首页 > 最新文献

Friction最新文献

英文 中文
Enhancement of mechanical and tribological performance of Ti–6Al–4V alloy by laser surface alloying with Inconel 625 and SiC precursor materials 通过激光表面合金化铬镍铁合金 625 和碳化硅前驱体材料提高 Ti-6Al-4V 合金的机械和摩擦学性能
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-11 DOI: 10.1007/s40544-024-0878-3
Hao-Ran Cheng, Ki-Hoon Shin, Hong Seok Kim

This study focused on producing metal matrix composite (MMC) coatings on Ti–6Al–4V alloy through laser surface alloying using a novel combination of Inconel 625 and SiC precursor materials. Various ratios of alloying powders were examined to evaluate surface properties such as microhardness, wear resistance, and friction coefficient, along with analyzing the phase composition and microstructure of the coatings. The in situ synthesized MMC coatings exhibited the presence of α-Ti, NiTi, NiTi2, and TiC phases. Additionally, Ti5Si3 and α-Ti/Ti5Si3 eutectic structures were observed when the SiC content exceeded 20%. In comparison to the titanium substrate, the MMC coating significantly enhanced microhardness by over threefold and reduced wear by 95%. However, it was crucial to carefully select the appropriate combination of alloying powders to avoid a substantial decrease in friction performance and excessive formation of cracks. Through a comparative analysis of experimental results, the optimal precursor material composition was identified as 85% Inconel 625 and 15% SiC. This study demonstrated the effective utilization of Inconel 625 and SiC alloying materials to enhance the surface properties of titanium alloys, thereby expanding their application in challenging environments.

本研究的重点是使用铬镍铁合金 625 和碳化硅前驱体材料的新型组合,通过激光表面合金化技术在 Ti-6Al-4V 合金上生产金属基复合材料(MMC)涂层。研究了不同比例的合金粉末,以评估涂层的显微硬度、耐磨性和摩擦系数等表面性能,并分析了涂层的相组成和显微结构。原位合成的 MMC 涂层显示存在 α-Ti、NiTi、NiTi2 和 TiC 相。此外,当 SiC 含量超过 20% 时,还观察到 Ti5Si3 和 α-Ti/Ti5Si3 共晶结构。与钛基材相比,MMC 涂层的显微硬度提高了三倍以上,磨损降低了 95%。然而,关键是要仔细选择合金粉末的适当组合,以避免摩擦性能大幅下降和裂纹的过度形成。通过对实验结果的对比分析,确定了最佳的前驱体材料成分为 85% 的铬镍铁合金 625 和 15% 的碳化硅。这项研究表明,可以有效利用铬镍铁合金 625 和碳化硅合金材料来提高钛合金的表面性能,从而扩大其在挑战性环境中的应用。
{"title":"Enhancement of mechanical and tribological performance of Ti–6Al–4V alloy by laser surface alloying with Inconel 625 and SiC precursor materials","authors":"Hao-Ran Cheng, Ki-Hoon Shin, Hong Seok Kim","doi":"10.1007/s40544-024-0878-3","DOIUrl":"https://doi.org/10.1007/s40544-024-0878-3","url":null,"abstract":"<p>This study focused on producing metal matrix composite (MMC) coatings on Ti–6Al–4V alloy through laser surface alloying using a novel combination of Inconel 625 and SiC precursor materials. Various ratios of alloying powders were examined to evaluate surface properties such as microhardness, wear resistance, and friction coefficient, along with analyzing the phase composition and microstructure of the coatings. The <i>in situ</i> synthesized MMC coatings exhibited the presence of α-Ti, NiTi, NiTi<sub>2</sub>, and TiC phases. Additionally, Ti<sub>5</sub>Si<sub>3</sub> and α-Ti/Ti<sub>5</sub>Si<sub>3</sub> eutectic structures were observed when the SiC content exceeded 20%. In comparison to the titanium substrate, the MMC coating significantly enhanced microhardness by over threefold and reduced wear by 95%. However, it was crucial to carefully select the appropriate combination of alloying powders to avoid a substantial decrease in friction performance and excessive formation of cracks. Through a comparative analysis of experimental results, the optimal precursor material composition was identified as 85% Inconel 625 and 15% SiC. This study demonstrated the effective utilization of Inconel 625 and SiC alloying materials to enhance the surface properties of titanium alloys, thereby expanding their application in challenging environments.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"64 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards direct superlubricity and superlow wear via amino modification of polyhydroxy alcohol solutions 通过对聚羟基乙醇溶液进行氨基改性,实现直接超润滑和超低磨损
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-11 DOI: 10.1007/s40544-023-0848-1
Qiang Ma, Chengpeng Yan, Rui Yan, Xin Xu, Haifeng Wang

Friction remains as the primary mode of energy dissipation and components wear, and achieving superlubricity shows high promise in energy conservation and lifetime wear protection. The results in this work demonstrate that direct superlubricity combined with superlow wear can be realized for steel/Si3N4 contacts on engineering scale when polyhydroxy alcohol solution was selectively modified by amino group. Macroscopic direct superlubricity occurs because 3-amino-1,2-propanediol molecules at the friction interface could be induced to rotate and adsorb vertically on the friction surface, forming in-situ thick and dense molecular films to passivate the asperity contacts. Furthermore, amino modification is also conducive to improving the lubrication state from boundary to mixed lubrication regime by strengthening the intermolecular hydrogen bonding interaction, presenting enhanced load-bearing capability and reduced direct solid asperity contacts. Thus, direct superlow average friction of 0.01 combined with superlow wear are achieved simultaneously. The design principle of direct superlubricity and superlow wear in this work indeed offers an effective strategy to fundamentally improve energy efficiency and provide lifetime wear protection for moving mechanical assemblies.

摩擦仍然是能量消耗和部件磨损的主要方式,而实现超润滑则为节能和终生磨损保护带来了巨大希望。这项工作的结果表明,当聚合羟基乙醇溶液被氨基选择性修饰时,钢/Si3N4 接触件可在工程规模上实现直接超润滑和超低磨损。之所以能产生宏观的直接超润滑性,是因为摩擦界面上的 3-氨基-1,2-丙二醇分子可被诱导旋转并垂直吸附在摩擦表面上,从而在原位形成厚而致密的分子膜来钝化接触面。此外,氨基改性还有利于通过加强分子间氢键相互作用来改善润滑状态,使其从边界润滑状态转变为混合润滑状态,从而提高承载能力并减少固体表面的直接接触。因此,可同时实现 0.01 的直接超低平均摩擦和超低磨损。这项工作中的直接超润滑和超低磨损设计原理确实提供了一种有效的策略,可从根本上提高能效,并为运动机械组件提供终生磨损保护。
{"title":"Towards direct superlubricity and superlow wear via amino modification of polyhydroxy alcohol solutions","authors":"Qiang Ma, Chengpeng Yan, Rui Yan, Xin Xu, Haifeng Wang","doi":"10.1007/s40544-023-0848-1","DOIUrl":"https://doi.org/10.1007/s40544-023-0848-1","url":null,"abstract":"<p>Friction remains as the primary mode of energy dissipation and components wear, and achieving superlubricity shows high promise in energy conservation and lifetime wear protection. The results in this work demonstrate that direct superlubricity combined with superlow wear can be realized for steel/Si<sub>3</sub>N<sub>4</sub> contacts on engineering scale when polyhydroxy alcohol solution was selectively modified by amino group. Macroscopic direct superlubricity occurs because 3-amino-1,2-propanediol molecules at the friction interface could be induced to rotate and adsorb vertically on the friction surface, forming <i>in-situ</i> thick and dense molecular films to passivate the asperity contacts. Furthermore, amino modification is also conducive to improving the lubrication state from boundary to mixed lubrication regime by strengthening the intermolecular hydrogen bonding interaction, presenting enhanced load-bearing capability and reduced direct solid asperity contacts. Thus, direct superlow average friction of 0.01 combined with superlow wear are achieved simultaneously. The design principle of direct superlubricity and superlow wear in this work indeed offers an effective strategy to fundamentally improve energy efficiency and provide lifetime wear protection for moving mechanical assemblies.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"20 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy 利用原子力显微镜力谱对二维材料进行机械和摩擦学表征的研究进展
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-10 DOI: 10.1007/s40544-024-0864-9
Shuai Wu, Jie Gu, Ruiteng Li, Yuening Tang, Lingxiao Gao, Cuihua An, Qibo Deng, Libin Zhao, Ning Hu

Two-dimensional (2D) materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties, making them a focal point in nanotechnology research. Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications. However, their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties. Among the in situ characterization techniques, atomic force microscopy (AFM) has gained widespread applications in exploring the mechanical behaviour of nanomaterials, because of the easy measurement capability of nano force and displacement from the AFM tips. Specifically, AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials. This review comprehensively details the methods based on normal force spectroscopy, which are utilized to test and characterize the elastic and fracture properties, adhesion, and fatigue of 2D materials. Additionally, the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials, including surface friction of 2D materials, shear behaviour of interlayers as well as nanoflake-substrate interfaces. The influence of various factors, such as testing methods, external environments, and the properties of test samples, on the measured mechanical properties is also addressed. In the end, the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed, which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques.

二维(2D)材料因其独特的结构和优异的物理性能而成为电子设备的潜在候选材料,并成为纳米技术研究的焦点。要充分挖掘二维材料在各种应用领域的潜力,就必须对其机械和摩擦学特性进行精确评估。然而,二维材料的纳米级厚度和平面特性给测试和表征其机械特性带来了巨大挑战。在原位表征技术中,原子力显微镜(AFM)在探索纳米材料的机械性能方面获得了广泛的应用,这是因为原子力显微镜尖端具有轻松测量纳米力和位移的能力。具体而言,基于原子力显微镜的力谱分析是研究二维材料力学和摩擦学特性的常用方法。本综述全面详述了基于法向力谱的方法,这些方法可用于测试和表征二维材料的弹性和断裂特性、粘附性和疲劳性。此外,使用横向力谱的方法可以表征二维材料的界面特性,包括二维材料的表面摩擦、夹层的剪切行为以及纳米片-基底界面。此外,还探讨了测试方法、外部环境和测试样品特性等各种因素对所测机械特性的影响。最后,还讨论了当前基于原子力显微镜测量二维材料的机械和摩擦学特性所面临的挑战和问题,明确了多种方法相结合的趋势与原位测试技术的未来发展。
{"title":"Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy","authors":"Shuai Wu, Jie Gu, Ruiteng Li, Yuening Tang, Lingxiao Gao, Cuihua An, Qibo Deng, Libin Zhao, Ning Hu","doi":"10.1007/s40544-024-0864-9","DOIUrl":"https://doi.org/10.1007/s40544-024-0864-9","url":null,"abstract":"<p>Two-dimensional (2D) materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties, making them a focal point in nanotechnology research. Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications. However, their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties. Among the <i>in situ</i> characterization techniques, atomic force microscopy (AFM) has gained widespread applications in exploring the mechanical behaviour of nanomaterials, because of the easy measurement capability of nano force and displacement from the AFM tips. Specifically, AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials. This review comprehensively details the methods based on normal force spectroscopy, which are utilized to test and characterize the elastic and fracture properties, adhesion, and fatigue of 2D materials. Additionally, the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials, including surface friction of 2D materials, shear behaviour of interlayers as well as nanoflake-substrate interfaces. The influence of various factors, such as testing methods, external environments, and the properties of test samples, on the measured mechanical properties is also addressed. In the end, the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed, which identifies the trend in the combination of multiple methods concerning the future development of the <i>in situ</i> testing techniques.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"74 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the preparation and fretting behavior of bonded oriented MoS2 solid lubricant coating 键合定向 MoS2 固体润滑涂层的制备和摩擦行为研究
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-06 DOI: 10.1007/s40544-024-0895-2
Liangliang Xiong, Mengxue Wu, Xiaoqiang Fan, Minhao Zhu

The bonded MoS2 solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel. In this work, the amino functionalized MoS2 was protonated with acetic acid to make the MoS2 positively charged. The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force. The bonded directionally aligned MoS2 solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions. At a load of 10 N, the friction coefficient and wear volume of the coating with 5 wt% protonated MoS2 decreased by 20.0% and 37.2% compared to the pure epoxy coating, respectively, and by 0.07% and 16.8% than the randomly arranged MoS2 sample, respectively. The remarkable lubricating properties of MoS2 with directional alignment were attributed to its effective load-bearing and mechanical support, barrier effect on longitudinal extension of cracks, and the formation of a continuous and uniform transfer film.

键合 MoS2 固体润滑剂涂层是减轻 AISI 1045 钢摩擦磨损的有效措施。在这项工作中,用醋酸对氨基官能化的 MoS2 进行质子化处理,使 MoS2 带正电荷。在电场力的作用下,通过电泳沉积实现了质子化 MoS2 在涂层中的定向排列。定向排列的 MoS2 固体润滑涂层在三种工况下均表现出对各种载荷的高度适应性和优异的润滑性能。在 10 N 的载荷下,5 wt% 质子化 MoS2 涂层的摩擦系数和磨损体积比纯环氧涂层分别降低了 20.0% 和 37.2%,比随机排列的 MoS2 样品分别降低了 0.07% 和 16.8%。定向排列的 MoS2 具有显著的润滑性能,这归功于其有效的承载和机械支撑、对裂纹纵向延伸的阻隔作用以及形成连续均匀的转移膜。
{"title":"Study on the preparation and fretting behavior of bonded oriented MoS2 solid lubricant coating","authors":"Liangliang Xiong, Mengxue Wu, Xiaoqiang Fan, Minhao Zhu","doi":"10.1007/s40544-024-0895-2","DOIUrl":"https://doi.org/10.1007/s40544-024-0895-2","url":null,"abstract":"<p>The bonded MoS<sub>2</sub> solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel. In this work, the amino functionalized MoS<sub>2</sub> was protonated with acetic acid to make the MoS<sub>2</sub> positively charged. The directional arrangement of protonated MoS<sub>2</sub> in the coating was achieved by electrophoretic deposition under the electric field force. The bonded directionally aligned MoS<sub>2</sub> solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions. At a load of 10 N, the friction coefficient and wear volume of the coating with 5 wt% protonated MoS<sub>2</sub> decreased by 20.0% and 37.2% compared to the pure epoxy coating, respectively, and by 0.07% and 16.8% than the randomly arranged MoS<sub>2</sub> sample, respectively. The remarkable lubricating properties of MoS<sub>2</sub> with directional alignment were attributed to its effective load-bearing and mechanical support, barrier effect on longitudinal extension of cracks, and the formation of a continuous and uniform transfer film.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"57 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction between a single platelet and fibrinogen 单个血小板与纤维蛋白原之间的摩擦力
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-06 DOI: 10.1007/s40544-024-0886-3
Yuhe Wang, Yan Li, Shuguang Zhang, Haosheng Chen, Yongjian Li

Friction has been considered to mediate physiological activities of cells, however, the biological friction between a single cell and its ligand-bound surface has not been thoroughly explored. Herein, we established a friction model for single cells based on an atomic force microscopy (AFM) combined with an inverted fluorescence microscopy (IFM) to study the friction between a highly sensitive platelet and fibrinogen-coated surface. The study revealed that the friction between the platelet and fibrinogen-coated tip is mainly influenced by specific ligand–receptor interaction. Further, we modeled the biological friction, which consists of specific interaction, non-specific interaction, and mechanical effect. Besides, the results suggested that the velocity can also affect specific ligand–receptor interactions, resulting in the friction change and platelet adhesion to fibrinogen surfaces. The study built a friction model between a single cell and its ligand-bound surface and provided a potential method to study the biological friction by the combination of AFM and IFM.

摩擦一直被认为是细胞生理活动的介导因素,然而,单细胞与其配体结合表面之间的生物摩擦尚未得到深入探讨。在此,我们基于原子力显微镜(AFM)结合倒置荧光显微镜(IFM)建立了单细胞摩擦模型,研究了高灵敏度血小板与纤维蛋白原涂层表面之间的摩擦。研究发现,血小板与纤维蛋白原涂层尖端之间的摩擦主要受特定配体-受体相互作用的影响。此外,我们还建立了生物摩擦模型,其中包括特异性相互作用、非特异性相互作用和机械效应。此外,研究结果表明,速度也会影响配体与受体之间的特异性相互作用,从而导致摩擦力的变化和血小板对纤维蛋白原表面的粘附。该研究建立了单细胞与其配体结合表面之间的摩擦模型,为结合原子力显微镜和原子力显微镜研究生物摩擦提供了一种可能的方法。
{"title":"Friction between a single platelet and fibrinogen","authors":"Yuhe Wang, Yan Li, Shuguang Zhang, Haosheng Chen, Yongjian Li","doi":"10.1007/s40544-024-0886-3","DOIUrl":"https://doi.org/10.1007/s40544-024-0886-3","url":null,"abstract":"<p>Friction has been considered to mediate physiological activities of cells, however, the biological friction between a single cell and its ligand-bound surface has not been thoroughly explored. Herein, we established a friction model for single cells based on an atomic force microscopy (AFM) combined with an inverted fluorescence microscopy (IFM) to study the friction between a highly sensitive platelet and fibrinogen-coated surface. The study revealed that the friction between the platelet and fibrinogen-coated tip is mainly influenced by specific ligand–receptor interaction. Further, we modeled the biological friction, which consists of specific interaction, non-specific interaction, and mechanical effect. Besides, the results suggested that the velocity can also affect specific ligand–receptor interactions, resulting in the friction change and platelet adhesion to fibrinogen surfaces. The study built a friction model between a single cell and its ligand-bound surface and provided a potential method to study the biological friction by the combination of AFM and IFM.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"8 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of ethanol fuel dilution on oil performance and MoDTC tribofilms formation and composition 乙醇燃料稀释对机油性能以及 MoDTC 三膜形成和组成的影响
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-05 DOI: 10.1007/s40544-024-0880-9
Juan Ruiz-Acero, Felipe Kessler, Henara Costa, Tiago Cousseau

Ethanol has emerged as a promising alternative to fossil fuels, but its use can lead to significant dilution in lubricants, particularly during cold start or heavy traffic. This dilution can affect the performance of additives, including friction modifiers like molybdenum dithiocarbamate (MoDTC), which are designed to reduce friction under extreme contact conditions. Prior research suggests that ethanol may impact the performance of MoDTC, prompting this study’s goal to investigate the effects of ethanol on MoDTC tribofilms and their friction response under boundary lubrication conditions. Therefore, reciprocating tribological tests were performed with fully formulated lubricants containing MoDTC with varying ethanol concentrations. The results indicate that a critical ethanol dilution level inhibits friction reduction by MoDTC activation, resulting in friction coefficients (COFs) similar to the base oil. Surfaces tested with simple mixtures of polyalphaolefin (PAO) + MoDTC showed increased COFs with added ethanol. Analysis of tested surfaces using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy near the edge structure (XANES) revealed the presence of sulfates, MoO3, MoS2, and MoSxOy compounds in the tribofilms formed on the surfaces, with and without ethanol diluted in the lubricant. However, the addition of ethanol increased the sulfates and MoO3 content of the tribofilms at the expense of friction-reducing compounds such as MoS2 and MoSxOy. These findings suggest that ethanol dilution in lubricants containing MoDTC creates an oxygen-rich interfacial medium that favors the formation of compounds with insufficient friction-reducing capabilities.

乙醇作为化石燃料的替代品前景广阔,但使用乙醇会导致润滑油严重稀释,尤其是在冷启动或交通繁忙的情况下。这种稀释会影响添加剂的性能,包括二硫代氨基甲酸钼(MoDTC)等摩擦改进剂,这些添加剂旨在减少极端接触条件下的摩擦。先前的研究表明,乙醇可能会影响 MoDTC 的性能,因此本研究的目标是调查乙醇对 MoDTC 三膜的影响及其在边界润滑条件下的摩擦响应。因此,对含有不同乙醇浓度的 MoDTC 全配方润滑油进行了往复摩擦学测试。结果表明,临界乙醇稀释水平会抑制 MoDTC 活化对摩擦力的降低,导致摩擦系数(COF)与基础油相似。使用聚α烯烃 (PAO) + MoDTC 的简单混合物进行的表面测试表明,添加乙醇后 COFs 增加。使用拉曼光谱、X 射线光电子能谱 (XPS) 和边缘结构附近 X 射线吸收光谱 (XANES) 对测试表面进行的分析表明,无论润滑油中是否稀释了乙醇,在表面形成的三膜中都存在硫酸盐、MoO3、MoS2 和 MoSxOy 化合物。然而,乙醇的加入增加了三膜中硫酸盐和 MoO3 的含量,但却牺牲了 MoS2 和 MoSxOy 等减摩化合物。这些研究结果表明,在含有 MoDTC 的润滑油中稀释乙醇会产生富含氧气的界面介质,有利于形成减摩能力不足的化合物。
{"title":"The effect of ethanol fuel dilution on oil performance and MoDTC tribofilms formation and composition","authors":"Juan Ruiz-Acero, Felipe Kessler, Henara Costa, Tiago Cousseau","doi":"10.1007/s40544-024-0880-9","DOIUrl":"https://doi.org/10.1007/s40544-024-0880-9","url":null,"abstract":"<p>Ethanol has emerged as a promising alternative to fossil fuels, but its use can lead to significant dilution in lubricants, particularly during cold start or heavy traffic. This dilution can affect the performance of additives, including friction modifiers like molybdenum dithiocarbamate (MoDTC), which are designed to reduce friction under extreme contact conditions. Prior research suggests that ethanol may impact the performance of MoDTC, prompting this study’s goal to investigate the effects of ethanol on MoDTC tribofilms and their friction response under boundary lubrication conditions. Therefore, reciprocating tribological tests were performed with fully formulated lubricants containing MoDTC with varying ethanol concentrations. The results indicate that a critical ethanol dilution level inhibits friction reduction by MoDTC activation, resulting in friction coefficients (COFs) similar to the base oil. Surfaces tested with simple mixtures of polyalphaolefin (PAO) + MoDTC showed increased COFs with added ethanol. Analysis of tested surfaces using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy near the edge structure (XANES) revealed the presence of sulfates, MoO<sub>3</sub>, MoS<sub>2</sub>, and MoS<sub><i>x</i></sub>O<sub><i>y</i></sub> compounds in the tribofilms formed on the surfaces, with and without ethanol diluted in the lubricant. However, the addition of ethanol increased the sulfates and MoO<sub>3</sub> content of the tribofilms at the expense of friction-reducing compounds such as MoS<sub>2</sub> and MoS<sub><i>x</i></sub>O<sub><i>y</i></sub>. These findings suggest that ethanol dilution in lubricants containing MoDTC creates an oxygen-rich interfacial medium that favors the formation of compounds with insufficient friction-reducing capabilities.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"21 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking wear resistance in an ultrastrong dual-phase high-entropy alloy by interface-constrained deformation of brittle Laves phases 通过脆性拉维斯相的界面约束变形,揭示超强双相高熵合金的耐磨性
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-05 DOI: 10.1007/s40544-024-0884-5
Fei Liang, Yixing Sun, Hongyuan Wan, Yong Li, Wenhao Lu, Ao Meng, Lei Gu, Zhaoping Luo, Yan Lin, Yaping Zhang, Xiang Chen

The pronounced brittleness of hard Laves phase intermetallics is detrimental to their tribological properties at room temperature. In this study, we utilized a heterogeneous structure to engineer an ultrastrong dual-phase (Laves + B2) AlCoFeNiNb high-entropy alloy that exhibits a low wear rate (3.82×10−6 mm3/(N·m)) at room temperature. This wear resistance in the ball-on-disc sliding friction test with the counterpart of Al2O3 balls stems from the activated deformation ability in the ultrafine Laves lamellae under heterogeneous interface constraints. Furthermore, as tribological stress intensifies, the surface deformation mechanism transitions from dislocation slip on the basal and pyramidal planes to a unique combination of local shear and grain rotation within the Laves phase. Our study illuminates fresh perspectives for mitigating the embrittling effect of Laves phase intermetallics under tribological loading and for the development of wear-resistant materials.

硬拉氏相金属间化合物的明显脆性不利于它们在室温下的摩擦学特性。在本研究中,我们利用异质结构设计了一种超强双相(拉维斯+B2)铝钴铁镍铌高熵合金,该合金在室温下具有较低的磨损率(3.82×10-6 mm3/(N-m))。在球对盘滑动摩擦试验中,这种与 Al2O3 球对应的耐磨性源于超细 Laves 薄片在异质界面约束下的活化变形能力。此外,随着摩擦应力的增强,表面变形机制从基面和金字塔面上的位错滑移转变为拉维斯相内局部剪切和晶粒旋转的独特组合。我们的研究为减轻拉夫相金属间化合物在摩擦载荷下的脆化效应和开发耐磨材料提供了新的视角。
{"title":"Unlocking wear resistance in an ultrastrong dual-phase high-entropy alloy by interface-constrained deformation of brittle Laves phases","authors":"Fei Liang, Yixing Sun, Hongyuan Wan, Yong Li, Wenhao Lu, Ao Meng, Lei Gu, Zhaoping Luo, Yan Lin, Yaping Zhang, Xiang Chen","doi":"10.1007/s40544-024-0884-5","DOIUrl":"https://doi.org/10.1007/s40544-024-0884-5","url":null,"abstract":"<p>The pronounced brittleness of hard Laves phase intermetallics is detrimental to their tribological properties at room temperature. In this study, we utilized a heterogeneous structure to engineer an ultrastrong dual-phase (Laves + B2) AlCoFeNiNb high-entropy alloy that exhibits a low wear rate (3.82×10<sup>−6</sup> mm<sup>3</sup>/(N·m)) at room temperature. This wear resistance in the ball-on-disc sliding friction test with the counterpart of Al<sub>2</sub>O<sub>3</sub> balls stems from the activated deformation ability in the ultrafine Laves lamellae under heterogeneous interface constraints. Furthermore, as tribological stress intensifies, the surface deformation mechanism transitions from dislocation slip on the basal and pyramidal planes to a unique combination of local shear and grain rotation within the Laves phase. Our study illuminates fresh perspectives for mitigating the embrittling effect of Laves phase intermetallics under tribological loading and for the development of wear-resistant materials.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of surface roughness on the coefficient of friction of polymer-on-polymer contacts for deflection pulley-rope systems in the lift industry 表面粗糙度对升降机行业偏转滑轮-绳索系统中聚合物-聚合物接触摩擦系数的影响
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-07-01 DOI: 10.1007/s40544-024-0881-8
Ainhoa Guinea, Andrea Aginagalde, Wilson Tato, Iñigo Llavori, Pablo Garcia, Leire Arraiago, Alaitz Zabala

The coefficient of friction (CoF) between the deflection pulley and rope in a lift strongly affects the life span of the rope. Although surface roughness is a key factor affecting the metallic pulley–rope CoF, its effect on polymeric pulleys is unknown. The present study analyses the effect of roughness and working conditions on cast polyamide 6 (PA6G) deflection pulley–thermoplastic polyurethane (TPU)-coated rope contacts. The statistical analysis revealed that the effect of surface roughness on the CoF for low-load tests was significant. The present study contributes significantly to parameter selection in deflection pulley machining to minimise friction between the pulley and rope.

在电梯中,偏转滑轮和钢丝绳之间的摩擦系数(CoF)对钢丝绳的使用寿命有很大影响。虽然表面粗糙度是影响金属滑轮-钢丝绳 CoF 的关键因素,但其对聚合物滑轮的影响尚不清楚。本研究分析了粗糙度和工作条件对浇铸聚酰胺 6(PA6G)偏转滑轮-热塑性聚氨酯(TPU)涂层钢丝绳接触的影响。统计分析显示,表面粗糙度对低负荷试验的 CoF 有显著影响。本研究大大有助于偏转滑轮加工中的参数选择,以最大限度地减少滑轮和钢丝绳之间的摩擦。
{"title":"Impact of surface roughness on the coefficient of friction of polymer-on-polymer contacts for deflection pulley-rope systems in the lift industry","authors":"Ainhoa Guinea, Andrea Aginagalde, Wilson Tato, Iñigo Llavori, Pablo Garcia, Leire Arraiago, Alaitz Zabala","doi":"10.1007/s40544-024-0881-8","DOIUrl":"https://doi.org/10.1007/s40544-024-0881-8","url":null,"abstract":"<p>The coefficient of friction (CoF) between the deflection pulley and rope in a lift strongly affects the life span of the rope. Although surface roughness is a key factor affecting the metallic pulley–rope CoF, its effect on polymeric pulleys is unknown. The present study analyses the effect of roughness and working conditions on cast polyamide 6 (PA6G) deflection pulley–thermoplastic polyurethane (TPU)-coated rope contacts. The statistical analysis revealed that the effect of surface roughness on the CoF for low-load tests was significant. The present study contributes significantly to parameter selection in deflection pulley machining to minimise friction between the pulley and rope.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"337 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using fused filament fabrication to improve the tribocorrosion behaviour of 17-4 PH SS in comparison to other metal forming techniques 与其他金属成型技术相比,利用熔融长丝制造技术改善 17-4 PH SS 的摩擦腐蚀性能
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-06-28 DOI: 10.1007/s40544-024-0885-4
Cristina García-Cabezón, Juan Alfonso Naranjo, Celia García-Hernández, Cristina Berges, Gemma Herranz, Fernando Martín-Pedrosa

Fused filament fabrication (FFF) is one of the additive manufacturing processes which has gained more interest because of its simplicity and low-cost. This technology is similar to the conventional metal injection moulding (MIM) process, consisting of the feedstock preparation of metal powder and polymer binders, followed by layer-by-layer 3D printing (FFF) or injection (MIM) to create green parts and, finally, debinding and sintering. Moreover, both technologies provide near-dense parts. This work presents an in-depth study of the processing method’s influence. The porosity, microstructure, hardness, corrosion, and tribocorrosion behaviour are compared for 17-4 PH SS samples processed from powder by additive manufacturing using FFF and MIM, as well as conventional powder metallurgy (PM) samples. MIM samples exhibited the highest macro and microhardness, while corrosion behaviour was similar for both MIM and FFF samples, but superior in comparison to conventional PM samples. However, the FFF-as fabricated samples displayed a significant improvement in tribocorrosion resistance that could be explained by the higher proportion of delta ferrite and retained austenite in their microstructure.

熔融长丝制造(FFF)是增材制造工艺之一,因其操作简单、成本低廉而受到越来越多的关注。该技术类似于传统的金属注射成型(MIM)工艺,包括金属粉末和聚合物粘合剂的原料制备,然后通过逐层三维打印(FFF)或注射(MIM)制造绿色部件,最后进行脱脂和烧结。此外,这两种技术都能制造出接近致密的零件。本研究对加工方法的影响进行了深入研究。比较了使用 FFF 和 MIM 从粉末加工而成的 17-4 PH SS 样品与传统粉末冶金 (PM) 样品的孔隙率、微观结构、硬度、腐蚀和摩擦腐蚀行为。MIM 样品表现出最高的宏观和微观硬度,而 MIM 和 FFF 样品的腐蚀行为相似,但优于传统的 PM 样品。不过,FFF-as 制成的样品在耐摩擦腐蚀性能方面有显著改善,这可能是因为其微观结构中 delta 铁素体和保留奥氏体的比例较高。
{"title":"Using fused filament fabrication to improve the tribocorrosion behaviour of 17-4 PH SS in comparison to other metal forming techniques","authors":"Cristina García-Cabezón, Juan Alfonso Naranjo, Celia García-Hernández, Cristina Berges, Gemma Herranz, Fernando Martín-Pedrosa","doi":"10.1007/s40544-024-0885-4","DOIUrl":"https://doi.org/10.1007/s40544-024-0885-4","url":null,"abstract":"<p>Fused filament fabrication (FFF) is one of the additive manufacturing processes which has gained more interest because of its simplicity and low-cost. This technology is similar to the conventional metal injection moulding (MIM) process, consisting of the feedstock preparation of metal powder and polymer binders, followed by layer-by-layer 3D printing (FFF) or injection (MIM) to create green parts and, finally, debinding and sintering. Moreover, both technologies provide near-dense parts. This work presents an in-depth study of the processing method’s influence. The porosity, microstructure, hardness, corrosion, and tribocorrosion behaviour are compared for 17-4 PH SS samples processed from powder by additive manufacturing using FFF and MIM, as well as conventional powder metallurgy (PM) samples. MIM samples exhibited the highest macro and microhardness, while corrosion behaviour was similar for both MIM and FFF samples, but superior in comparison to conventional PM samples. However, the FFF-as fabricated samples displayed a significant improvement in tribocorrosion resistance that could be explained by the higher proportion of delta ferrite and retained austenite in their microstructure.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"18 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsurface deformation mechanism and the interplay relationship between strength–ductility and fretting wear resistance during fretting of a high-strength titanium alloy 一种高强度钛合金的表面下变形机理以及脆化过程中强度-电导率与脆化耐磨性之间的相互作用关系
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-06-28 DOI: 10.1007/s40544-024-0870-y
Yanlin Tong, Ke Hua, Haoyang Xie, Yue Cao, Zhuobin Huang, Zhenpeng Liang, Xiaolin Li, Hongxing Wu, Haifeng Wang

Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents. Traditionally, it is believed that both high strength and excellent ductility can reduce fretting wear damage. However, whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress (Fw) are still confusing problems. Here, by analyzing the subsurface-microstructure deformation mechanism of several samples containing various α precipitate features, for the first time, we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials (Rm). It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm, the deformation mechanism mainly manifests as serious grain fragmentation of β and αGB constituents. Homogeneous deformation in large areas only reduces damage to a limited extent. It is crucial to improve the strength to resist cracking and wear, but it is of little significance to improve the ductility. However, when Fw is far less than Rm, coordinated deformation ability reflected by ductility plays a more important role. The deformation mechanism mainly manifests as localized deformation of β and αGB constituents (kinking induced by twinning and spheroidizing). A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nano-grained layer. Only when the strength is great enough, improving the plasticity can reduce wear. This study can provide a principle for designing fretting damage resistant alloys.

高强度钛紧固件的摩擦磨损已造成大量灾难性事故。传统观点认为,高强度和优异的延展性可以减少摩擦磨损。然而,在外加法向应力(Fw)作用下,强度和延展性是否相互矛盾以及二者的合理匹配策略仍是令人困惑的问题。在此,我们通过分析几种含有不同α析出物特征的样品的亚表面-微结构变形机理,首次设计了在 Fw 与材料抗拉强度(Rm)的不同匹配关系下提高抗摩擦磨损性能的策略。研究发现,当 Fw 大于 Rm 或 Fw 几乎等于 Rm 时,变形机制主要表现为 β 和 αGB 成分的严重晶粒破碎。大面积的均匀变形只能在有限程度上减少损伤。提高强度以抵抗开裂和磨损至关重要,但提高延展性意义不大。然而,当 Fw 远小于 Rm 时,延展性所反映的协调变形能力就会发挥更重要的作用。变形机制主要表现为 β 和 αGB 成分的局部变形(孪晶和球化引起的扭结)。纳米颗粒/层状层和局部变形过渡层的独特复合结构与单一纳米颗粒层相比,可将摩擦损伤降低五倍。只有当强度足够大时,提高塑性才能减少磨损。这项研究为设计抗烧蚀损伤合金提供了一个原则。
{"title":"Subsurface deformation mechanism and the interplay relationship between strength–ductility and fretting wear resistance during fretting of a high-strength titanium alloy","authors":"Yanlin Tong, Ke Hua, Haoyang Xie, Yue Cao, Zhuobin Huang, Zhenpeng Liang, Xiaolin Li, Hongxing Wu, Haifeng Wang","doi":"10.1007/s40544-024-0870-y","DOIUrl":"https://doi.org/10.1007/s40544-024-0870-y","url":null,"abstract":"<p>Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents. Traditionally, it is believed that both high strength and excellent ductility can reduce fretting wear damage. However, whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress (<i>F</i><sub>w</sub>) are still confusing problems. Here, by analyzing the subsurface-microstructure deformation mechanism of several samples containing various <i>α</i> precipitate features, for the first time, we design strategies to improve fretting damage resistance under different matching relation between <i>F</i><sub>w</sub> and the tensile strength of materials (<i>R</i><sub>m</sub>). It is found that when <i>F</i><sub>w</sub> is greater than <i>R</i><sub>m</sub> or <i>F</i><sub>w</sub> is nearly equivalent to <i>R</i><sub>m</sub>, the deformation mechanism mainly manifests as serious grain fragmentation of <i>β</i> and <i>α</i><sub>GB</sub> constituents. Homogeneous deformation in large areas only reduces damage to a limited extent. It is crucial to improve the strength to resist cracking and wear, but it is of little significance to improve the ductility. However, when <i>F</i><sub>w</sub> is far less than <i>R</i><sub>m</sub>, coordinated deformation ability reflected by ductility plays a more important role. The deformation mechanism mainly manifests as localized deformation of <i>β</i> and <i>α</i><sub>GB</sub> constituents (kinking induced by twinning and spheroidizing). A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nano-grained layer. Only when the strength is great enough, improving the plasticity can reduce wear. This study can provide a principle for designing fretting damage resistant alloys.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"17 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Friction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1