There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines. The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings. First, the generation mechanism of thermoelectric potential on bearings is clarified. Then, both experimental and simulation studies are done, and a strong correlation between lubrication and thermoelectric potential is shown. The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential. Generally, the thermoelectric potential increases with temperature. However, a small film thickness ratio (when the film thickness ratio is less than 4) will suppress the thermoelectric potential. Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results. Moreover, the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.
{"title":"Lubrication condition monitoring of journal bearings in diesel engine based on thermoelectricity","authors":"Yuhao Lv, Hao Liu, Zhigang Chen, Weijie Chang, Hui Zhang, Hulin Li","doi":"10.1007/s40544-024-0897-0","DOIUrl":"https://doi.org/10.1007/s40544-024-0897-0","url":null,"abstract":"<p>There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines. The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings. First, the generation mechanism of thermoelectric potential on bearings is clarified. Then, both experimental and simulation studies are done, and a strong correlation between lubrication and thermoelectric potential is shown. The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential. Generally, the thermoelectric potential increases with temperature. However, a small film thickness ratio (when the film thickness ratio is less than 4) will suppress the thermoelectric potential. Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results. Moreover, the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"96 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1007/s40544-024-0943-y
Hongbo Ju, Jing Luan, Junhua Xu, Albano Cavaleiro, Manuel Evaristo, Filipe Fernandes
A multilayer film, composed by ZrN-Ag (20 nm) and Mo-S-N (10 nm) layers, combining the intrinsic lubricant characteristics of each layer was deposited using DC magnetron sputtering system, to promote lubrication in a wide-range of temperatures. The results showed that the ZrN-Ag/Mo-S-N multilayer film exhibited a sharp interface between the different layers. A face-centered cubic (fcc) dual-phases of ZrN and Ag co-existed in the ZrN-Ag layers, whilst the Mo-S-N layers displayed a mixture of hexagonal close-packed MoS2 (hcp-MoS2) nano-particles and an amorphous phase. The multilayer film exhibited excellent room temperature (RT) triblogical behavior, as compared to the individual monolayer film, due to the combination of a relative high hardness with the low friction properties of both layers. The reorientation of MoS2 parallel to the sliding direction also contributed to the enhanced anti-frictional performance at RT. At 400 °C, the reorientation of MoS2 as well as the formation of MoO3 phase were responsible for the lubrication, whilst the hard t-ZrO2 phase promoted abrasion and, consequently, led to increasing wear rate. At 600 °C, the Ag2MoO4 double-metal oxide was the responsible for the low friction and wear-resistance; furthermore, the observed transformation from t-ZrO2 to m-ZrO2, could also have contributed to the better tribological performance.
{"title":"Nano-multilayered ZrN-Ag/Mo-S-N film design for stable anti-frictional performance at a wide range of temperatures","authors":"Hongbo Ju, Jing Luan, Junhua Xu, Albano Cavaleiro, Manuel Evaristo, Filipe Fernandes","doi":"10.1007/s40544-024-0943-y","DOIUrl":"https://doi.org/10.1007/s40544-024-0943-y","url":null,"abstract":"<p>A multilayer film, composed by ZrN-Ag (20 nm) and Mo-S-N (10 nm) layers, combining the intrinsic lubricant characteristics of each layer was deposited using DC magnetron sputtering system, to promote lubrication in a wide-range of temperatures. The results showed that the ZrN-Ag/Mo-S-N multilayer film exhibited a sharp interface between the different layers. A face-centered cubic (fcc) dual-phases of ZrN and Ag co-existed in the ZrN-Ag layers, whilst the Mo-S-N layers displayed a mixture of hexagonal close-packed MoS<sub>2</sub> (hcp-MoS<sub>2</sub>) nano-particles and an amorphous phase. The multilayer film exhibited excellent room temperature (RT) triblogical behavior, as compared to the individual monolayer film, due to the combination of a relative high hardness with the low friction properties of both layers. The reorientation of MoS<sub>2</sub> parallel to the sliding direction also contributed to the enhanced anti-frictional performance at RT. At 400 °C, the reorientation of MoS<sub>2</sub> as well as the formation of MoO<sub>3</sub> phase were responsible for the lubrication, whilst the hard t-ZrO<sub>2</sub> phase promoted abrasion and, consequently, led to increasing wear rate. At 600 °C, the Ag<sub>2</sub>MoO<sub>4</sub> double-metal oxide was the responsible for the low friction and wear-resistance; furthermore, the observed transformation from t-ZrO<sub>2</sub> to m-ZrO<sub>2</sub>, could also have contributed to the better tribological performance.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"30 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1007/s40544-024-0891-6
Yacong Hou, Lei Chen, Zheng Zhang, Jinlin Chang, Ding Weng, Yuan Ma, Jiadao Wang
Low friction ice sliding interfaces were critical for ski performance optimization. Traditional fluorinated ski waxes have attracted considerable attention for enhancing the hydrophobicity, anti-wearing, and oxidation resistance of ski-ice base. However, the toxicity and complexity of the waxing process limited batch manufacturing of low-cost and non-toxic ski-ice base, what is more, the wax covering on the base wore and failed during skiing due to the friction between ski and ice. Herein, we demonstrated a novel ultra-high molecular weight polyethylene (UHMWPE) composite that could maintain a low coefficient of friction (COF) with about 0.026 for at least 160 min when skiing on the ice. Microcapsule (MS) could release liquid (liquid paraffin (LP)). The released LP further enhanced the hydrophobicity of UHMWPE’s surfaces when friction occurred, which would maintain the stability and durability of the water film, and achieved superior and long-lasting friction resistance. Compared with other microcapsules with lower hydrophobic core, microcapsules with LP performed the best in reducing the friction of ski base from 0.126 to 0.024. Meanwhile, the COF of the surface kept at about 0.02 even after 12 rapid temperature changes. The presented UHMWPE composite of encapsulated liquids showed great potential and broad application owing to its simplicity and efficiency in winter sports.
{"title":"A novel UHMWPE composite with low friction coefficient for long-term ice sliding","authors":"Yacong Hou, Lei Chen, Zheng Zhang, Jinlin Chang, Ding Weng, Yuan Ma, Jiadao Wang","doi":"10.1007/s40544-024-0891-6","DOIUrl":"https://doi.org/10.1007/s40544-024-0891-6","url":null,"abstract":"<p>Low friction ice sliding interfaces were critical for ski performance optimization. Traditional fluorinated ski waxes have attracted considerable attention for enhancing the hydrophobicity, anti-wearing, and oxidation resistance of ski-ice base. However, the toxicity and complexity of the waxing process limited batch manufacturing of low-cost and non-toxic ski-ice base, what is more, the wax covering on the base wore and failed during skiing due to the friction between ski and ice. Herein, we demonstrated a novel ultra-high molecular weight polyethylene (UHMWPE) composite that could maintain a low coefficient of friction (COF) with about 0.026 for at least 160 min when skiing on the ice. Microcapsule (MS) could release liquid (liquid paraffin (LP)). The released LP further enhanced the hydrophobicity of UHMWPE’s surfaces when friction occurred, which would maintain the stability and durability of the water film, and achieved superior and long-lasting friction resistance. Compared with other microcapsules with lower hydrophobic core, microcapsules with LP performed the best in reducing the friction of ski base from 0.126 to 0.024. Meanwhile, the COF of the surface kept at about 0.02 even after 12 rapid temperature changes. The presented UHMWPE composite of encapsulated liquids showed great potential and broad application owing to its simplicity and efficiency in winter sports.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"48 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1007/s40544-024-0905-4
David Rebenda, Tomáš Sáha
The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.
{"title":"Current state-of-the art review of footwear-ground friction","authors":"David Rebenda, Tomáš Sáha","doi":"10.1007/s40544-024-0905-4","DOIUrl":"https://doi.org/10.1007/s40544-024-0905-4","url":null,"abstract":"<p>The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"95 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1007/s40544-024-0916-1
Stefan Hofmann, Thomas Lohner, Karsten Stahl
The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.
{"title":"Influence of water evaporation on elastohydrodynamic lubrication with water-containing polyalkylene glycols","authors":"Stefan Hofmann, Thomas Lohner, Karsten Stahl","doi":"10.1007/s40544-024-0916-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0916-1","url":null,"abstract":"<p>The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"36 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1007/s40544-024-0888-1
Zhuocheng Li, Enhui Zhang, Weimin Li, Haichao Liu
Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.
{"title":"Tribological study of two ammonium chloride-decanoic acid deep eutectic solvents (DESs) as high-performance lubricants","authors":"Zhuocheng Li, Enhui Zhang, Weimin Li, Haichao Liu","doi":"10.1007/s40544-024-0888-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0888-1","url":null,"abstract":"<p>Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"14 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s40544-024-0896-1
Runliang Wang, Jianhua Liu, Bo Liu, Duo Jia, Xiaoyu Ding
The real contact area (RCA) of randomly rough contacts has received a great deal of attention because it correlates strongly with friction, lubrication, sealing, and conductivity. Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied, in a phenomenon called junction growth. However, experimental investigations of the junction growth of randomly rough contacts are rare. Here, we used X-ray computed tomography (CT) to measure junction growth when two aluminum alloy surfaces were in contact. A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4 µm. The RCA and average contact gaps were computed using a three-dimensional (3D) geometric model constructed from gray CT images using the Otsu thresholding method. The results showed that the RCA increased as the normal load increased. The RCA increased by 22.67% after a tangential load was applied (junction growth), and the average gap decreased by 14.01% after a tangential load was applied. Thus, X-ray CT accurately measured the junction growth as a novel quantitative method.
{"title":"Experimental investigation of junction growth of rough contacts using X-ray computed tomography","authors":"Runliang Wang, Jianhua Liu, Bo Liu, Duo Jia, Xiaoyu Ding","doi":"10.1007/s40544-024-0896-1","DOIUrl":"https://doi.org/10.1007/s40544-024-0896-1","url":null,"abstract":"<p>The real contact area (RCA) of randomly rough contacts has received a great deal of attention because it correlates strongly with friction, lubrication, sealing, and conductivity. Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied, in a phenomenon called junction growth. However, experimental investigations of the junction growth of randomly rough contacts are rare. Here, we used X-ray computed tomography (CT) to measure junction growth when two aluminum alloy surfaces were in contact. A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4 µm. The RCA and average contact gaps were computed using a three-dimensional (3D) geometric model constructed from gray CT images using the Otsu thresholding method. The results showed that the RCA increased as the normal load increased. The RCA increased by 22.67% after a tangential load was applied (junction growth), and the average gap decreased by 14.01% after a tangential load was applied. Thus, X-ray CT accurately measured the junction growth as a novel quantitative method.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"11 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1007/s40544-024-0910-7
Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang
Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.
{"title":"Lubrication performance of graphene in the sliding electrical contact interface","authors":"Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang","doi":"10.1007/s40544-024-0910-7","DOIUrl":"https://doi.org/10.1007/s40544-024-0910-7","url":null,"abstract":"<p>Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1007/s40544-024-0909-0
Jian Pu, Zupei Zhang, Yali Zhang, Xiaogang Zhang, Xinlu Yuan, Xiaoyu Zhang, Guoxian Zhang, Wen Cui, Shu Yang, Zhongmin Jin
Ti6Al4V alloy–CoCrMo alloy pair is commonly applied for modular head–neck interfaces for artificial hip joint. Unfortunately, the fretting corrosion damage at this interface seriously restricts its lifespan. This work studied the fretting corrosion of Ti6Al4V–CoCrMo pair in calf serum solution. We established this material pair’s running condition fretting map (RCFM) regarding load and displacement, and revealed the damage mechanism of this material pair in various fretting regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion. Adhesive wear (material transfer) also existed in MFR. The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR, while no apparent damage in PSR. Furthermore, a dense composite material layer with high hardness was formed in the middle contacting area in GSR, which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys. Finally, the ion concentration maps for Ti and Co ions were constructed, which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.
Ti6Al4V 合金-CoCrMo 合金对通常用于人工髋关节的模块化头颈接口。遗憾的是,该界面的烧蚀损坏严重限制了其使用寿命。本研究对 Ti6Al4V-CoCrMo 合金对在小牛血清溶液中的摩擦腐蚀进行了研究。我们建立了该材料对在载荷和位移方面的运行状态烧蚀图(RCFM),并揭示了该材料对在不同烧蚀状态下的损伤机理,即部分滑移状态(PSR)、混合烧蚀状态(MFR)和总滑移状态(GSR)。Ti6Al4V 合金的损伤机制主要是 CoCrMo 合金引起的磨料磨损和摩擦腐蚀。在 MFR 中也存在粘着磨损(材料转移)。在 GSR 和 MFR 中,CoCrMo 合金的损伤机制主要是金属氧化物引起的磨料磨损和摩擦腐蚀,而在 PSR 中没有明显的损伤。此外,在 GSR 中,中间接触区形成了高硬度的致密复合材料层,这降低了 Ti 合金的腐蚀和磨损,加剧了 Co 合金的损伤。最后,构建了钛和钴离子的离子浓度图,显示了在不同位移和载荷下钛和钴离子释放量的变化。
{"title":"Fretting-corrosion mechanisms of Ti6Al4V against CoCrMo in simulated body fluid under various fretting states","authors":"Jian Pu, Zupei Zhang, Yali Zhang, Xiaogang Zhang, Xinlu Yuan, Xiaoyu Zhang, Guoxian Zhang, Wen Cui, Shu Yang, Zhongmin Jin","doi":"10.1007/s40544-024-0909-0","DOIUrl":"https://doi.org/10.1007/s40544-024-0909-0","url":null,"abstract":"<p>Ti6Al4V alloy–CoCrMo alloy pair is commonly applied for modular head–neck interfaces for artificial hip joint. Unfortunately, the fretting corrosion damage at this interface seriously restricts its lifespan. This work studied the fretting corrosion of Ti6Al4V–CoCrMo pair in calf serum solution. We established this material pair’s running condition fretting map (RCFM) regarding load and displacement, and revealed the damage mechanism of this material pair in various fretting regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion. Adhesive wear (material transfer) also existed in MFR. The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR, while no apparent damage in PSR. Furthermore, a dense composite material layer with high hardness was formed in the middle contacting area in GSR, which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys. Finally, the ion concentration maps for Ti and Co ions were constructed, which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"27 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1007/s40544-024-0911-6
Jiawei Ji, Wei Sun, Yu Du, Yongqing Zhu, Yuhang Guo, Xiaojun Liu, Yunlong Jiao, Kun Liu
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.
{"title":"Topographic variation and fluid flow characteristics in rough contact interface","authors":"Jiawei Ji, Wei Sun, Yu Du, Yongqing Zhu, Yuhang Guo, Xiaojun Liu, Yunlong Jiao, Kun Liu","doi":"10.1007/s40544-024-0911-6","DOIUrl":"https://doi.org/10.1007/s40544-024-0911-6","url":null,"abstract":"<p>Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical <i>in-situ</i> tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"19 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}