首页 > 最新文献

Functional Plant Biology最新文献

英文 中文
Overexpression of HvVDE gene improved light protection in transgenic tobacco (Nicotiana tabacum). 过表达 HvVDE 基因可提高转基因烟草(Nicotiana tabacum)的光保护能力。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP24180
Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu

Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .

玉簪是公认的美化环境和园艺的首选植物。长期暴露在强烈阳光下造成的 "日灼 "正在降低玉簪的观赏价值。然而,有关光诱导玉簪伤害的基因成分的研究却很少。在此,通过对烟草(Nicotiana tabacum)株系进行 HvVDE 基因表达,分离并鉴定了玉簪中的中黄素脱氧化酶(VDE)同源物。结果表明,HvVDE编码一个由481个氨基酸组成、分子量为54.304kDa的假定蛋白。系统进化分析发现,HvVDE与JcVDE具有近似性。此外,HvVDE的表达模式发现,HvVDE在不同组织中的表达量不同,高光照强度会诱导HvVDE的表达。而过量表达 HvVDE 会导致烟草非光化学淬灭的恢复,这表明 HvVDE 在文竹中起到了将多余光能转化为热能的作用。这些发现强调了 HvVDE 在缓解室盘菌的光抑制和增强光保护机制方面的重要作用。
{"title":"Overexpression of <i>HvVDE</i> gene improved light protection in transgenic tobacco (<i>Nicotiana tabacum</i>).","authors":"Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu","doi":"10.1071/FP24180","DOIUrl":"https://doi.org/10.1071/FP24180","url":null,"abstract":"<p><p>Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artemin molecular chaperone from Artemia urmiana improves tolerance of Arabidopsis thaliana to abiotic stress. 青蒿素分子伴侣提高拟南芥对非生物胁迫的耐受性。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP24208
Tayebe Fallahi-Pashaki, Reza Shirzadian-Khoramabad, M Mehdi Sohani

Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.

Artemia是水生微甲壳类动物的一个属,属于鳃足纲。包裹的青蒿胚胎能够抵抗恶劣的环境压力,包括反复干燥、长期缺氧、极端温度和高水平的紫外线辐射。artemin蛋白具有伴侣活性,被认为在保护生物体免受这种压力方面起着至关重要的作用。为了阐明青蒿素在植物中的潜在功能作用,我们将青蒿素cDNA序列克隆到pZPY122二元植物表达载体上。利用农杆菌介导的转化和花浸渍技术将该结构体导入拟南芥中。产生3个独立的转基因株系(art1, art2, art3),并在45°C下进行热胁迫。结果表明,热胁迫与基因型在发芽率、发芽速度、活力指数、苗长和根长等方面存在显著的交互作用。与野生型植物相比,含有青蒿素转基因(ART)的转基因品系表现出显著的耐热性。电解质泄漏、过氧化氢含量明显降低,过氧化氢酶、超氧化物歧化酶和过氧化物酶活性较高,总蛋白含量较高,脯氨酸积累增加。在热胁迫条件下,与野生型相比,抗逆转录病毒品系中DREB2A和HSFA3这两个关键的非生物应激响应基因的表达显著上调。这些发现表明,拟南芥中ART基因的表达可能作为分子伴侣,从而增强植物对热胁迫的耐受性。
{"title":"Artemin molecular chaperone from <i>Artemia urmiana</i> improves tolerance of <i>Arabidopsis thaliana</i> to abiotic stress.","authors":"Tayebe Fallahi-Pashaki, Reza Shirzadian-Khoramabad, M Mehdi Sohani","doi":"10.1071/FP24208","DOIUrl":"https://doi.org/10.1071/FP24208","url":null,"abstract":"<p><p>Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alteration in certain growth, biochemical, and anatomical indices of grapevine (Vitis vinifera) in response to the foliar application of auxin under water deficit. 缺水条件下叶面喷施辅助素对葡萄树(Vitis vinifera)某些生长、生化和解剖指标的影响。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24059
Yaser Khandani, Hassan Sarikhani, Mansour Gholami, Abdolkarim Chehregani Rad, Siamak Shirani Bidabadi

Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.

干旱引起的胁迫是影响葡萄树(Vitis vinifera)生长发育、产量和果实特性的最具经济损失的自然现象之一。此外,辅助素也是最重要的植物生长调节剂之一,可以减轻胁迫对植物造成的伤害。本研究调查了外源喷洒的辅助素(0、50 和 200mgL-1 )对缺水条件下两个葡萄品种("Rashe "和 "Fakhri")的生长、生化和解剖参数的影响。根据我们的研究结果,缺水导致生长、蛋白质含量和解剖参数明显下降,但电解质渗漏却显著增加。在缺水条件下,葡萄的总酚类化合物和抗氧化活性大幅增加。施用 50mgL-1 的萘乙酸(NAA)可减少电解质渗漏('Rashe'为 15%,'Fakhri'为 20%),增加蛋白质含量('Rashe'为 22%,'Fakhri'为 32%)、总酚化合物含量('Rashe'为 33%,'Fakhri'为 40%)和抗氧化能力('Rashe'为 11%,'Fakhri'为 39%);反常参数也有所改善。然而,施用 200mgL-1 NAA 会对葡萄树的生长和生化性状产生不利影响,与其他 NAA 浓度相比,对根系生长和解剖参数的影响更为明显。总之,施用 50mgL-1 NAA 能促进葡萄树的生长,使其在缺水条件下更好地茁壮成长。
{"title":"Alteration in certain growth, biochemical, and anatomical indices of grapevine (<i>Vitis vinifera</i>) in response to the foliar application of auxin under water deficit.","authors":"Yaser Khandani, Hassan Sarikhani, Mansour Gholami, Abdolkarim Chehregani Rad, Siamak Shirani Bidabadi","doi":"10.1071/FP24059","DOIUrl":"https://doi.org/10.1071/FP24059","url":null,"abstract":"<p><p>Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic electron flow and Photosystem II-less photosynthesis. 循环电子流和无光子系统 II 的光合作用。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24185
Maria Ermakova, Duncan Fitzpatrick, Anthony W D Larkum

Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.

氧光合作用的特点是两个光驱动复合体--光系统 II(PSII)和光系统 I(PSI)--的合作,它们通过一系列氧化还原耦合中间体依次连接起来。不同的进化使光合系统表现出互补的氧化还原电位,跨越了在单一系统中氧化水和还原二氧化碳所需的范围。催化自然界最具氧化性的反应以从水中提取电子是一项高度专业化的任务,限制了 PSII 的新陈代谢功能。与此相反,PSI 中的潜在电子供体具有不同的氧化还原电位,使其能够接受来自各种代谢过程的电子。PSI 的这种新陈代谢灵活性是光合作用生物体平衡能量供应与新陈代谢需求的基础,也是适应环境变化的关键。在这里,我们回顾了 "无 PSII 光合作用 "现象,即 PSI 利用来自非光化反应的电子进行循环电子流,从而独立于 PSII 发挥作用。无 PSII 光合作用可以产生超强的 ATP,例如,蓝藻的异囊可以利用它来进行固氮,C4 植物的束鞘细胞可以利用它来促进 CO2 同化。我们将讨论这种安排的能量优势,以及利用它提高光合生物的生产力和抗压能力的前景。
{"title":"Cyclic electron flow and Photosystem II-less photosynthesis.","authors":"Maria Ermakova, Duncan Fitzpatrick, Anthony W D Larkum","doi":"10.1071/FP24185","DOIUrl":"https://doi.org/10.1071/FP24185","url":null,"abstract":"<p><p>Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca2+ level. 纳米氧化铈颗粒通过调节活性氧和 Ca2+ 水平促进拟南芥侧根的形成
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24196
Guangjing Li, Quanlong Gao, Ashadu Nyande, Zihao Dong, Ehtisham Hassan Khan, Yuqian Han, Honghong Wu

Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.

根系在植物生长中发挥着重要作用,包括提供必要的机械支持、水分吸收和养分吸收。纳米材料在改善植物根系发育方面发挥着积极作用,但人们对纳米材料如何影响侧根(LR)形成的了解还很有限。由于具有清除活性氧(ROS)的能力,聚丙烯酸包覆的纳米铈(氧化铈纳米颗粒,PNC)通常用于提高植物的抗逆性。然而,其对 LR 形成的影响仍不清楚。在本研究中,我们通过监测根中的 ROS 水平和 Ca2+ 分布,研究了 PNC 对拟南芥 LR 形成的影响。结果表明,PNC 能显著促进 LR 的形成,使 LR 数量增加 26.2%。与对照组相比,经 PNC 处理的拟南芥幼苗的主根(PRs)中 H2 O2 水平降低了 18.9%,LRs 中降低了 40.6%,PRs 中 O 2 - 水平降低了 47.7%,LRs 中降低了 88.5%。与对照植物相比,经 PNC 处理的植物的 PR 和 LR 中的 Ca2+ 水平分别降低了 35.7% 和 22.7%。总之,这些结果表明,PNC 可通过调节根中的 ROS 和 Ca2+ 水平促进 LR 发育。
{"title":"Cerium oxide nanoparticles promoted lateral root formation in <i>Arabidopsis</i> by modulating reactive oxygen species and Ca<sup>2+</sup> level.","authors":"Guangjing Li, Quanlong Gao, Ashadu Nyande, Zihao Dong, Ehtisham Hassan Khan, Yuqian Han, Honghong Wu","doi":"10.1071/FP24196","DOIUrl":"https://doi.org/10.1071/FP24196","url":null,"abstract":"<p><p>Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and transcriptional regulation of the anthocyanidin acyl modifier gene Gs5AT of Gentiana sino-ornata. 秦艽花青素酰基修饰基因 Gs5AT 的功能和转录调控。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP23143
Han Meng, Siqi Chen, Yanmei Wu, Xuehua Jin

The Chinese gentian, Gentiana sino-ornata produces brilliant blue flowers. To investigate the biological function and transcriptional regulation mechanism of the anthocyanin 5-O-acyltransferase gene (Gs5AT ) in the corolla, it is beneficial to analyse the mechanism of blue flower colour presentation. In this investigation, we obtained the CDS and promoter sequences of the gene Gs5AT . Yeast one-hybrid experiments were used to identify the transcription factor GsbHLH7 that activates the gene Gs5AT . According to quantitive reverse transcription polymerase chain reaction analysis, the expression of the gene Gs5AT was significantly and positively correlated with the gene GsbHLH7 . The colour phenotype of the flowers was significantly altered by the virus-induced gene silencing transduction of Gs5AT and GsbHLH7 , with GsbHLH7 silencing producing more pronounced changes in the corolla colour than Gs5AT . The expression of GsF3'5'H , GsDFR , GsANS , Gs3GT , and Gs5GT all fell to varying degrees after GsbHLH7 silencing, indicating that GsbHLH7 may regulate transcription of these genes as well as Gs5AT . The results of this study indicate that Gs5AT was positively regulated by the GsbHLH7 , and thus affects the colour presentation of the blue corolla.

中国龙胆(Gentiana sino-ornata)能开出艳丽的蓝色花朵。研究花冠中花青素 5-O-酰基转移酶基因(Gs5AT)的生物学功能和转录调控机制,有利于分析蓝花呈现的机理。本研究获得了花青素 5-O-酰基转移酶基因 Gs5AT 的 CDS 和启动子序列。酵母单杂交实验确定了激活 Gs5AT 基因的转录因子 GsbHLH7。根据定量反转录聚合酶链反应分析,基因 Gs5AT 的表达与基因 GsbHLH7 呈显著正相关。病毒诱导的 Gs5AT 和 GsbHLH7 基因沉默转导明显改变了花朵的颜色表型,其中 GsbHLH7 基因沉默转导产生的花冠颜色变化比 Gs5AT 更明显。沉默 GsbHLH7 后,GsF3'5'H、GsDFR、GsANS、Gs3GT 和 Gs5GT 的表达量均有不同程度的下降,表明 GsbHLH7 可能与 Gs5AT 一样调控这些基因的转录。本研究结果表明,Gs5AT 受 GsbHLH7 的正向调控,从而影响蓝色花冠的颜色表现。
{"title":"Functional and transcriptional regulation of the anthocyanidin acyl modifier gene <i>Gs5AT</i> of <i>Gentiana sino-ornata</i>.","authors":"Han Meng, Siqi Chen, Yanmei Wu, Xuehua Jin","doi":"10.1071/FP23143","DOIUrl":"https://doi.org/10.1071/FP23143","url":null,"abstract":"<p><p>The Chinese gentian, Gentiana sino-ornata produces brilliant blue flowers. To investigate the biological function and transcriptional regulation mechanism of the anthocyanin 5-O-acyltransferase gene (Gs5AT ) in the corolla, it is beneficial to analyse the mechanism of blue flower colour presentation. In this investigation, we obtained the CDS and promoter sequences of the gene Gs5AT . Yeast one-hybrid experiments were used to identify the transcription factor GsbHLH7 that activates the gene Gs5AT . According to quantitive reverse transcription polymerase chain reaction analysis, the expression of the gene Gs5AT was significantly and positively correlated with the gene GsbHLH7 . The colour phenotype of the flowers was significantly altered by the virus-induced gene silencing transduction of Gs5AT and GsbHLH7 , with GsbHLH7 silencing producing more pronounced changes in the corolla colour than Gs5AT . The expression of GsF3'5'H , GsDFR , GsANS , Gs3GT , and Gs5GT all fell to varying degrees after GsbHLH7 silencing, indicating that GsbHLH7 may regulate transcription of these genes as well as Gs5AT . The results of this study indicate that Gs5AT was positively regulated by the GsbHLH7 , and thus affects the colour presentation of the blue corolla.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (Foeniculum vulgare) under different irrigation regimes. 在不同灌溉制度下,叶面喷施硅纳米颗粒和锌纳米颗粒可改善茴香(Foeniculum vulgare)的植物生长、生化属性和精油特征。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24149
Hossein Mosaedi, Hamid Mozafari, Behzad Sani, Abdollah Ghasemi Pirbalouti, Faezeh Rajabzadeh

The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.

硅(Si)和锌(Zn)纳米粒子(NPs)在减轻茴香(Foeniculum vulgare)干旱胁迫方面的功效比较在很大程度上仍未得到探讨。本研究评估了硅纳米粒子和锌纳米粒子在不同灌溉制度下对促进茴香植物生长和生理生化属性的影响。这项为期两年的研究采用分盆设计,灌溉水平为三种(100%、75% 和 50% 田间灌溉能力,FC),叶面喷施 Si 和 Zn NPs 的处理为五种(对照、1mM Si NP、2mM Si NP、1mM Zn NP、2mM Zn NP)。结果表明,干旱胁迫降低了植物的表现。在不使用 Si NPs 和 Zn NPs 的情况下,50% FC 干旱后超氧化物歧化酶(SOD,131%)和过氧化氢酶(CAT,276%)增加。相反,生物产量(34%)、种子产量(44%)、叶绿素 a +b (26%)、相对含水量 (RWC, 21%) 和精油 (EO) 产量 (50%) 都有所降低。然而,施用锌和硅,尤其是 1mM 硅和 2mM 锌,可降低 CAT 和 SOD 活性,提高植物产量、叶绿素含量、相对含水量和 EO,从而大大缓解干旱胁迫。环氧乙烷的成分主要是茴香醚,其次是柠檬烯、葑酮和雌甾醇。在干旱条件下,单萜烯碳氢化合物增加,而含氧单萜烯减少。而 Si 和 Zn NPs 则呈现出相反的趋势。我们的研究结果表明,施用 2 毫摩尔的 Zn NPs 和 1 毫摩尔的 Si NPs 可以提高茴香植物在水分胁迫下的抗逆性和环氧乙烷产量。
{"title":"Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (<i>Foeniculum vulgare</i>) under different irrigation regimes.","authors":"Hossein Mosaedi, Hamid Mozafari, Behzad Sani, Abdollah Ghasemi Pirbalouti, Faezeh Rajabzadeh","doi":"10.1071/FP24149","DOIUrl":"https://doi.org/10.1071/FP24149","url":null,"abstract":"<p><p>The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterisation of 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (Vitis vinifera). 参与葡萄(Vitis vinifera)糖分积累和脱落酸信号传导的 "无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)家族转录因子的鉴定和特征描述。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24207
Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang

The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .

无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)转录因子在植物发育和胁迫响应中起着关键作用。蔗糖不发酵相关蛋白激酶 1.2(SnRK1)是葡萄糖代谢和 ABA 信号传导的关键酶。在这项研究中,我们利用葡萄(Vitis vinifera)胼胝体来探索 NAC 在糖和 ABA 通路中的作用及其与 VvSnRK1.2 的关系。我们确定了 19 个 VvNACs,它们在葡萄开花后 90 天高度表达,与葡萄成熟和高糖积累相吻合,并从 19 个 VvNACs 中随机选择了 11 个 VvNACs 对糖和 ABA 处理的响应进行了展示。VvNAC26 对糖和 ABA 处理有明显反应,其蛋白作为一种细胞核蛋白,在酵母中具有转录激活作用。我们通过农杆菌介导的转化,在转基因胼胝体中获得了 VvNAC26 的过表达(OE-VvNAC26)和 RNA 抑制(RNAi-VvNAC26)。我们发现 VvNAC26 对果糖含量有负面影响。在糖和 ABA 处理下,VvNAC26 对大多数糖相关基因的表达有负面影响,而对大多数 ABA 途径相关基因的表达有正面影响。双荧光素酶报告实验表明,VvNAC26 能显著上调烟草(Nicotiana benthamiana)叶片中 VvSnRK1.2 启动子的表达,但这一过程在葡萄胼胝体中需要 ABA。在 OE-VvNAC26 +RNAi-VvSnRK1.2 和 OE-VvSnRK1.2 +RNAi-VvNAC26 转基因胼胝体中,糖含量、糖相关基因和 ABA 相关基因的水平波动很大。这些发现表明,VvNAC26 调节糖代谢和 ABA 通路,与 VvSnRK1.2 有协同作用。
{"title":"Identification and characterisation of 'No apical meristem; <i>Arabidopsis</i> transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (<i>Vitis vinifera</i>).","authors":"Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang","doi":"10.1071/FP24207","DOIUrl":"https://doi.org/10.1071/FP24207","url":null,"abstract":"<p><p>The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (Manihot esculenta) subjected to variable high light conditions. 评估木薯(Manihot esculenta)在多变强光条件下的非光化学淬灭(NPQ)动力学和光合效率。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24118
Raji Sadasivan Nair, Saravanan Raju, Sanket Jijabrao More, Jos Thomas Puthur, Jayanti Makasana, Velumani Ravi

Light intensity is a critical environmental factor influencing plant growth and development. To survive high light conditions, plants have evolved various protective mechanisms, including non-photochemical quenching (NPQ). However, NPQ can limit effective photosynthetic yield when transitioning to low light conditions. This phenomenon is underexplored in cassava (Manihot esculenta ), a starchy storage root crop known for its high biological efficiency and climate resilience. To address this knowledge gap, we assessed the photoprotective abilities and growth responses of six cassava varieties under natural environmental light conditions (control) and intermittent high light (IHL) conditions by adding 900μmolm-2 s-1 using full-spectrum LED lights, on top of the natural ambient daylight. Our results demonstrated a significant impact of light treatment on aboveground biomass, total crop biomass, chlorophyll a and b content, photosynthetic rate, and NPQ values during transitions from low to high light and vice versa. Notably, cassava variety 'Sree Suvarna' exhibited the highest yield under both control and IHL conditions. These findings suggest that screening cassava varieties for their ability to postpone photoinhibition and recover quickly from photoinhibition may enhance photosynthetic performance. Such strategies have important implications for improving the efficiency and resilience of cassava crops, ultimately contributing to sustainable agricultural productivity.

光照强度是影响植物生长和发育的关键环境因素。为了在强光条件下生存,植物进化出了各种保护机制,包括非光化学淬灭(NPQ)。然而,当过渡到弱光条件时,NPQ 会限制有效光合产量。木薯(Manihot esculenta)是一种淀粉类贮藏根茎作物,以生物效率高和气候适应性强而著称,但对这一现象的研究却十分欠缺。为了填补这一知识空白,我们评估了六个木薯品种在自然环境光照条件(对照)和间歇性强光(IHL)条件下的光保护能力和生长反应。我们的研究结果表明,在从弱光到强光的转换过程中,光照处理对地上生物量、作物总生物量、叶绿素 a 和 b 含量、光合速率和 NPQ 值都有显著影响。值得注意的是,木薯品种 "Sree Suvarna "在对照和 IHL 条件下都表现出最高产量。这些发现表明,筛选木薯品种,使其具有推迟光抑制和从光抑制中快速恢复的能力,可以提高光合作用性能。这些策略对提高木薯作物的效率和抗逆性具有重要意义,最终有助于提高可持续农业生产力。
{"title":"Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (<i>Manihot esculenta</i>) subjected to variable high light conditions.","authors":"Raji Sadasivan Nair, Saravanan Raju, Sanket Jijabrao More, Jos Thomas Puthur, Jayanti Makasana, Velumani Ravi","doi":"10.1071/FP24118","DOIUrl":"https://doi.org/10.1071/FP24118","url":null,"abstract":"<p><p>Light intensity is a critical environmental factor influencing plant growth and development. To survive high light conditions, plants have evolved various protective mechanisms, including non-photochemical quenching (NPQ). However, NPQ can limit effective photosynthetic yield when transitioning to low light conditions. This phenomenon is underexplored in cassava (Manihot esculenta ), a starchy storage root crop known for its high biological efficiency and climate resilience. To address this knowledge gap, we assessed the photoprotective abilities and growth responses of six cassava varieties under natural environmental light conditions (control) and intermittent high light (IHL) conditions by adding 900μmolm-2 s-1 using full-spectrum LED lights, on top of the natural ambient daylight. Our results demonstrated a significant impact of light treatment on aboveground biomass, total crop biomass, chlorophyll a and b content, photosynthetic rate, and NPQ values during transitions from low to high light and vice versa. Notably, cassava variety 'Sree Suvarna' exhibited the highest yield under both control and IHL conditions. These findings suggest that screening cassava varieties for their ability to postpone photoinhibition and recover quickly from photoinhibition may enhance photosynthetic performance. Such strategies have important implications for improving the efficiency and resilience of cassava crops, ultimately contributing to sustainable agricultural productivity.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous γ-aminobutyric acid (GABA) enhances rye (Secale cereale) seedling resistance to combined freeze-thaw and cadmium stress. 外源γ-氨基丁酸(GABA)可增强黑麦(Secale cereale)幼苗对冻融和镉联合胁迫的抗性。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24205
Huixin Wang, Guozhang Bao, Lingzhi Tian, Simeng Chen, Yanan Xu, Guomei Li, Hongwei Zhao

Freeze-thaw is a common stress at high altitudes in northern China. There is a risk of cadmium (Cd) contamination in the region. γ-aminobutyric acid (GABA) is a natural product that regulates plant growth. Rye (Secale cereale ) was used as research material to investigate the physiological effects of exogenous GABA on rye seedlings under the single and combined stresses of freeze-thaw and cadmium. The results showed that the combined stress severely inhibited shoot length, root length, fresh weight, and dry weight, increased malondialdehyde and hydrogen peroxide contents, and significantly decreased superoxide dismutase (SOD) activity. Foliar application of 5mM GABA alleviated the negative effects of stress on seedling growth, increased soluble protein content, and reduced malondialdehyde and hydrogen peroxide contents. Exogenous GABA application also enhanced the activities of SOD and peroxidase (POD). Additionally, the presence of exogenous GABA activated the GABA metabolic process and encouraged the accumulation of phytochelatins, glutathione, and non-protein thiol. These results indicate that exogenous GABA can effectively improve the resistance of rye seedlings to freeze-thaw and Cd by regulating the antioxidant enzyme system and enhancing its own detoxification mechanism, and they provide a basis for future applications of exogenous GABA, which is beneficial for ecological protection.

冻融是中国北方高海拔地区常见的一种压力。该地区存在镉(Cd)污染的风险。γ-氨基丁酸(GABA)是一种调节植物生长的天然产物。以黑麦(Secale cereale)为研究材料,探讨了外源 GABA 在冻融和镉单一胁迫及联合胁迫下对黑麦幼苗的生理影响。结果表明,联合胁迫严重抑制了黑麦幼苗的芽长、根长、鲜重和干重,增加了丙二醛和过氧化氢的含量,并显著降低了超氧化物歧化酶(SOD)的活性。叶面喷施 5mM GABA 可减轻胁迫对幼苗生长的负面影响,增加可溶性蛋白质含量,降低丙二醛和过氧化氢含量。施用外源 GABA 还能提高 SOD 和过氧化物酶(POD)的活性。此外,外源 GABA 激活了 GABA 代谢过程,促进了植物螯合素、谷胱甘肽和非蛋白质硫醇的积累。这些结果表明,外源 GABA 可通过调节抗氧化酶系统和增强自身解毒机制,有效提高黑麦幼苗对冻融和镉的抗性,为今后应用外源 GABA 提供了依据,有利于生态保护。
{"title":"Exogenous γ-aminobutyric acid (GABA) enhances rye (<i>Secale cereale</i>) seedling resistance to combined freeze-thaw and cadmium stress.","authors":"Huixin Wang, Guozhang Bao, Lingzhi Tian, Simeng Chen, Yanan Xu, Guomei Li, Hongwei Zhao","doi":"10.1071/FP24205","DOIUrl":"https://doi.org/10.1071/FP24205","url":null,"abstract":"<p><p>Freeze-thaw is a common stress at high altitudes in northern China. There is a risk of cadmium (Cd) contamination in the region. γ-aminobutyric acid (GABA) is a natural product that regulates plant growth. Rye (Secale cereale ) was used as research material to investigate the physiological effects of exogenous GABA on rye seedlings under the single and combined stresses of freeze-thaw and cadmium. The results showed that the combined stress severely inhibited shoot length, root length, fresh weight, and dry weight, increased malondialdehyde and hydrogen peroxide contents, and significantly decreased superoxide dismutase (SOD) activity. Foliar application of 5mM GABA alleviated the negative effects of stress on seedling growth, increased soluble protein content, and reduced malondialdehyde and hydrogen peroxide contents. Exogenous GABA application also enhanced the activities of SOD and peroxidase (POD). Additionally, the presence of exogenous GABA activated the GABA metabolic process and encouraged the accumulation of phytochelatins, glutathione, and non-protein thiol. These results indicate that exogenous GABA can effectively improve the resistance of rye seedlings to freeze-thaw and Cd by regulating the antioxidant enzyme system and enhancing its own detoxification mechanism, and they provide a basis for future applications of exogenous GABA, which is beneficial for ecological protection.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Functional Plant Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1