膜都具有相对较高的硬度和较低的摩擦特性。MoS2 与滑动方向平行的重新定向也是室温下增强抗摩擦性能的原因之一。400 °C 时,MoS2 的重新定向以及 MoO3 相的形成是润滑的原因,而坚硬的 t-ZrO2 相则促进了磨损,从而导致磨损率增加。在 600 ℃ 时,Ag2MoO4 双金属氧化物是低摩擦和耐磨性的原因;此外,观察到的 t-ZrO2 向 m-ZrO2 的转变也可能有助于获得更好的摩擦学性能。
{"title":"Nano-multilayered ZrN-Ag/Mo-S-N film design for stable anti-frictional performance at a wide range of temperatures","authors":"Hongbo Ju, Jing Luan, Junhua Xu, Albano Cavaleiro, Manuel Evaristo, Filipe Fernandes","doi":"10.1007/s40544-024-0943-y","DOIUrl":"https://doi.org/10.1007/s40544-024-0943-y","url":null,"abstract":"<p>A multilayer film, composed by ZrN-Ag (20 nm) and Mo-S-N (10 nm) layers, combining the intrinsic lubricant characteristics of each layer was deposited using DC magnetron sputtering system, to promote lubrication in a wide-range of temperatures. The results showed that the ZrN-Ag/Mo-S-N multilayer film exhibited a sharp interface between the different layers. A face-centered cubic (fcc) dual-phases of ZrN and Ag co-existed in the ZrN-Ag layers, whilst the Mo-S-N layers displayed a mixture of hexagonal close-packed MoS<sub>2</sub> (hcp-MoS<sub>2</sub>) nano-particles and an amorphous phase. The multilayer film exhibited excellent room temperature (RT) triblogical behavior, as compared to the individual monolayer film, due to the combination of a relative high hardness with the low friction properties of both layers. The reorientation of MoS<sub>2</sub> parallel to the sliding direction also contributed to the enhanced anti-frictional performance at RT. At 400 °C, the reorientation of MoS<sub>2</sub> as well as the formation of MoO<sub>3</sub> phase were responsible for the lubrication, whilst the hard t-ZrO<sub>2</sub> phase promoted abrasion and, consequently, led to increasing wear rate. At 600 °C, the Ag<sub>2</sub>MoO<sub>4</sub> double-metal oxide was the responsible for the low friction and wear-resistance; furthermore, the observed transformation from t-ZrO<sub>2</sub> to m-ZrO<sub>2</sub>, could also have contributed to the better tribological performance.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"30 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel UHMWPE composite with low friction coefficient for long-term ice sliding 一种新型超高分子量聚乙烯复合材料,摩擦系数低,适用于长期冰面滑动
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-15 DOI: 10.1007/s40544-024-0891-6
Yacong Hou, Lei Chen, Zheng Zhang, Jinlin Chang, Ding Weng, Yuan Ma, Jiadao Wang

Low friction ice sliding interfaces were critical for ski performance optimization. Traditional fluorinated ski waxes have attracted considerable attention for enhancing the hydrophobicity, anti-wearing, and oxidation resistance of ski-ice base. However, the toxicity and complexity of the waxing process limited batch manufacturing of low-cost and non-toxic ski-ice base, what is more, the wax covering on the base wore and failed during skiing due to the friction between ski and ice. Herein, we demonstrated a novel ultra-high molecular weight polyethylene (UHMWPE) composite that could maintain a low coefficient of friction (COF) with about 0.026 for at least 160 min when skiing on the ice. Microcapsule (MS) could release liquid (liquid paraffin (LP)). The released LP further enhanced the hydrophobicity of UHMWPE’s surfaces when friction occurred, which would maintain the stability and durability of the water film, and achieved superior and long-lasting friction resistance. Compared with other microcapsules with lower hydrophobic core, microcapsules with LP performed the best in reducing the friction of ski base from 0.126 to 0.024. Meanwhile, the COF of the surface kept at about 0.02 even after 12 rapid temperature changes. The presented UHMWPE composite of encapsulated liquids showed great potential and broad application owing to its simplicity and efficiency in winter sports.

低摩擦冰面滑动界面对于滑雪性能的优化至关重要。传统的含氟滑雪蜡在增强滑雪冰基的疏水性、抗磨损性和抗氧化性方面引起了广泛关注。然而,打蜡工艺的毒性和复杂性限制了低成本、无毒滑雪冰基的批量生产,而且在滑雪过程中,由于滑雪板与冰面之间的摩擦,冰基上的覆盖蜡会磨损和失效。在此,我们展示了一种新型超高分子量聚乙烯(UHMWPE)复合材料,它能在冰上滑雪时保持约 0.026 的低摩擦系数(COF)至少 160 分钟。微胶囊(MS)可释放液体(液体石蜡(LP))。释放出的 LP 进一步增强了超高分子量聚乙烯表面在发生摩擦时的疏水性,从而保持了水膜的稳定性和持久性,实现了卓越而持久的耐摩擦性。与其他疏水性较低的微胶囊相比,含有 LP 的微胶囊在将滑雪板底座的摩擦力从 0.126 降低到 0.024 方面表现最佳。同时,即使经过 12 次温度急剧变化,表面的 COF 值仍保持在 0.02 左右。由于其简易性和高效性,所提出的超高分子量聚乙烯封装液体复合材料在冬季运动中显示出巨大的潜力和广泛的应用。
{"title":"A novel UHMWPE composite with low friction coefficient for long-term ice sliding","authors":"Yacong Hou, Lei Chen, Zheng Zhang, Jinlin Chang, Ding Weng, Yuan Ma, Jiadao Wang","doi":"10.1007/s40544-024-0891-6","DOIUrl":"https://doi.org/10.1007/s40544-024-0891-6","url":null,"abstract":"<p>Low friction ice sliding interfaces were critical for ski performance optimization. Traditional fluorinated ski waxes have attracted considerable attention for enhancing the hydrophobicity, anti-wearing, and oxidation resistance of ski-ice base. However, the toxicity and complexity of the waxing process limited batch manufacturing of low-cost and non-toxic ski-ice base, what is more, the wax covering on the base wore and failed during skiing due to the friction between ski and ice. Herein, we demonstrated a novel ultra-high molecular weight polyethylene (UHMWPE) composite that could maintain a low coefficient of friction (COF) with about 0.026 for at least 160 min when skiing on the ice. Microcapsule (MS) could release liquid (liquid paraffin (LP)). The released LP further enhanced the hydrophobicity of UHMWPE’s surfaces when friction occurred, which would maintain the stability and durability of the water film, and achieved superior and long-lasting friction resistance. Compared with other microcapsules with lower hydrophobic core, microcapsules with LP performed the best in reducing the friction of ski base from 0.126 to 0.024. Meanwhile, the COF of the surface kept at about 0.02 even after 12 rapid temperature changes. The presented UHMWPE composite of encapsulated liquids showed great potential and broad application owing to its simplicity and efficiency in winter sports.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"48 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current state-of-the art review of footwear-ground friction 鞋类与地面摩擦的最新研究成果综述
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-14 DOI: 10.1007/s40544-024-0905-4
David Rebenda, Tomáš Sáha

The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.

鞋类最重要的作用是确保安全、实用的行走和足部保护。不仅要保证工作鞋的正常功能,鞋子在各种条件和环境下的防滑性能对防止滑倒、绊倒、摔倒以及由此造成的伤害也起着重要作用。本文旨在回顾目前对影响外底防滑性评估的鞋底与各种表面之间摩擦机制的理解。目前的研究主要集中在鞋底在不同地面上的摩擦机理或影响鞋底摩擦的参数的定义和描述。随后,综述讨论了各种表面污染物对鞋类摩擦力的影响。最后,简要介绍了鞋类外底领域面临的挑战和前景。
{"title":"Current state-of-the art review of footwear-ground friction","authors":"David Rebenda, Tomáš Sáha","doi":"10.1007/s40544-024-0905-4","DOIUrl":"https://doi.org/10.1007/s40544-024-0905-4","url":null,"abstract":"<p>The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"95 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of water evaporation on elastohydrodynamic lubrication with water-containing polyalkylene glycols 水蒸发对含水聚烷二醇弹性流体动力润滑的影响
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-14 DOI: 10.1007/s40544-024-0916-1
Stefan Hofmann, Thomas Lohner, Karsten Stahl

The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.

减少动力传输齿轮中的摩擦功率损耗在节能和节约资源的传动系统设计中起着至关重要的作用。甘油和聚亚烷基二醇等含水润滑剂在弹性流体动力润滑条件下实现摩擦系数低于 0.01 的超润滑机制方面显示出巨大的潜力。此外,以生物为基础生产的基础油可促进绿色润滑油的开发。然而,在齿轮箱中应用含水润滑油所面临的一个挑战是水的蒸发及其对润滑油特性的影响。本研究调查了三种含水聚亚烷基二醇的水分蒸发对弹性流体动力摩擦和油膜厚度的影响。研究考虑了 20 wt% 和 40 wt% 两种标称含水量以及两种粘度。结果表明,摩擦力随着蒸发水含量的增加而持续增加,而在几乎不含水的状态下,总体摩擦力水平仍然很低。薄膜厚度也呈现出类似的趋势,粘度的大幅增加导致薄膜厚度显著增加。尽管如此,对于少量蒸发的水来说,摩擦力和薄膜厚度对水分蒸发的敏感度很低。这就为允许的含水量变化提供了宽松的临界值。
{"title":"Influence of water evaporation on elastohydrodynamic lubrication with water-containing polyalkylene glycols","authors":"Stefan Hofmann, Thomas Lohner, Karsten Stahl","doi":"10.1007/s40544-024-0916-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0916-1","url":null,"abstract":"<p>The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"36 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological study of two ammonium chloride-decanoic acid deep eutectic solvents (DESs) as high-performance lubricants 两种氯化铵-癸酸深共晶溶剂 (DES) 作为高性能润滑剂的摩擦学研究
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-14 DOI: 10.1007/s40544-024-0888-1
Zhuocheng Li, Enhui Zhang, Weimin Li, Haichao Liu

Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.

深共晶溶剂(DES)是公认的一类新型功能液体。DES 与离子液体 (IL) 具有相似的物理特性,有望成为一类新型润滑剂。本研究合成了两种 DES,即四丁基氯化铵-癸酸 DES(C4-DES)和甲基三丙烯酰甲基氯化铵-癸酸 DES(C8-DES),并评估了它们的物理化学性质和摩擦学性能。采用多种技术对摩擦表面进行了后分析,以深入了解润滑机制。结果表明,与酯类基础油相比,C4-DES 的摩擦系数(COF)和磨损分别降低了约 29% 和 91%,C8-DES 的摩擦系数(COF)和磨损分别降低了约 36% 和 94%。DESs 的减摩效果归功于癸酸(DEAC)中极性基团的单层吸附,其效果受 DESs 中铵盐成分和工作温度的影响。除吸附膜外,磨损表面分析表明,在使用 C8-DES 润滑的表面上形成了厚度为 3-7 纳米的超薄摩擦化学膜。研究了薄膜的成分,并讨论了两种 DES 的润滑机制。
{"title":"Tribological study of two ammonium chloride-decanoic acid deep eutectic solvents (DESs) as high-performance lubricants","authors":"Zhuocheng Li, Enhui Zhang, Weimin Li, Haichao Liu","doi":"10.1007/s40544-024-0888-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0888-1","url":null,"abstract":"<p>Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"14 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of junction growth of rough contacts using X-ray computed tomography 利用 X 射线计算机断层扫描对粗糙触点的结生长进行实验研究
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-06 DOI: 10.1007/s40544-024-0896-1
Runliang Wang, Jianhua Liu, Bo Liu, Duo Jia, Xiaoyu Ding

The real contact area (RCA) of randomly rough contacts has received a great deal of attention because it correlates strongly with friction, lubrication, sealing, and conductivity. Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied, in a phenomenon called junction growth. However, experimental investigations of the junction growth of randomly rough contacts are rare. Here, we used X-ray computed tomography (CT) to measure junction growth when two aluminum alloy surfaces were in contact. A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4 µm. The RCA and average contact gaps were computed using a three-dimensional (3D) geometric model constructed from gray CT images using the Otsu thresholding method. The results showed that the RCA increased as the normal load increased. The RCA increased by 22.67% after a tangential load was applied (junction growth), and the average gap decreased by 14.01% after a tangential load was applied. Thus, X-ray CT accurately measured the junction growth as a novel quantitative method.

随机粗糙触点的实际接触面积 (RCA) 与摩擦、润滑、密封和导电性密切相关,因此受到广泛关注。模拟显示,当同时施加切向载荷时,与确定性法向挤压载荷相关的 RCA 会增大,这种现象被称为 "结点增长"。然而,对随机粗糙触点的结生长进行的实验研究却很少见。在这里,我们使用 X 射线计算机断层扫描(CT)来测量两个铝合金表面接触时的结生长。我们使用高分辨率实验装置施加负载,并以 4 µm 的分辨率观察接触行为。利用大津阈值法从灰色 CT 图像中构建的三维(3D)几何模型计算了 RCA 和平均接触间隙。结果表明,随着法向载荷的增加,RCA 也在增加。在施加切向载荷后,RCA 增加了 22.67%(交界增长),而在施加切向载荷后,平均间隙减少了 14.01%。因此,X 射线 CT 作为一种新的定量方法准确测量了交界处的生长。
{"title":"Experimental investigation of junction growth of rough contacts using X-ray computed tomography","authors":"Runliang Wang, Jianhua Liu, Bo Liu, Duo Jia, Xiaoyu Ding","doi":"10.1007/s40544-024-0896-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0896-1","url":null,"abstract":"<p>The real contact area (RCA) of randomly rough contacts has received a great deal of attention because it correlates strongly with friction, lubrication, sealing, and conductivity. Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied, in a phenomenon called junction growth. However, experimental investigations of the junction growth of randomly rough contacts are rare. Here, we used X-ray computed tomography (CT) to measure junction growth when two aluminum alloy surfaces were in contact. A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4 µm. The RCA and average contact gaps were computed using a three-dimensional (3D) geometric model constructed from gray CT images using the Otsu thresholding method. The results showed that the RCA increased as the normal load increased. The RCA increased by 22.67% after a tangential load was applied (junction growth), and the average gap decreased by 14.01% after a tangential load was applied. Thus, X-ray CT accurately measured the junction growth as a novel quantitative method.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"11 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lubrication performance of graphene in the sliding electrical contact interface 石墨烯在滑动电接触界面中的润滑性能
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-05 DOI: 10.1007/s40544-024-0910-7
Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang

Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.

电接触材料的应用越来越广泛,但现有的电接触润滑剂在抗磨损性能和润滑寿命等方面仍有很大的改进空间。石墨烯具有优异的电学和润滑性能,在滑动电接触界面的润滑方面显示出巨大潜力,但相关研究却十分匮乏。一些研究人员已经研究了石墨烯在超低电流下在金涂层/TiN 涂层摩擦副之间的润滑性能。然而,石墨烯在更大和更常用的电流或电压条件下对更广泛使用的电接触材料(如铜及其合金)的润滑性能还未见报道。本文研究了石墨烯在铜及其合金滑动电接触界面上的润滑性能,从不同基底(铜和黄铜)、不同测试方法(恒压和恒流)、不同正常负载和耐久性测试四个方面进行了探讨。实验证明,在上述测试方法和参数下,石墨烯能显著降低黄铜和铜的摩擦和磨损,同时接触电阻较低。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。
{"title":"Lubrication performance of graphene in the sliding electrical contact interface","authors":"Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang","doi":"10.1007/s40544-024-0910-7","DOIUrl":"https://doi.org/10.1007/s40544-024-0910-7","url":null,"abstract":"<p>Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fretting-corrosion mechanisms of Ti6Al4V against CoCrMo in simulated body fluid under various fretting states 不同摩擦状态下模拟体液中 Ti6Al4V 与 CoCrMo 的摩擦腐蚀机理
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-05 DOI: 10.1007/s40544-024-0909-0
Jian Pu, Zupei Zhang, Yali Zhang, Xiaogang Zhang, Xinlu Yuan, Xiaoyu Zhang, Guoxian Zhang, Wen Cui, Shu Yang, Zhongmin Jin

Ti6Al4V alloy–CoCrMo alloy pair is commonly applied for modular head–neck interfaces for artificial hip joint. Unfortunately, the fretting corrosion damage at this interface seriously restricts its lifespan. This work studied the fretting corrosion of Ti6Al4V–CoCrMo pair in calf serum solution. We established this material pair’s running condition fretting map (RCFM) regarding load and displacement, and revealed the damage mechanism of this material pair in various fretting regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion. Adhesive wear (material transfer) also existed in MFR. The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR, while no apparent damage in PSR. Furthermore, a dense composite material layer with high hardness was formed in the middle contacting area in GSR, which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys. Finally, the ion concentration maps for Ti and Co ions were constructed, which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.

Ti6Al4V 合金-CoCrMo 合金对通常用于人工髋关节的模块化头颈接口。遗憾的是,该界面的烧蚀损坏严重限制了其使用寿命。本研究对 Ti6Al4V-CoCrMo 合金对在小牛血清溶液中的摩擦腐蚀进行了研究。我们建立了该材料对在载荷和位移方面的运行状态烧蚀图(RCFM),并揭示了该材料对在不同烧蚀状态下的损伤机理,即部分滑移状态(PSR)、混合烧蚀状态(MFR)和总滑移状态(GSR)。Ti6Al4V 合金的损伤机制主要是 CoCrMo 合金引起的磨料磨损和摩擦腐蚀。在 MFR 中也存在粘着磨损(材料转移)。在 GSR 和 MFR 中,CoCrMo 合金的损伤机制主要是金属氧化物引起的磨料磨损和摩擦腐蚀,而在 PSR 中没有明显的损伤。此外,在 GSR 中,中间接触区形成了高硬度的致密复合材料层,这降低了 Ti 合金的腐蚀和磨损,加剧了 Co 合金的损伤。最后,构建了钛和钴离子的离子浓度图,显示了在不同位移和载荷下钛和钴离子释放量的变化。
{"title":"Fretting-corrosion mechanisms of Ti6Al4V against CoCrMo in simulated body fluid under various fretting states","authors":"Jian Pu, Zupei Zhang, Yali Zhang, Xiaogang Zhang, Xinlu Yuan, Xiaoyu Zhang, Guoxian Zhang, Wen Cui, Shu Yang, Zhongmin Jin","doi":"10.1007/s40544-024-0909-0","DOIUrl":"https://doi.org/10.1007/s40544-024-0909-0","url":null,"abstract":"<p>Ti6Al4V alloy–CoCrMo alloy pair is commonly applied for modular head–neck interfaces for artificial hip joint. Unfortunately, the fretting corrosion damage at this interface seriously restricts its lifespan. This work studied the fretting corrosion of Ti6Al4V–CoCrMo pair in calf serum solution. We established this material pair’s running condition fretting map (RCFM) regarding load and displacement, and revealed the damage mechanism of this material pair in various fretting regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion. Adhesive wear (material transfer) also existed in MFR. The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR, while no apparent damage in PSR. Furthermore, a dense composite material layer with high hardness was formed in the middle contacting area in GSR, which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys. Finally, the ion concentration maps for Ti and Co ions were constructed, which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"27 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topographic variation and fluid flow characteristics in rough contact interface 粗糙接触界面的地形变化和流体流动特性
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-08-05 DOI: 10.1007/s40544-024-0911-6
Jiawei Ji, Wei Sun, Yu Du, Yongqing Zhu, Yuhang Guo, Xiaojun Liu, Yunlong Jiao, Kun Liu

Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.

了解粗糙接触附近流体的流动特性对于设计基于流体的润滑和摩擦学物理基础非常重要。本研究利用自制的光学原位测试仪观察了无水乙醇在玻璃和粗糙 PDMS 之间界面的扩散和渗流过程。通过数字图像处理技术和数值模拟软件,识别并提取了界面的拓扑特性和稀薄流体的流动特征。特别关注了不同应力下接触界面形貌的动态演变、界面中微通道的分布、流体在接触界面中的扩散特性以及机械驱动机制。原始表面形态和接触应力对界面形貌和界面微通道分布有显著影响,这表明微通道的特征长度、铺展面积和流体的铺展率与载荷成反比。而流体在界面中的流动路径主要分为三个阶段:沿岛壁流动、产生液桥、在楔形通道中从顶端侧向根部侧移动。液体在界面中流动的主要力学机制是推动液体扩散的毛细力与固体壁对液体的粘性阻力之间的平衡。此外,由于微通道的不规则特性,在流动过程中会出现 "滞留空气 "现象。这项研究为研究粗糙接触界面中液体的微观流动行为、机械系统的摩擦和润滑以及密封机理奠定了一定的理论基础。
{"title":"Topographic variation and fluid flow characteristics in rough contact interface","authors":"Jiawei Ji, Wei Sun, Yu Du, Yongqing Zhu, Yuhang Guo, Xiaojun Liu, Yunlong Jiao, Kun Liu","doi":"10.1007/s40544-024-0911-6","DOIUrl":"https://doi.org/10.1007/s40544-024-0911-6","url":null,"abstract":"<p>Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical <i>in-situ</i> tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"19 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Friction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1