Manikandan Kaliyaperumal, R. Sundaresan, Balu Pandian, S. Rajendran
Abstract Due to the enormous of fossil fuels and the ensuing increase in automobiles, an unprecedented scenario has arisen with pollution levels that are out of human control. In this study, a fuzzy logic model is developed to predict how well a spark-ignition engine running on gasoline and ethanol mixes would operate. A test engine was operated on pure gasoline and gasoline–ethanol fuel mixtures in a range of ratios at varying engine speeds. In order to estimate outputs such as brake-specific fuel consumption (BSFC), brake thermal efficiency, nitrogen oxides (NOx), hydrocarbon emissions, and carbon monoxide, a fuzzy logic model, a sort of logic model application, has been developed using experimental data. The developed fuzzy logic model’s output was compared to the results of the trials to see how well it performed. The output parameters were indicated, including braking power, thermal, volumetric, and mechanical efficiency. The input parameters were engine speed and ethanol mixes. Regression coefficients were nearly equal for training and testing data. According to the study, a superior method for accurately forecasting engine performance is the fuzzy logic model. To eliminate proportionality signs from equations, regression analysis is used. It is accurate to develop mathematical relations based on dimensional analysis. Based on the root mean square errors, BSFC is a minimum of 6.12 and brake power is a maximum of 8.16; lower than 2% of errors occur on average.
{"title":"Development of a fuzzy logic model for the prediction of spark-ignition engine performance and emission for gasoline–ethanol blends","authors":"Manikandan Kaliyaperumal, R. Sundaresan, Balu Pandian, S. Rajendran","doi":"10.1515/gps-2023-0009","DOIUrl":"https://doi.org/10.1515/gps-2023-0009","url":null,"abstract":"Abstract Due to the enormous of fossil fuels and the ensuing increase in automobiles, an unprecedented scenario has arisen with pollution levels that are out of human control. In this study, a fuzzy logic model is developed to predict how well a spark-ignition engine running on gasoline and ethanol mixes would operate. A test engine was operated on pure gasoline and gasoline–ethanol fuel mixtures in a range of ratios at varying engine speeds. In order to estimate outputs such as brake-specific fuel consumption (BSFC), brake thermal efficiency, nitrogen oxides (NOx), hydrocarbon emissions, and carbon monoxide, a fuzzy logic model, a sort of logic model application, has been developed using experimental data. The developed fuzzy logic model’s output was compared to the results of the trials to see how well it performed. The output parameters were indicated, including braking power, thermal, volumetric, and mechanical efficiency. The input parameters were engine speed and ethanol mixes. Regression coefficients were nearly equal for training and testing data. According to the study, a superior method for accurately forecasting engine performance is the fuzzy logic model. To eliminate proportionality signs from equations, regression analysis is used. It is accurate to develop mathematical relations based on dimensional analysis. Based on the root mean square errors, BSFC is a minimum of 6.12 and brake power is a maximum of 8.16; lower than 2% of errors occur on average.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47969503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaizhu Liu, Dong-lan Chen, Kangning Zhao, Binbin Hu, Jianjia Zhang, Yang Ning, Tong Shan, J. Zhang, Wan Zhang, Fan Zhang
Abstract This study presents a novel approach for the reuse of uncontaminated fracturing flowback fluids to improve the inhibitory and lubricating properties of water-based drilling fluids (WBFs), curb environmental pollution arising from flowback fluids, and substantially mitigate the expenses associated with WBFs. The experimental design was optimized using orthogonal experiments and range analyses, whereby the modified rubber powder was set at 2.0%, xanthan gum at 0.15%, and a plant phenol to modified complexing agent ratio of 1:0.01. The assessment of the performance evaluation tests indicated that the use of uncontaminated fracturing flowback fluids as the base water can remarkably enhance the inhibitory and lubricating properties of WBFs. Precisely, this approach reduces the linear expansion rate from 62.31% to 21.25%, the reduction rate of extreme pressure lubrication coefficient by 87.98%, and the reduction rate of mud cake sticking factor by 59.86%. This investigation has established the potential environmental and economic benefits of reusing clean fracturing flowback fluids in WBFs.
{"title":"The mechanisms of inhibition and lubrication of clean fracturing flowback fluids in water-based drilling fluids","authors":"Huaizhu Liu, Dong-lan Chen, Kangning Zhao, Binbin Hu, Jianjia Zhang, Yang Ning, Tong Shan, J. Zhang, Wan Zhang, Fan Zhang","doi":"10.1515/gps-2023-0062","DOIUrl":"https://doi.org/10.1515/gps-2023-0062","url":null,"abstract":"Abstract This study presents a novel approach for the reuse of uncontaminated fracturing flowback fluids to improve the inhibitory and lubricating properties of water-based drilling fluids (WBFs), curb environmental pollution arising from flowback fluids, and substantially mitigate the expenses associated with WBFs. The experimental design was optimized using orthogonal experiments and range analyses, whereby the modified rubber powder was set at 2.0%, xanthan gum at 0.15%, and a plant phenol to modified complexing agent ratio of 1:0.01. The assessment of the performance evaluation tests indicated that the use of uncontaminated fracturing flowback fluids as the base water can remarkably enhance the inhibitory and lubricating properties of WBFs. Precisely, this approach reduces the linear expansion rate from 62.31% to 21.25%, the reduction rate of extreme pressure lubrication coefficient by 87.98%, and the reduction rate of mud cake sticking factor by 59.86%. This investigation has established the potential environmental and economic benefits of reusing clean fracturing flowback fluids in WBFs.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44387072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Among biogenic methods employed for synthesizing various nanoparticles (NPs), gum tragacanth (TGC)-mediated NP production is important. The gum TGC not only qualifies the principles of green chemistry but also embraces unique qualities. In this perspective, the current review concentrates on the composition, uses, and exploitation of gum towards synthesizing metal NP of silver (Ag), gold (Au), palladium (Pd), platinum (Pt), and their characterization (UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy). In addition, applications of synthesized NP as a bactericide, catalyst, antioxidant, and peroxidase mimic are emphasized. Ag NP (13 nm) showed antibacterial action against Gram-negative and Gram-positive bacteria at 2–12 μg‧mL−1. The exploitation of Ag NP as a bactericide makes it a candidate of choice for medicinal and pharmacological applications. The catalytic activity of Pd NP (14 nm) demonstrated borohydride reduction of methylene blue. The gum reduced/capped metal and metal oxide NP serve as redox and photocatalysts for the remediation of toxic pigments and dyes in industrial effluents. At 15 μg‧mL−1, Pd NP exhibited 1,1-diphenyl-2-picrylhydrazyle radical scavenging activity (95.8%) and served as an artificial enzyme mimic for colorimetric sensing of hydrogen peroxide. The industrial applications of other TGC-based nanocomposites, such as heavy metal sorption, wound dressing, drug carrier, tissue engineering, etc., are mentioned.
{"title":"Gum tragacanth-mediated synthesis of metal nanoparticles, characterization, and their applications as a bactericide, catalyst, antioxidant, and peroxidase mimic","authors":"Aruna Jyothi Kora","doi":"10.1515/gps-2022-8138","DOIUrl":"https://doi.org/10.1515/gps-2022-8138","url":null,"abstract":"Abstract Among biogenic methods employed for synthesizing various nanoparticles (NPs), gum tragacanth (TGC)-mediated NP production is important. The gum TGC not only qualifies the principles of green chemistry but also embraces unique qualities. In this perspective, the current review concentrates on the composition, uses, and exploitation of gum towards synthesizing metal NP of silver (Ag), gold (Au), palladium (Pd), platinum (Pt), and their characterization (UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy). In addition, applications of synthesized NP as a bactericide, catalyst, antioxidant, and peroxidase mimic are emphasized. Ag NP (13 nm) showed antibacterial action against Gram-negative and Gram-positive bacteria at 2–12 μg‧mL−1. The exploitation of Ag NP as a bactericide makes it a candidate of choice for medicinal and pharmacological applications. The catalytic activity of Pd NP (14 nm) demonstrated borohydride reduction of methylene blue. The gum reduced/capped metal and metal oxide NP serve as redox and photocatalysts for the remediation of toxic pigments and dyes in industrial effluents. At 15 μg‧mL−1, Pd NP exhibited 1,1-diphenyl-2-picrylhydrazyle radical scavenging activity (95.8%) and served as an artificial enzyme mimic for colorimetric sensing of hydrogen peroxide. The industrial applications of other TGC-based nanocomposites, such as heavy metal sorption, wound dressing, drug carrier, tissue engineering, etc., are mentioned.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44404451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Tonelli, Christopher Santos Silva, Vinicius Marx Silva Delgado, F. Tonelli
Abstract This review addresses green algae-based gold (Au), iron (Fe), and silver (Ag) nanoparticles (NPs) as eco-friendly nanomaterials to deal with biological, organic, and inorganic environmental contaminants. Among nanotechnological tools that can fully degrade, adsorb, and/or convert pollutants into less harmful structures, AgNPs, AuNPs, and FeNPs deserve highlight for their efficiency and low cost. However, green protocols are preferable to produce them in an eco-friendly manner. Although phycosynthesis is still in its infancy, algae present various advantages as green raw materials to NPs’ synthesis; fast growth rate, low-energy input requirement, low costs, easy and eco-friendly cultivation, and high tolerance to metals are examples. To allow their large-scale application, however, challenges regarding obtaining sufficient biomaterial with good reproducibility, designing protocols to achieve desirable features on NPs, and recovering the biocompatible nanomaterial after use still need attention. Perspectives for the field involve surpassing these limitations, broadening knowledge on synthesis mechanisms, protocols, and new species useful to offer, in the future, commercial eco-friendly, and low-cost phycosynthesized AuNPs, AgNPs, and FeNPs to nanoremediation. The potential of these NPs to deal with environmental contaminants, their advantageous characteristics and biocompatibility, the main limitations associated with their large-scale application, and future prospects for the field will receive attention.
{"title":"Algae-based green AgNPs, AuNPs, and FeNPs as potential nanoremediators","authors":"F. Tonelli, Christopher Santos Silva, Vinicius Marx Silva Delgado, F. Tonelli","doi":"10.1515/gps-2023-0008","DOIUrl":"https://doi.org/10.1515/gps-2023-0008","url":null,"abstract":"Abstract This review addresses green algae-based gold (Au), iron (Fe), and silver (Ag) nanoparticles (NPs) as eco-friendly nanomaterials to deal with biological, organic, and inorganic environmental contaminants. Among nanotechnological tools that can fully degrade, adsorb, and/or convert pollutants into less harmful structures, AgNPs, AuNPs, and FeNPs deserve highlight for their efficiency and low cost. However, green protocols are preferable to produce them in an eco-friendly manner. Although phycosynthesis is still in its infancy, algae present various advantages as green raw materials to NPs’ synthesis; fast growth rate, low-energy input requirement, low costs, easy and eco-friendly cultivation, and high tolerance to metals are examples. To allow their large-scale application, however, challenges regarding obtaining sufficient biomaterial with good reproducibility, designing protocols to achieve desirable features on NPs, and recovering the biocompatible nanomaterial after use still need attention. Perspectives for the field involve surpassing these limitations, broadening knowledge on synthesis mechanisms, protocols, and new species useful to offer, in the future, commercial eco-friendly, and low-cost phycosynthesized AuNPs, AgNPs, and FeNPs to nanoremediation. The potential of these NPs to deal with environmental contaminants, their advantageous characteristics and biocompatibility, the main limitations associated with their large-scale application, and future prospects for the field will receive attention.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43263717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinhui Ren, Yu-Hong Ma, Fuhua Wei, Lan Qin, Hongliang Chen, Zhao Liang, Siyuan Wang
Abstract Zr-metal-organic frameworks (Zr-MOFs) were prepared by a solvothermal method and characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetry. Zr-MOFs were used to remove doxycycline hydrochloride (DOC) from wastewater. According to the experimental results, the maximum adsorption capacity of DOC by Zr-MOFs within 5 h was 148.7 mg·g−1. From the pseudo-second-order kinetics model, all R 2 values were greater than 0.99, which proved that the adsorption of DOC by Zr-MOFs was consistent with practice. According to the Freundlich isotherm model, the adsorption of DOC by Zr-MOFs proceeded via multilayer adsorption. The aforementioned results show that Zr-MOFs have good application prospects for removing DOC from wastewater.
{"title":"Preparation of Zr-MOFs for the adsorption of doxycycline hydrochloride from wastewater","authors":"Qinhui Ren, Yu-Hong Ma, Fuhua Wei, Lan Qin, Hongliang Chen, Zhao Liang, Siyuan Wang","doi":"10.1515/gps-2022-8127","DOIUrl":"https://doi.org/10.1515/gps-2022-8127","url":null,"abstract":"Abstract Zr-metal-organic frameworks (Zr-MOFs) were prepared by a solvothermal method and characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetry. Zr-MOFs were used to remove doxycycline hydrochloride (DOC) from wastewater. According to the experimental results, the maximum adsorption capacity of DOC by Zr-MOFs within 5 h was 148.7 mg·g−1. From the pseudo-second-order kinetics model, all R 2 values were greater than 0.99, which proved that the adsorption of DOC by Zr-MOFs was consistent with practice. According to the Freundlich isotherm model, the adsorption of DOC by Zr-MOFs proceeded via multilayer adsorption. The aforementioned results show that Zr-MOFs have good application prospects for removing DOC from wastewater.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47124491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuhong Zhang, Yun Zeng, Yong-nian Feng, C. Zhang, Ling Zhang
Abstract The modification mechanism of modified asphalt with natural asphalt was analyzed through Fourier transform infrared spectrum. The results show that the modification mechanism of both the natural asphalt and petroleum asphalt is mainly a physical blending process. The polar functional groups contained in natural asphalt make modified asphalt with natural asphalt have characteristic good scaling resistance and water stability. Subsequently, the carbon emissions of each link of asphalt production stage were quantified, and the influence of mining, transportation, and processing on the total carbon emissions were all analyzed by establishing the carbon emission calculation model of asphalt production. The calculation results of GREET model showed that the equivalent carbon dioxide emission (CO2e) of rock asphalt mining was only 9.4% of that of crude oil production. At the same time, the CO2e of modified asphalt with natural asphalt processing was 44.7% lower than that of petroleum asphalt, and the carbon emission of rock asphalt transportation accounted for only 1/3 of that of petroleum asphalt transportation. Furthermore, the increased energy consumption caused by petroleum asphalt transportation and modified asphalt with natural asphalt processing will partially offset the contribution of natural asphalt to reducing carbon emissions. Meanwhile, the CO2e of modified asphalt with natural asphalt was lower than that of petroleum asphalt when the content of natural asphalt exceeded 18%. Thereafter, the analytic hierarchy process calculation results showed that petroleum asphalt processing and transportation had the largest weight of carbon emissions in the production stage of modified asphalt with natural asphalt. Ultimately, it is significant to further reduce carbon emissions by increasing the content of natural asphalt, which will then inevitably lead to the reduction in the production and transportation energy consumption of petroleum asphalt.
{"title":"Carbon emissions analysis of producing modified asphalt with natural asphalt","authors":"Xiuhong Zhang, Yun Zeng, Yong-nian Feng, C. Zhang, Ling Zhang","doi":"10.1515/gps-2022-8146","DOIUrl":"https://doi.org/10.1515/gps-2022-8146","url":null,"abstract":"Abstract The modification mechanism of modified asphalt with natural asphalt was analyzed through Fourier transform infrared spectrum. The results show that the modification mechanism of both the natural asphalt and petroleum asphalt is mainly a physical blending process. The polar functional groups contained in natural asphalt make modified asphalt with natural asphalt have characteristic good scaling resistance and water stability. Subsequently, the carbon emissions of each link of asphalt production stage were quantified, and the influence of mining, transportation, and processing on the total carbon emissions were all analyzed by establishing the carbon emission calculation model of asphalt production. The calculation results of GREET model showed that the equivalent carbon dioxide emission (CO2e) of rock asphalt mining was only 9.4% of that of crude oil production. At the same time, the CO2e of modified asphalt with natural asphalt processing was 44.7% lower than that of petroleum asphalt, and the carbon emission of rock asphalt transportation accounted for only 1/3 of that of petroleum asphalt transportation. Furthermore, the increased energy consumption caused by petroleum asphalt transportation and modified asphalt with natural asphalt processing will partially offset the contribution of natural asphalt to reducing carbon emissions. Meanwhile, the CO2e of modified asphalt with natural asphalt was lower than that of petroleum asphalt when the content of natural asphalt exceeded 18%. Thereafter, the analytic hierarchy process calculation results showed that petroleum asphalt processing and transportation had the largest weight of carbon emissions in the production stage of modified asphalt with natural asphalt. Ultimately, it is significant to further reduce carbon emissions by increasing the content of natural asphalt, which will then inevitably lead to the reduction in the production and transportation energy consumption of petroleum asphalt.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43841629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract As a 2D carbon material, graphene exhibits a unique structure and outstanding properties and has been widely applied in various fields. Because the properties of graphene are closely related to their structural parameters, graphene with different size distributions is suitable for different applications. However, current methods of fine-scale separation of graphene and its derivatives have certain limitations. In this study, graphene oxide (GO) size separation using multilayer dialysis was proposed. Multiple size separation in one step was achieved by customizing the dialysis size of each layer according to the actual requirements. In this way, GOs of different sizes were separated and large-scale synthesis can be achieved using this method. Meanwhile, the anti-friction and lubrication properties of aqueous dispersion solutions of GOs of different sizes were investigated. The results indicated significant improvements of the anti-friction and lubrication properties of GO samples prepared by the proposed method, as large-scale GOs can act as lubricants by relieving, if not preventing, friction between the two friction surfaces.
{"title":"Separation of graphene oxides of different sizes by multi-layer dialysis and anti-friction and lubrication performance","authors":"Chunna Cui, Yuemei Sun, Jitao Huang","doi":"10.1515/gps-2023-0114","DOIUrl":"https://doi.org/10.1515/gps-2023-0114","url":null,"abstract":"Abstract As a 2D carbon material, graphene exhibits a unique structure and outstanding properties and has been widely applied in various fields. Because the properties of graphene are closely related to their structural parameters, graphene with different size distributions is suitable for different applications. However, current methods of fine-scale separation of graphene and its derivatives have certain limitations. In this study, graphene oxide (GO) size separation using multilayer dialysis was proposed. Multiple size separation in one step was achieved by customizing the dialysis size of each layer according to the actual requirements. In this way, GOs of different sizes were separated and large-scale synthesis can be achieved using this method. Meanwhile, the anti-friction and lubrication properties of aqueous dispersion solutions of GOs of different sizes were investigated. The results indicated significant improvements of the anti-friction and lubrication properties of GO samples prepared by the proposed method, as large-scale GOs can act as lubricants by relieving, if not preventing, friction between the two friction surfaces.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":"364 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135445367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Natrayan, S. Kaliappan, A. Saravanan, A. Vickram, P. Pravin, M. Abbas, C. Ahamed Saleel, M. Alwetaishi, Mohamed Sadiq Mohamed Saleem
Abstract This work aims to investigate the environmentally sustainable technique to synthesize the copper nanoparticles using bougainvillea flower ethanolic extract at ambient temperature. Copper nanoparticles have considerable potential for reducing the environment’s harmful pigments and nitrogen contaminants. The oxidized copper nanoscale catalysts are enclosed inside nanomaterial, which work as a benign and sustainable resource for capping agents. Ultraviolet spectroscopic, transmission electron microscopy (TEM), and X-ray crystallography (XRD) techniques were used to evaluate the produced oxidized copper nanocrystals. The particles produced have been very robust, are cylindrical in form, and have an outer diameter of 12 nm. Furthermore, under normal conditions, copper oxide (CuO) nanomaterials demonstrated strong photocatalytic efficiency in liquid media for the oxidation of Congo red, bromothymol blue, and 4-nitrophenol in an acidic solution acetic anhydride. Moreover, the CuO nanocrystalline enzyme could be readily vortexed or used for five cycles with an exchange rate of even over 90%. The evaporation process caused around 18% of the loss of weight between 25°C and 190°C, while soil organic breakdown caused almost 31% of the loss of weight around 700°C. As a result, the little reduction in enzymatic effectiveness of the recoverable multilayer CuO substrate might be attributed to catalytic degradation throughout spinning and processing.
{"title":"Recyclability and catalytic characteristics of copper oxide nanoparticles derived from bougainvillea plant flower extract for biomedical application","authors":"L. Natrayan, S. Kaliappan, A. Saravanan, A. Vickram, P. Pravin, M. Abbas, C. Ahamed Saleel, M. Alwetaishi, Mohamed Sadiq Mohamed Saleem","doi":"10.1515/gps-2023-0030","DOIUrl":"https://doi.org/10.1515/gps-2023-0030","url":null,"abstract":"Abstract This work aims to investigate the environmentally sustainable technique to synthesize the copper nanoparticles using bougainvillea flower ethanolic extract at ambient temperature. Copper nanoparticles have considerable potential for reducing the environment’s harmful pigments and nitrogen contaminants. The oxidized copper nanoscale catalysts are enclosed inside nanomaterial, which work as a benign and sustainable resource for capping agents. Ultraviolet spectroscopic, transmission electron microscopy (TEM), and X-ray crystallography (XRD) techniques were used to evaluate the produced oxidized copper nanocrystals. The particles produced have been very robust, are cylindrical in form, and have an outer diameter of 12 nm. Furthermore, under normal conditions, copper oxide (CuO) nanomaterials demonstrated strong photocatalytic efficiency in liquid media for the oxidation of Congo red, bromothymol blue, and 4-nitrophenol in an acidic solution acetic anhydride. Moreover, the CuO nanocrystalline enzyme could be readily vortexed or used for five cycles with an exchange rate of even over 90%. The evaporation process caused around 18% of the loss of weight between 25°C and 190°C, while soil organic breakdown caused almost 31% of the loss of weight around 700°C. As a result, the little reduction in enzymatic effectiveness of the recoverable multilayer CuO substrate might be attributed to catalytic degradation throughout spinning and processing.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42868689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Control strategy development for fed-batch bioreactor (FBBR) plays an important role in the improvement of polyhydroxyalkanoate (PHA) production. To develop a feeding strategy for PHA production in a large-scale FBBR, an optimization-based control scheme that considers nutrient dispersion is proposed in this work. A coupled partial differential equations and ordinary differential equation model is proposed to describe the axial-dispersed nutrient and well-dispersed microbial dynamics with process constraints. An analytical model predictive control (AMPC) method that applies integrated variables of nutrients is employed to develop the real-time control system. The control objective is to regulate the PHA concentration at the updated set points by adjusting the nutrient feed rates; a process disturbance is introduced to evaluate the control robustness. Simulation experiments of a fed-batch operation are conducted to investigate the performance of the developed controller; the controlled output is designed to track the updated set points corresponding to the biomass concentration. Results of closed-loop and regulatory systems showed that the proposed control strategy could provide more productivity (33–38%) compared to the applied PI controller. The performance test demonstrates that the developed control system could apply the biomass concentration for updating set points, provide the optimal control actions that promote PHB accumulation and handle the disturbance effectively.
{"title":"Optimization-based control strategy for a large-scale polyhydroxyalkanoates production in a fed-batch bioreactor using a coupled PDE–ODE system","authors":"A. Tawai, M. Sriariyanun, C. Panjapornpon","doi":"10.1515/gps-2022-8084","DOIUrl":"https://doi.org/10.1515/gps-2022-8084","url":null,"abstract":"Abstract Control strategy development for fed-batch bioreactor (FBBR) plays an important role in the improvement of polyhydroxyalkanoate (PHA) production. To develop a feeding strategy for PHA production in a large-scale FBBR, an optimization-based control scheme that considers nutrient dispersion is proposed in this work. A coupled partial differential equations and ordinary differential equation model is proposed to describe the axial-dispersed nutrient and well-dispersed microbial dynamics with process constraints. An analytical model predictive control (AMPC) method that applies integrated variables of nutrients is employed to develop the real-time control system. The control objective is to regulate the PHA concentration at the updated set points by adjusting the nutrient feed rates; a process disturbance is introduced to evaluate the control robustness. Simulation experiments of a fed-batch operation are conducted to investigate the performance of the developed controller; the controlled output is designed to track the updated set points corresponding to the biomass concentration. Results of closed-loop and regulatory systems showed that the proposed control strategy could provide more productivity (33–38%) compared to the applied PI controller. The performance test demonstrates that the developed control system could apply the biomass concentration for updating set points, provide the optimal control actions that promote PHB accumulation and handle the disturbance effectively.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44817649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thana Thanayutsiri, Prasopchai Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, W. Laiwattanapaisal, T. Rojanarata
Abstract Since microwave (MW)-assisted synthesis of gold nanoparticles (AuNPs) using Caesalpinia sappan (CS) extract as both a reducing and stabilizing agent is currently unavailable, a MW-based synthesis protocol was investigated and presented for the first time in this work. In addition, to rapidly prepare the reactant for this purpose, the MW-assisted extraction of CS heartwood was studied. From the optimization experiments, it was found that the extraction using the MW irradiation at 300 W for 3 min produced the extract with high and reproducible brazilin content which could be readily used for the synthesis of AuNPs. Under the optimal synthesis conditions, roughly spherical CS-AuNPs with an average diameter size of 49.6 nm and acceptable 28-day stability were obtained within only 1 min. The resulting CS-AuNPs were capable of selective binding to Fe2+, Fe3+, and Al3+, leading to particle aggregation as well as noticeable change of color and shift of UV-Vis absorption maxima. From these results, CS-AuNPs could be fabricated via this fast, green, and efficient route. Furthermore, their potential application for colorimetric sensing of certain metal ions was preliminarily explored and proposed in this work.
{"title":"Rapid and efficient microwave-assisted extraction of Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold nanoparticles","authors":"Thana Thanayutsiri, Prasopchai Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, W. Laiwattanapaisal, T. Rojanarata","doi":"10.1515/gps-2022-8109","DOIUrl":"https://doi.org/10.1515/gps-2022-8109","url":null,"abstract":"Abstract Since microwave (MW)-assisted synthesis of gold nanoparticles (AuNPs) using Caesalpinia sappan (CS) extract as both a reducing and stabilizing agent is currently unavailable, a MW-based synthesis protocol was investigated and presented for the first time in this work. In addition, to rapidly prepare the reactant for this purpose, the MW-assisted extraction of CS heartwood was studied. From the optimization experiments, it was found that the extraction using the MW irradiation at 300 W for 3 min produced the extract with high and reproducible brazilin content which could be readily used for the synthesis of AuNPs. Under the optimal synthesis conditions, roughly spherical CS-AuNPs with an average diameter size of 49.6 nm and acceptable 28-day stability were obtained within only 1 min. The resulting CS-AuNPs were capable of selective binding to Fe2+, Fe3+, and Al3+, leading to particle aggregation as well as noticeable change of color and shift of UV-Vis absorption maxima. From these results, CS-AuNPs could be fabricated via this fast, green, and efficient route. Furthermore, their potential application for colorimetric sensing of certain metal ions was preliminarily explored and proposed in this work.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45410862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}