The vertebrate stress response enables an organism to shift energy towards activities that promote immediate survival when facing a threat to homeostasis, but it can also have detrimental effects on organismal health. Acute and chronic stressors generally have contrasting effects on immune responses, but the timeline of this transition between acute and chronic stressors and their effects on immune responses remains unclear. In this study, we investigate changes in immune markers in captive house sparrows (Passer domesticus) after exposure to normal laboratory conditions, an acute stressor, and chronic stressors for 42 days. Specifically, we examined changes in baseline and stress-induced corticosterone concentrations, body condition, heterophil/lymphocyte (H:L) ratio, hemolysis-hemagglutination, and wound healing. We found that individuals exposed to a single acute stressor had significantly higher stress-induced corticosterone concentrations 24 h after stressor exposure, however this effect was reversed after 48 h. Chronic stressor exposure resulted in generally stronger adaptive immune responses, demonstrated by higher baseline and stress-induced lysis, higher baseline hemagglutination, and slower wound healing. Within-trait correlations also increased with chronic stressor exposure, suggesting limitations on phenotypic plasticity. Most of the effects of chronic stressor exposure on immune markers strengthened over the 42 days of the experiment and differences between captivity-only and treatment groups were not apparent until approximately 20 days of chronic stressor exposure. These results highlight the importance of stressor duration in understanding the effects of chronic stressor exposure on immune responses.
CAPA peptides play diverse roles in insects, modulating muscle contraction, regulating fluid balance, and reproduction. In Rhodnius prolixus, a hematophagous insect and a vector for human Chagas disease, three CAPA peptides are encoded by the capability gene, including RhoprCAPA-1, RhoprCAPA-2, and RhoprCAPA-PK-1. RhoprCAPA-2 is an anti-diuretic hormone in R. prolixus. Here, we explore the involvement of RhoprCAPA-2 in reproduction in adult female R. prolixus. Double-label immunohistochemistry reveals co-localization of RhoprCAPA-2-like and the glycoprotein hormone (GPA2/GPB5) subunit GPB5-like immunoreactivity in neurosecretory cells in the mesothoracic ganglionic mass and in their neurohemal sites, suggesting these peptides can be co-released to regulate physiological processes. qPCR analysis reveals changes in transcript expression levels of the RhoprCAPA receptor (CAPAR) in the fat body and reproductive tissues after feeding in adult female R. prolixus. RNA interference-mediated knockdown of CAPAR transcript decreases egg production and reduces hatching rate and survival rate in female R. prolixus. Downregulation of CAPAR decreases vitellogenin RhoprVg1 transcript expression in the fat body and deceases its receptor RhoprVgR transcript level in the ovaries; accompanied by a reduction in vitellogenin content in the fat body and hemolymph. Incubation of fat body and ovaries in vitro with RhoprCAPA-2 increases RhoprVg1 transcript expression in the fat body, vitellogenin content in the fat body culture medium, and increases RhoprVgR transcript in the ovaries. These findings implicate the CAPA signaling pathway in reproduction, with RhoprCAPA-2 acting as a gonadotropin in adult female R. prolixus.
The present study was aimed at gaining insight into the signalling relationship between glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) in the regulation of glucose metabolism. Further, to assess the role of G-protein-coupled receptor 40 (GPR40) and insulin receptor (INSR) in the pancreas of sheep that were supplemented with calcium salts of long-chain fatty acids (CSFAs). An experiment was carried out over a period of 60 days with eighteen sheep, and they were fed with a standard basal diet. The sheep were divided into three groups: CSFA0 (without CSFAs), while CSFA3 and CSFA5 were supplemented with 3 % and 5 % of CSFAs, respectively. Plasma concentrations of GLP-1, insulin, glucagon, and glucose were assessed every two weeks. At the end of the experiment, sheep were slaughtered, and samples of gastrointestinal tract (GIT) epithelial tissues and pancreas were collected to assess the relative expression of mRNA of GPR40, GLP-1R, and INSR. Postprandial GLP-1 and insulin were increased by 3.7–4.1 and 1.45–1.5 times, respectively, in the CSFAs-supplemented groups compared to CSFA0. Post-feeding, glucagon and glucose levels decreased in CSFA3 and CSFA5 compared to CSFA0. The results indicated that the supplementation of LCFAs increased the expression of GLP-1R in the GIT and pancreas, as well as the mRNA of GPR40 and INSR in the pancreas. Chemosensing of LCFAs by GPR40 in the pancreas triggers signalling transduction, and enhanced GLP-1 and GLP-1R resulted in moderately increased insulin secretion and reduced glucagon levels. These combined effects, along with the glucose-lowering effect of GLP-1, effectively lowered glucose levels in normoglycemic sheep.
Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen’s role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers.