B. Khan, M. Nadeem, M. Iqbal, Neelam Yaqoob, M. Javaid, R. Maqbool, Nehal Z. Elnaggar, H. Oraby
Abstract Nanoherbicides are articulated by empowering the potential of nanotechnology for the efficacious delivery of chemical or biological herbicides with the aid of nanomaterial‐based herbicide combinations. Therefore, the goal of this work was to investigate the chitosan nanoparticles loaded with mesosulfuron methyl and mesosulfuron methyl + florasulam + (2-methyl-4-chlorophenoxyacetic acid) MCPA isooctyl herbicides as a possible environmentally benign substitute to manage weeds in wheat. Due to intriguing characteristics including biocompatibility, low allergenicity, biodegradability, and nontoxicity, chitosan biopolymers as sustainable chitin derivatives have received intense scrutiny in the biomedical business. The manufactured nanoparticles were characterized by using ultraviolet absorbance, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The average particle size as revealed by SEM was 40–70 nm in a cluster form with the porous structure. The maximum absorption peaks of both nanoparticles of mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA isooctyl were 330 and 360 nm. The FT-IR analysis showed an intensive peak at 2θ value of 30.55° for mesosulfuron methyl and 32.79° for mesosulfuron methyl + florasula + MCPA isooctyl, which correspond to the 78 and 198 planes of the anatase phase, respectively. The nanoparticles were sprayed at the third to fourth leaf stages of the targeted weeds. Seven different doses were applied. A total of 100% mortality and visual injury were caused by the chitosan-based nanoparticles of both herbicides at the recommended dose of standard herbicide. The 5-fold lower dose showed the minimum chlorophyll content (5.75%), plant height (2.35 cm), fresh biomass (1.08 g), and dry biomass (0.33 g) of a weed mixture. For the same traits, the herbicide nanoparticles at 10-fold lower dose of commercial herbicides exhibited a similar effect as the recommended dose. Nanoherbicides could recuperate the conventional herbicide effectiveness by enhancing the stability and reducing the toxicity.
{"title":"Chitosan nanoparticles loaded with mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA isooctyl to manage weeds of wheat (Triticum aestivum L.)","authors":"B. Khan, M. Nadeem, M. Iqbal, Neelam Yaqoob, M. Javaid, R. Maqbool, Nehal Z. Elnaggar, H. Oraby","doi":"10.1515/gps-2022-8152","DOIUrl":"https://doi.org/10.1515/gps-2022-8152","url":null,"abstract":"Abstract Nanoherbicides are articulated by empowering the potential of nanotechnology for the efficacious delivery of chemical or biological herbicides with the aid of nanomaterial‐based herbicide combinations. Therefore, the goal of this work was to investigate the chitosan nanoparticles loaded with mesosulfuron methyl and mesosulfuron methyl + florasulam + (2-methyl-4-chlorophenoxyacetic acid) MCPA isooctyl herbicides as a possible environmentally benign substitute to manage weeds in wheat. Due to intriguing characteristics including biocompatibility, low allergenicity, biodegradability, and nontoxicity, chitosan biopolymers as sustainable chitin derivatives have received intense scrutiny in the biomedical business. The manufactured nanoparticles were characterized by using ultraviolet absorbance, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The average particle size as revealed by SEM was 40–70 nm in a cluster form with the porous structure. The maximum absorption peaks of both nanoparticles of mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA isooctyl were 330 and 360 nm. The FT-IR analysis showed an intensive peak at 2θ value of 30.55° for mesosulfuron methyl and 32.79° for mesosulfuron methyl + florasula + MCPA isooctyl, which correspond to the 78 and 198 planes of the anatase phase, respectively. The nanoparticles were sprayed at the third to fourth leaf stages of the targeted weeds. Seven different doses were applied. A total of 100% mortality and visual injury were caused by the chitosan-based nanoparticles of both herbicides at the recommended dose of standard herbicide. The 5-fold lower dose showed the minimum chlorophyll content (5.75%), plant height (2.35 cm), fresh biomass (1.08 g), and dry biomass (0.33 g) of a weed mixture. For the same traits, the herbicide nanoparticles at 10-fold lower dose of commercial herbicides exhibited a similar effect as the recommended dose. Nanoherbicides could recuperate the conventional herbicide effectiveness by enhancing the stability and reducing the toxicity.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46052858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Tanshinone IIA has a potential therapeutic effect on cerebral ischemia/reperfusion injury (CIRI). In this study, tanshinone IIA was encapsulated in poly(lactic-co-glycolic acid)-block-poly (ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) nanoparticles, and its therapeutic efficacy on CIRI was investigated. Morphology and dynamic light scattering analyses were performed to identify and optimize nano-formulations. A drug release test was conducted using the dialysis method. The cytotoxic effect of tanshinone IIA on human neuroblastoma cells (SH-SY5Y) and brain endothelial capillary cells (hCMEC/D3) was measured using the MTT assay. The protective effect of PLGA-PEG-COOH-encapsulated tanshinone IIA against CIRI was evaluated in oxygen and glucose deprivation/reoxygenation-induced SH-SY5Y/IR cells and middle cerebral artery occlusion (MCAO) rats. Results showed that PLGA-PEG-COOH-encapsulated tanshinone IIA promoted viability and inhibited apoptosis of SH-SY5Y/IR cells (P < 0.01). Moreover, PLGA-PEG-COOH-encapsulated tanshinone IIA facilitated the invasion of SH-SY5Y/IR cells and repressed inflammation in MCAO rats (P < 0.01). Noteworthy, PLGA-PEG-COOH-encapsulated tanshinone IIA combined with angiopep-2 peptide presented a better inhibitory effect on CIRI than tanshinone IIA alone (P < 0.01). Angiopep-2 peptide contributes to traversing blood–brain barrier by recognizing lipoprotein-related protein expressed in the brain capillary endothelial cells. In conclusion, PLGA-PEG-COOH-encapsulated tanshinone IIA plus angiopep-2 peptide holds promising therapeutic potential toward CIRI.
{"title":"Nano-encapsulated tanshinone IIA in PLGA-PEG-COOH inhibits apoptosis and inflammation in cerebral ischemia/reperfusion injury","authors":"Xin Zhang, Xutong Zhu, Lifa Huang, Zu-peng Chen, Yu-Cai Wang, Yajun Liu, Ruihan Pan, Ling Lv","doi":"10.1515/gps-2022-8156","DOIUrl":"https://doi.org/10.1515/gps-2022-8156","url":null,"abstract":"Abstract Tanshinone IIA has a potential therapeutic effect on cerebral ischemia/reperfusion injury (CIRI). In this study, tanshinone IIA was encapsulated in poly(lactic-co-glycolic acid)-block-poly (ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) nanoparticles, and its therapeutic efficacy on CIRI was investigated. Morphology and dynamic light scattering analyses were performed to identify and optimize nano-formulations. A drug release test was conducted using the dialysis method. The cytotoxic effect of tanshinone IIA on human neuroblastoma cells (SH-SY5Y) and brain endothelial capillary cells (hCMEC/D3) was measured using the MTT assay. The protective effect of PLGA-PEG-COOH-encapsulated tanshinone IIA against CIRI was evaluated in oxygen and glucose deprivation/reoxygenation-induced SH-SY5Y/IR cells and middle cerebral artery occlusion (MCAO) rats. Results showed that PLGA-PEG-COOH-encapsulated tanshinone IIA promoted viability and inhibited apoptosis of SH-SY5Y/IR cells (P < 0.01). Moreover, PLGA-PEG-COOH-encapsulated tanshinone IIA facilitated the invasion of SH-SY5Y/IR cells and repressed inflammation in MCAO rats (P < 0.01). Noteworthy, PLGA-PEG-COOH-encapsulated tanshinone IIA combined with angiopep-2 peptide presented a better inhibitory effect on CIRI than tanshinone IIA alone (P < 0.01). Angiopep-2 peptide contributes to traversing blood–brain barrier by recognizing lipoprotein-related protein expressed in the brain capillary endothelial cells. In conclusion, PLGA-PEG-COOH-encapsulated tanshinone IIA plus angiopep-2 peptide holds promising therapeutic potential toward CIRI.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47863737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingjing Sun, Haibo Jin, X. Mao, Guangxiang He, Junfang Li, Zihao Yan, Fating Hu, Lei Ma, Xiaoyan Guo, Suohe Yang
Abstract The heterogeneous supported Lewis acid catalyst prepared by immobilization technology has high reaction activity. It is an environment-friendly catalyst. Using Lewis acid immobilized as the catalyst, 2-methyl-6-propionyl naphthalene is synthesized by Friedel–Crafts reaction with 2-methylnaphthalene and propionic anhydride, which has a good development prospect. A variety of AlCl3 catalysts supported by H-zeolite molecular sieves are prepared using the solvent reflux method in the paper. It is found that AlCl3/Hβ has better catalytic performance. The results showed that AlCl3/Hβ catalyst is mainly composed of L acid. The acid content of B acid and the specific surface area increase, and the pore volume and pore size decreases. With the increase in AlCl3 concentration, the acid content of strong acid, medium strong acid, and weak acid increases, but the solubility of AlCl3 in CHCl3 is limited. When the concentration of AlCl3 is too high, too much AlCl3 is deposited on the surface of the molecular sieve, which is useless to its binding with Si–OH. AlCl3/Hβ’s activity is higher when the concentration of AlCl3 is 3 g·L−1, and the solvent is refluxed for 8 h and calcined at 550°C for 3 h. Under these conditions, the conversion of 2-methylnaphthalene is 85.86%, and the yield of β,β-methyl propyl naphthalene is increased to 81.19%.
{"title":"The catalytic characteristics of 2-methylnaphthalene acylation with AlCl3 immobilized on Hβ as Lewis acid catalyst","authors":"Jingjing Sun, Haibo Jin, X. Mao, Guangxiang He, Junfang Li, Zihao Yan, Fating Hu, Lei Ma, Xiaoyan Guo, Suohe Yang","doi":"10.1515/gps-2023-0003","DOIUrl":"https://doi.org/10.1515/gps-2023-0003","url":null,"abstract":"Abstract The heterogeneous supported Lewis acid catalyst prepared by immobilization technology has high reaction activity. It is an environment-friendly catalyst. Using Lewis acid immobilized as the catalyst, 2-methyl-6-propionyl naphthalene is synthesized by Friedel–Crafts reaction with 2-methylnaphthalene and propionic anhydride, which has a good development prospect. A variety of AlCl3 catalysts supported by H-zeolite molecular sieves are prepared using the solvent reflux method in the paper. It is found that AlCl3/Hβ has better catalytic performance. The results showed that AlCl3/Hβ catalyst is mainly composed of L acid. The acid content of B acid and the specific surface area increase, and the pore volume and pore size decreases. With the increase in AlCl3 concentration, the acid content of strong acid, medium strong acid, and weak acid increases, but the solubility of AlCl3 in CHCl3 is limited. When the concentration of AlCl3 is too high, too much AlCl3 is deposited on the surface of the molecular sieve, which is useless to its binding with Si–OH. AlCl3/Hβ’s activity is higher when the concentration of AlCl3 is 3 g·L−1, and the solvent is refluxed for 8 h and calcined at 550°C for 3 h. Under these conditions, the conversion of 2-methylnaphthalene is 85.86%, and the yield of β,β-methyl propyl naphthalene is increased to 81.19%.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43367958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengbo Sun, Zhijun Wang, Ning Yuan, Qiang Lu, Lin Sun, Yuyu Li, Jiawei Zhang, Yuhan Zhang, G. Ge, Yushan Jia
Abstract Selenium (Se) is indispensable for animals and humans. One option to address Se deficiency is to biofortify plants with Se. Biofortification of forage with Se nanoparticles (NPs) is gaining more attention as an efficient and safe source of Se for livestock. The purpose of this study was to investigate the effect of different concentrations of NPs-Se (0, 30, 50, 100, 150, and 250 mg·L−1) on the growth of alfalfa harvested multiple times, and to provide a basis for the production of Se-enriched forages. Applying 50 mg·L−1 concentration of NPs-Se had the best effect on yield over three harvests. Over three harvests, low-dose NPs-Se (30 and 50 mg·L−1) application significantly increased peroxidase and superoxide dismutase activities, chlorophyll content and carotenoid content, and significantly decreased malondialdehyde content. The total Se content and Se accumulation in plants at the same harvest showed an upward trend with increasing Se concentration. At the same concentration, from first harvest to third harvest, Se content and Se accumulation showed an initially increasing and then decreasing trend. The evaluation found that foliar application of NPs-Se at 50 mg·L−1 could have the greatest positive effect on the growth and yield of multiple-harvested alfalfa.
{"title":"Evaluation of nano-selenium biofortification characteristics of alfalfa (Medicago sativa L.)","authors":"Pengbo Sun, Zhijun Wang, Ning Yuan, Qiang Lu, Lin Sun, Yuyu Li, Jiawei Zhang, Yuhan Zhang, G. Ge, Yushan Jia","doi":"10.1515/gps-2022-8121","DOIUrl":"https://doi.org/10.1515/gps-2022-8121","url":null,"abstract":"Abstract Selenium (Se) is indispensable for animals and humans. One option to address Se deficiency is to biofortify plants with Se. Biofortification of forage with Se nanoparticles (NPs) is gaining more attention as an efficient and safe source of Se for livestock. The purpose of this study was to investigate the effect of different concentrations of NPs-Se (0, 30, 50, 100, 150, and 250 mg·L−1) on the growth of alfalfa harvested multiple times, and to provide a basis for the production of Se-enriched forages. Applying 50 mg·L−1 concentration of NPs-Se had the best effect on yield over three harvests. Over three harvests, low-dose NPs-Se (30 and 50 mg·L−1) application significantly increased peroxidase and superoxide dismutase activities, chlorophyll content and carotenoid content, and significantly decreased malondialdehyde content. The total Se content and Se accumulation in plants at the same harvest showed an upward trend with increasing Se concentration. At the same concentration, from first harvest to third harvest, Se content and Se accumulation showed an initially increasing and then decreasing trend. The evaluation found that foliar application of NPs-Se at 50 mg·L−1 could have the greatest positive effect on the growth and yield of multiple-harvested alfalfa.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42607243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kumaravel Kaliaperumal, K. Subramanian, R. Thirunavukkarasu, Ramesh Kumar Varadharajan, Reem Binsuwaidan, N. Alabdallah, N. Alshammari, Mohd Saeed, K. Anbarasu, R. Karunakaran
Abstract The aim of the present study was the synthesis of hydrogel incorporated with chitosan blend with polyvinyl alcohol (PVA) from red cabbage Brassica oleracea and its application in wound healing and antibacterial activity. The chitosan/PVA hydrogel was synthesized by the combination of chitosan and PVA treated with acetic acid. The silver nanoparticles (AgNPs) were synthesized from the B. oleracea extract and its antibacterial efficacy was examined. The synthesized nanoparticles (NPs) were characterized using UV-spectroscopy and X-ray diffraction methods. The synthesized NPs were purified and combined with the hydrogel. This combined hydrogel and AgNP mixture was then subjected to Fourier transform infrared analysis, and the results were observed to conclude the effectiveness of the hydrogel. This hydrogel would differ in the part of dressing the wound, that is it can last on the wound for a longer period, thus reducing the pain and frequency of dressing and in turn naturally healing the wound in less time.
{"title":"Antibacterial wound dressing with hydrogel from chitosan and polyvinyl alcohol from the red cabbage extract loaded with silver nanoparticles","authors":"Kumaravel Kaliaperumal, K. Subramanian, R. Thirunavukkarasu, Ramesh Kumar Varadharajan, Reem Binsuwaidan, N. Alabdallah, N. Alshammari, Mohd Saeed, K. Anbarasu, R. Karunakaran","doi":"10.1515/gps-2023-0035","DOIUrl":"https://doi.org/10.1515/gps-2023-0035","url":null,"abstract":"Abstract The aim of the present study was the synthesis of hydrogel incorporated with chitosan blend with polyvinyl alcohol (PVA) from red cabbage Brassica oleracea and its application in wound healing and antibacterial activity. The chitosan/PVA hydrogel was synthesized by the combination of chitosan and PVA treated with acetic acid. The silver nanoparticles (AgNPs) were synthesized from the B. oleracea extract and its antibacterial efficacy was examined. The synthesized nanoparticles (NPs) were characterized using UV-spectroscopy and X-ray diffraction methods. The synthesized NPs were purified and combined with the hydrogel. This combined hydrogel and AgNP mixture was then subjected to Fourier transform infrared analysis, and the results were observed to conclude the effectiveness of the hydrogel. This hydrogel would differ in the part of dressing the wound, that is it can last on the wound for a longer period, thus reducing the pain and frequency of dressing and in turn naturally healing the wound in less time.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44632757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The selective leaching method presents a new and innovative approach for the enrichment of low-grade phosphate raw materials. The use of acetic acid as a reagent in the leaching process allows for the selective dissolution of carbonates, potassium-, and aluminum-containing compounds, offering a promising solution for the improvement of the recovery rates of valuable phosphorus compounds. This study presents the results of research on the selective leaching of carbonates from low-grade phosphate raw materials and evaluation of its efficiency using a combination of SEM, energy-dispersion and chemical analysis, X-ray diffraction, differential thermal, IR-Fourier spectroscopic, and mineralogical analysis techniques. The results showed an increase in the content of phosphorus(v) oxide from 14% to 22% through the selective leaching process. The enriched phosphate raw materials were also found to be suitable for the production of phosphorus-containing products. This research highlights the potential of the selective leaching method to overcome the challenges faced in the enrichment of low-grade phosphorites and provide a more efficient and sustainable solution for the industry.
{"title":"Enrichment of low-grade phosphorites by the selective leaching method","authors":"Y. Raiymbekov, P. Abdurazova, U. Nazarbek","doi":"10.1515/gps-2022-8150","DOIUrl":"https://doi.org/10.1515/gps-2022-8150","url":null,"abstract":"Abstract The selective leaching method presents a new and innovative approach for the enrichment of low-grade phosphate raw materials. The use of acetic acid as a reagent in the leaching process allows for the selective dissolution of carbonates, potassium-, and aluminum-containing compounds, offering a promising solution for the improvement of the recovery rates of valuable phosphorus compounds. This study presents the results of research on the selective leaching of carbonates from low-grade phosphate raw materials and evaluation of its efficiency using a combination of SEM, energy-dispersion and chemical analysis, X-ray diffraction, differential thermal, IR-Fourier spectroscopic, and mineralogical analysis techniques. The results showed an increase in the content of phosphorus(v) oxide from 14% to 22% through the selective leaching process. The enriched phosphate raw materials were also found to be suitable for the production of phosphorus-containing products. This research highlights the potential of the selective leaching method to overcome the challenges faced in the enrichment of low-grade phosphorites and provide a more efficient and sustainable solution for the industry.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42446797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Green nano-chemistry is an advanced research route covering eco-friendly fabrication approaches for synthesizing bimetallic nanocomposites (NCs) to enhance their therapeutic properties. The current study aims to phytofabrication, characterization, and bio-potential evaluation of novel selenium–iron (Se–Fe) NCs by utilizing garlic extract. The morphological and physicochemical features of Se–Fe NCs were evaluated by UV–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray, Fourier transform infrared, X-ray diffraction, and Zeta potential analysis. The findings showed that garlic cloves extract was a promising capping and reducing agent for the formulation of the NC. To explore the antioxidant potential of a bioinspired Se–Fe NC, 2,2-diphenyl-1-picrylhydrazyl and reducing power assays were performed. Furthermore, antioxidant efficacy was confirmed through antimicrobial activities against clinical pathogens. Phytosynthesized Se–Fe NCs (25, 50, 75, and 100 ppm) showed a dose-dependent response. Higher concentrations of Se–Fe NCs impose a more potent antioxidant and antimicrobial potential. The astonishing findings suggest that phytochemicals in Allium sativum extract are useful reducing agents in the formulation of well-defined Se–Fe NCs, and such NCs could act as competitive inhibitors against pathogens. To the extent of our understanding, Se–Fe NC is the first time synthesized and demonstrates the distinctiveness of green chemistry and will give multifunctional applications in nano-biotechnology.
{"title":"Phytofabrication, characterization, and evaluation of novel bioinspired selenium–iron (Se–Fe) nanocomposites using <i>Allium sativum</i> extract for bio-potential applications","authors":"Tahira Sultana, Khafsa Malik, Naveed Iqbal Raja, None Sohail, Asma Hameed, Amir Ali, Zia-ur-Rehman Mashwani, Muhammad Yousuf Jat Baloch, Abdulwahed Fahad Alrefaei","doi":"10.1515/gps-2023-0049","DOIUrl":"https://doi.org/10.1515/gps-2023-0049","url":null,"abstract":"Abstract Green nano-chemistry is an advanced research route covering eco-friendly fabrication approaches for synthesizing bimetallic nanocomposites (NCs) to enhance their therapeutic properties. The current study aims to phytofabrication, characterization, and bio-potential evaluation of novel selenium–iron (Se–Fe) NCs by utilizing garlic extract. The morphological and physicochemical features of Se–Fe NCs were evaluated by UV–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray, Fourier transform infrared, X-ray diffraction, and Zeta potential analysis. The findings showed that garlic cloves extract was a promising capping and reducing agent for the formulation of the NC. To explore the antioxidant potential of a bioinspired Se–Fe NC, 2,2-diphenyl-1-picrylhydrazyl and reducing power assays were performed. Furthermore, antioxidant efficacy was confirmed through antimicrobial activities against clinical pathogens. Phytosynthesized Se–Fe NCs (25, 50, 75, and 100 ppm) showed a dose-dependent response. Higher concentrations of Se–Fe NCs impose a more potent antioxidant and antimicrobial potential. The astonishing findings suggest that phytochemicals in Allium sativum extract are useful reducing agents in the formulation of well-defined Se–Fe NCs, and such NCs could act as competitive inhibitors against pathogens. To the extent of our understanding, Se–Fe NC is the first time synthesized and demonstrates the distinctiveness of green chemistry and will give multifunctional applications in nano-biotechnology.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135103406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thu T. A. Le, Bao H. Dang, Thanh Q. C. Nguyen, Dam P. Nguyen, Giao H. Dang
Abstract Residual antibiotics and organic dyes in wastewater have gained the current challenge all over the world because of their toxicity to humans and the environment. In this study, the bimetallic porous FeZn-ZIFs materials were successfully prepared under mild conditions at room temperature and atmospheric pressure and characterized by various techniques. The FeZn-ZIFs were used as a heterogeneous catalyst to remove tetracycline antibiotics (TC) and methyl violet 2B dyes (MV) in an aqueous solution by activating peroxymonosulfate (PMS) and peroxydisulfate (PDS), respectively. The catalytic activity of FeZn-ZIFs towards TC and MV under different oxidant dosages, the catalyst dosage, the initial pollutant concentration, contact time, and reaction temperature were optimized. The results indicated that FeZn-ZIFs was an efficient catalyst for removing TC and MV based on advanced oxidant processes, having a removal capacity of 92% at TC concentration of 50 mg·L −1 and 95% MV concentration of 20 mg·L −1 . More importantly, this bimetallic catalyst was identified the superior structural stability when the removal efficiency of TC and MV was maintained at approximately 90% after five cycles. In short, the FeZn-ZIFs and PMS/PDS system exhibited a promising application prospect for antibiotic and dye-containing wastewater treatment.
{"title":"Highly efficient removal of tetracycline and methyl violet 2B from aqueous solution using the bimetallic FeZn-ZIFs catalyst","authors":"Thu T. A. Le, Bao H. Dang, Thanh Q. C. Nguyen, Dam P. Nguyen, Giao H. Dang","doi":"10.1515/gps-2023-0122","DOIUrl":"https://doi.org/10.1515/gps-2023-0122","url":null,"abstract":"Abstract Residual antibiotics and organic dyes in wastewater have gained the current challenge all over the world because of their toxicity to humans and the environment. In this study, the bimetallic porous FeZn-ZIFs materials were successfully prepared under mild conditions at room temperature and atmospheric pressure and characterized by various techniques. The FeZn-ZIFs were used as a heterogeneous catalyst to remove tetracycline antibiotics (TC) and methyl violet 2B dyes (MV) in an aqueous solution by activating peroxymonosulfate (PMS) and peroxydisulfate (PDS), respectively. The catalytic activity of FeZn-ZIFs towards TC and MV under different oxidant dosages, the catalyst dosage, the initial pollutant concentration, contact time, and reaction temperature were optimized. The results indicated that FeZn-ZIFs was an efficient catalyst for removing TC and MV based on advanced oxidant processes, having a removal capacity of 92% at TC concentration of 50 mg·L −1 and 95% MV concentration of 20 mg·L −1 . More importantly, this bimetallic catalyst was identified the superior structural stability when the removal efficiency of TC and MV was maintained at approximately 90% after five cycles. In short, the FeZn-ZIFs and PMS/PDS system exhibited a promising application prospect for antibiotic and dye-containing wastewater treatment.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135508750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Serrano-Díaz, D. Williams, J. Vega-Arreguín, Ravichandran Manisekaran, Joshua A. Twigg, Daniel Morse, R. García-Contreras, M. C. Arenas-Arrocena, L. Acosta-Torres
Abstract Candida albicans is the most predominant fungal species isolated from medical devices, including catheters, heart valves, and dental prostheses. In recent years, it has been demonstrated to be resistant to many antifungals; therefore, silver nanoparticles (AgNPs) have been proposed as an alternative. But only a handful of research is contributed to omic-based studies to study the various impacts of AgNPs on Candida species and other microorganisms. Thus, the study aims to biosynthesize AgNPs using Pelargonium-hortorum leaf and test its antifungal, cytotoxicity, and global gene expression on Candida through transcriptomic profiling. The leaf-assisted AgNPs resulted in spherical shapes with a particle size of 38 nm. The anticandidal effect demonstrated that the Minimum inhibitory concentration was 25 μg·mL−1. Later, the cytotoxicity assay reported a moderate impact on the human gingival fibroblast cells. Finally, the transcriptomic analysis demonstrated the differential gene expression of 3,871 upregulated and 3,902 downregulated genes. Thus, proving the anticandidal effect of AgNPs on Candida through RNA-seq experiments and the regulated genes is highly important to cell wall integrity, adherence, and virulence.
{"title":"Geranium leaf-mediated synthesis of silver nanoparticles and their transcriptomic effects on Candida albicans","authors":"P. Serrano-Díaz, D. Williams, J. Vega-Arreguín, Ravichandran Manisekaran, Joshua A. Twigg, Daniel Morse, R. García-Contreras, M. C. Arenas-Arrocena, L. Acosta-Torres","doi":"10.1515/gps-2022-8105","DOIUrl":"https://doi.org/10.1515/gps-2022-8105","url":null,"abstract":"Abstract Candida albicans is the most predominant fungal species isolated from medical devices, including catheters, heart valves, and dental prostheses. In recent years, it has been demonstrated to be resistant to many antifungals; therefore, silver nanoparticles (AgNPs) have been proposed as an alternative. But only a handful of research is contributed to omic-based studies to study the various impacts of AgNPs on Candida species and other microorganisms. Thus, the study aims to biosynthesize AgNPs using Pelargonium-hortorum leaf and test its antifungal, cytotoxicity, and global gene expression on Candida through transcriptomic profiling. The leaf-assisted AgNPs resulted in spherical shapes with a particle size of 38 nm. The anticandidal effect demonstrated that the Minimum inhibitory concentration was 25 μg·mL−1. Later, the cytotoxicity assay reported a moderate impact on the human gingival fibroblast cells. Finally, the transcriptomic analysis demonstrated the differential gene expression of 3,871 upregulated and 3,902 downregulated genes. Thus, proving the anticandidal effect of AgNPs on Candida through RNA-seq experiments and the regulated genes is highly important to cell wall integrity, adherence, and virulence.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46807287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mani, Aruna Sharmili Sundararaj, K. Al-Ghanim, Shiny Punalur John, K. Elumalai, M. Nicoletti, M. Govindarajan
Abstract Insecticides kill mosquitoes but damage other animals including humans. Eco-friendly metal nanoparticles may be a plant-based pesticide for vector control. Here, the copper nanoparticles (Cu NPs) synthesized from Nepeta catarialeaves have been investigated for their antibacterial and larvicidal properties. Fourier transforms infrared spectroscopy demonstrated that biochemicals reduced and stabilized nanoparticles by shifting peaks from 1,049 to 1,492 cm−1, and ultraviolet–visible spectrometry proved that produced Cu NPs had a peak at 550 nm. Transmission electron microscopic and scanning electron microscope showed that the particles are spherical and 23–29 nm in size. X-ray diffraction analysis shows that Cu NPs are crystalline. At a 100 µg·mL−1 concentration, Cu NPs exhibited a higher percentage of inhibition in the order of Escherichia coli ≫ Enterococcus faecalis ≫ Staphylococcus aureus. The lethal concentration (LC50) of the Cu NPs against the larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus was determined to be 60.63, 56.58, and 54.32 µg·mL−1, respectively. This ground-breaking study describes the biological production of Cu NPs utilizing N. cataria leaf extract for the first time. Based on these findings, the bio-synthesized Cu NPs and the aqueous extract of N. cataria may provide a potential alternative method for managing these vector populations. Graphical abstract
{"title":"Rapid synthesis of copper nanoparticles using Nepeta cataria leaves: An eco-friendly management of disease-causing vectors and bacterial pathogens","authors":"M. Mani, Aruna Sharmili Sundararaj, K. Al-Ghanim, Shiny Punalur John, K. Elumalai, M. Nicoletti, M. Govindarajan","doi":"10.1515/gps-2023-0022","DOIUrl":"https://doi.org/10.1515/gps-2023-0022","url":null,"abstract":"Abstract Insecticides kill mosquitoes but damage other animals including humans. Eco-friendly metal nanoparticles may be a plant-based pesticide for vector control. Here, the copper nanoparticles (Cu NPs) synthesized from Nepeta catarialeaves have been investigated for their antibacterial and larvicidal properties. Fourier transforms infrared spectroscopy demonstrated that biochemicals reduced and stabilized nanoparticles by shifting peaks from 1,049 to 1,492 cm−1, and ultraviolet–visible spectrometry proved that produced Cu NPs had a peak at 550 nm. Transmission electron microscopic and scanning electron microscope showed that the particles are spherical and 23–29 nm in size. X-ray diffraction analysis shows that Cu NPs are crystalline. At a 100 µg·mL−1 concentration, Cu NPs exhibited a higher percentage of inhibition in the order of Escherichia coli ≫ Enterococcus faecalis ≫ Staphylococcus aureus. The lethal concentration (LC50) of the Cu NPs against the larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus was determined to be 60.63, 56.58, and 54.32 µg·mL−1, respectively. This ground-breaking study describes the biological production of Cu NPs utilizing N. cataria leaf extract for the first time. Based on these findings, the bio-synthesized Cu NPs and the aqueous extract of N. cataria may provide a potential alternative method for managing these vector populations. Graphical abstract","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49230306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}