Abstract The exoskeletons of crabs, shrimp, and fish are major waste. These wastes contain chitin, an abundant natural polymer found next to cellulose. Thus, disposal of this waste becomes a huge problem for the environment; besides this, reutilization boosts the circular economy. Chitin is partially deacetylated to yield the economically useful product of chitosan and is a heteropolymer. The current study isolated chitosan from mushrooms and various marine crustaceans, i.e., crabs, shrimp, and fish. Chitosan was extracted from marine crustaceans by demineralization, deproteination, and deacetylation. Later, extracted chitosan was characterized by physicochemical characteristics like deacetylation degree, ash content, protein, color, fat-binding capacity (FBC), water-binding capacity (WBC), pH, and moisture content. The result showed that chitosan yield ranges from 13.0% to 17.0%, the degree of deacetylation range from 82.0% to 85.0%, ash content range from 0.8% to 3.0%, and protein content is below 1.0%. The FBC and WBC range between 320% and 444% and 535% and 602%, respectively. The pH and moisture content range from 7.4 to 8.0 and from 2.0% to 4.0%, respectively. Overall, results specified that crustacean waste was an exceptional chitosan source with availability and production consistency.
{"title":"Green fabrication of chitosan from marine crustaceans and mushroom waste: Toward sustainable resource utilization","authors":"Kiruthiga Periyannan, Hemamala Selvaraj, Balachandar Subbu, Muthukrishnan Pallikondaperumal, Ponmurugan Karuppiah, Jothi Ramalingam Rajabathar, Hamad Al-Lohedan, Sadhasivam Thangarasu","doi":"10.1515/gps-2023-0093","DOIUrl":"https://doi.org/10.1515/gps-2023-0093","url":null,"abstract":"Abstract The exoskeletons of crabs, shrimp, and fish are major waste. These wastes contain chitin, an abundant natural polymer found next to cellulose. Thus, disposal of this waste becomes a huge problem for the environment; besides this, reutilization boosts the circular economy. Chitin is partially deacetylated to yield the economically useful product of chitosan and is a heteropolymer. The current study isolated chitosan from mushrooms and various marine crustaceans, i.e., crabs, shrimp, and fish. Chitosan was extracted from marine crustaceans by demineralization, deproteination, and deacetylation. Later, extracted chitosan was characterized by physicochemical characteristics like deacetylation degree, ash content, protein, color, fat-binding capacity (FBC), water-binding capacity (WBC), pH, and moisture content. The result showed that chitosan yield ranges from 13.0% to 17.0%, the degree of deacetylation range from 82.0% to 85.0%, ash content range from 0.8% to 3.0%, and protein content is below 1.0%. The FBC and WBC range between 320% and 444% and 535% and 602%, respectively. The pH and moisture content range from 7.4 to 8.0 and from 2.0% to 4.0%, respectively. Overall, results specified that crustacean waste was an exceptional chitosan source with availability and production consistency.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135318465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Khan, Uzma Sharafat, S. Gul, M. I. Khan, M. Ismail, M. Khan, Rafia Younus, Sher Bahadar Khan
Abstract Environmental remediation of toxic organic pollutants on catalytic degradation has gained much attention. Organic dyes and fossil fuels as pollutants are the two major problems nowadays. The efficient and targeted eradication of organic dye from water systems is a critical global concern for the treatment of both drinking water and wastewater. In this study, ZnO–ZnS–CdO–CdS quaternary core–shell nanocomposites (NCs) were synthesized using Ricinus communis as a stabilizing agent and hydrazine hydrate as a reducing agent. UV-visible spectroscopy and photoluminescence confirmed the formation of NCs. Fourier transform infrared spectroscopy confirmed the presence of functional groups, while scanning electron microscopy analysis revealed that the morphology of nanomaterials was spherical and poly distributed. X-ray powder diffraction confirmed the crystalline nature of prepared samples. The prepared nanocatalysts were used in the production of hydrogen gas from green sources of the Brassica campestris leaf extract and the degradation of Congo red and methyl red dyes. Overall, the photocatalytic performance of NCs and their design was successful. The prepared catalysts were not only active in the degradation of a single substrate but also in the degradation of a mixture of dyes.
{"title":"Novel in situ synthesis of quaternary core–shell metallic sulfide nanocomposites for degradation of organic dyes and hydrogen production","authors":"Y. Khan, Uzma Sharafat, S. Gul, M. I. Khan, M. Ismail, M. Khan, Rafia Younus, Sher Bahadar Khan","doi":"10.1515/gps-2022-8128","DOIUrl":"https://doi.org/10.1515/gps-2022-8128","url":null,"abstract":"Abstract Environmental remediation of toxic organic pollutants on catalytic degradation has gained much attention. Organic dyes and fossil fuels as pollutants are the two major problems nowadays. The efficient and targeted eradication of organic dye from water systems is a critical global concern for the treatment of both drinking water and wastewater. In this study, ZnO–ZnS–CdO–CdS quaternary core–shell nanocomposites (NCs) were synthesized using Ricinus communis as a stabilizing agent and hydrazine hydrate as a reducing agent. UV-visible spectroscopy and photoluminescence confirmed the formation of NCs. Fourier transform infrared spectroscopy confirmed the presence of functional groups, while scanning electron microscopy analysis revealed that the morphology of nanomaterials was spherical and poly distributed. X-ray powder diffraction confirmed the crystalline nature of prepared samples. The prepared nanocatalysts were used in the production of hydrogen gas from green sources of the Brassica campestris leaf extract and the degradation of Congo red and methyl red dyes. Overall, the photocatalytic performance of NCs and their design was successful. The prepared catalysts were not only active in the degradation of a single substrate but also in the degradation of a mixture of dyes.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44688880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangmiao Zhu, Weitong Qi, Mi Wang, Shixuan Zhan, Xuezhao Liu, Yuting Zhao, V. Hessel, Zhanghao Chen, Liangliang Lin
Abstract In this work, an efficient and green approach has been presented to prepare carbon quantum dots (CQDs) from watermelon juice through a microfluidic steam-based method, with a view to enabling continuous production at scale, i.e., to save time, costs, or energy as compared to conventional production using an autoclave. The evolution of the product formation through multifarious intermediates generated in different stages of the reaction process was characterized. Computational fluid dynamics simulations reveal the pressure and velocity profiles in the microchannel to exert process control. These determine the quality of the obtained CQDs by influencing the particle size transformations and manifold chemicals along the microchannel axis. The optimal reaction conditions and reaction mechanism for the synthesis of CQDs were investigated. Additionally, the synthesized CQDs demonstrated good fluorescence properties as well as a specific response to NO 2 − {text{NO}}_{2}^{-} in both fluorescence and spectrophotometric modes, providing great potential for their application in environmental monitoring.
{"title":"Microfluidic steam-based synthesis of luminescent carbon quantum dots as sensing probes for nitrite detection","authors":"Xiangmiao Zhu, Weitong Qi, Mi Wang, Shixuan Zhan, Xuezhao Liu, Yuting Zhao, V. Hessel, Zhanghao Chen, Liangliang Lin","doi":"10.1515/gps-2022-8144","DOIUrl":"https://doi.org/10.1515/gps-2022-8144","url":null,"abstract":"Abstract In this work, an efficient and green approach has been presented to prepare carbon quantum dots (CQDs) from watermelon juice through a microfluidic steam-based method, with a view to enabling continuous production at scale, i.e., to save time, costs, or energy as compared to conventional production using an autoclave. The evolution of the product formation through multifarious intermediates generated in different stages of the reaction process was characterized. Computational fluid dynamics simulations reveal the pressure and velocity profiles in the microchannel to exert process control. These determine the quality of the obtained CQDs by influencing the particle size transformations and manifold chemicals along the microchannel axis. The optimal reaction conditions and reaction mechanism for the synthesis of CQDs were investigated. Additionally, the synthesized CQDs demonstrated good fluorescence properties as well as a specific response to NO 2 − {text{NO}}_{2}^{-} in both fluorescence and spectrophotometric modes, providing great potential for their application in environmental monitoring.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43552378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Huda, H. Ghneim, Fozia Fozia, Mushtaq Ahmed, N. Mushtaq, N. Sher, Rahmattualh Khan, Ijaz Ahmad, Y. Al-Sheikh, J. Giesy, M. A. Aboul-Soud
Abstract The synthesis of silver nanoparticles (AgNPs) by the green method is favored as compared to chemical synthesis due to their appreciable properties of less toxicity and simple synthesis. The current study designed the biosynthesis of AgNPs in one step by using the plant Kickxia elatine (KE) extract and then investigated its inhibiting activity against rat’s brain acetylcholinesterase (AChE) ex vivo. Ultraviolet spectrum at 416 nm confirmed the formation of AgNPs. X-ray diffractometer calculated size was reported to be 42.47 nm. The SEM analysis confirmed spherical-shaped AgNPs. FT-IR suggested that the phytochemical groups present in the KE extract and their nanoparticles (NPs) are responsible for the biosynthesized of NPs. EDX analysis presented that Ag was the chief element with 61.67%. Both KE extract and AgNPs showed significant anti-AChE activity at 175 µg·mL−1. Statistical analysis showed that both KE and AgNPs exhibited non-competitive type inhibition against AChE, i.e. V max decreased (34.17–68.64% and 22.29–62.10%), while K m values remained constant. It is concluded that KE and AgNPs can be considered an inhibitor of rats’ brain AChE. Furthermore, the synthesis of AgNP-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.
{"title":"Green synthesis of Kickxia elatine-induced silver nanoparticles and their role as anti-acetylcholinesterase in the treatment of Alzheimer’s disease","authors":"N. Huda, H. Ghneim, Fozia Fozia, Mushtaq Ahmed, N. Mushtaq, N. Sher, Rahmattualh Khan, Ijaz Ahmad, Y. Al-Sheikh, J. Giesy, M. A. Aboul-Soud","doi":"10.1515/gps-2023-0060","DOIUrl":"https://doi.org/10.1515/gps-2023-0060","url":null,"abstract":"Abstract The synthesis of silver nanoparticles (AgNPs) by the green method is favored as compared to chemical synthesis due to their appreciable properties of less toxicity and simple synthesis. The current study designed the biosynthesis of AgNPs in one step by using the plant Kickxia elatine (KE) extract and then investigated its inhibiting activity against rat’s brain acetylcholinesterase (AChE) ex vivo. Ultraviolet spectrum at 416 nm confirmed the formation of AgNPs. X-ray diffractometer calculated size was reported to be 42.47 nm. The SEM analysis confirmed spherical-shaped AgNPs. FT-IR suggested that the phytochemical groups present in the KE extract and their nanoparticles (NPs) are responsible for the biosynthesized of NPs. EDX analysis presented that Ag was the chief element with 61.67%. Both KE extract and AgNPs showed significant anti-AChE activity at 175 µg·mL−1. Statistical analysis showed that both KE and AgNPs exhibited non-competitive type inhibition against AChE, i.e. V max decreased (34.17–68.64% and 22.29–62.10%), while K m values remained constant. It is concluded that KE and AgNPs can be considered an inhibitor of rats’ brain AChE. Furthermore, the synthesis of AgNP-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48058507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ratima Waitongkham, Y. Pianroj, Teerasak Punvichai, S. Karrila, P. Chumkaew, Saysunee Jumrat
Abstract In this study, the production of bio-oil by pyrolysis with microwave (MW) heating was tested experimentally. Two magnetrons with a total MW power of 1,600 W were used in the pyrolysis setup. The electric field strength was 185.38 V·m−2 at an MW frequency of 2.45 GHz. Cashew nut shells (CNS) or Cassia fistula pods (CFP) were pyrolyzed at 400°C, 500°C, or 600°C, with biomass-to-activated carbon ratio set at 70:30, 80:20, or 90:10. The largest yield of bio-oil was found for CNS at 600°C, and for CFP at 500°C, both with 90:10 ratio, achieving, respectively, 20.0% and 15.8% yields. When the bio-oil yields from CNS and CFP at 90:10 ratio and 400–600°C were analyzed with gas chromatograph-mass spectrometer, the components found included acids, esters, ketones, furans, pyrans, guaiacol, syringol and phenols, and phenolic derivatives were the dominant type of compounds. There were 23.56% and 13.23% phenolic derivatives, respectively, in the bio-oils from CNS (at 500°C) and from CFP (at 400°C). An analysis with Folin–Ciocalteu reagent of the phenolic contents in bio-oils gave the respective ranges 146.83–164.83 mg·GAE·g·DW−1 and 39.34–45.91 mg·GAE·g DW−1 for CNS and CFP (both run with 90:10 ratio).
{"title":"Characterization of bio-oil production by microwave pyrolysis from cashew nut shells and Cassia fistula pods","authors":"Ratima Waitongkham, Y. Pianroj, Teerasak Punvichai, S. Karrila, P. Chumkaew, Saysunee Jumrat","doi":"10.1515/gps-2023-0084","DOIUrl":"https://doi.org/10.1515/gps-2023-0084","url":null,"abstract":"Abstract In this study, the production of bio-oil by pyrolysis with microwave (MW) heating was tested experimentally. Two magnetrons with a total MW power of 1,600 W were used in the pyrolysis setup. The electric field strength was 185.38 V·m−2 at an MW frequency of 2.45 GHz. Cashew nut shells (CNS) or Cassia fistula pods (CFP) were pyrolyzed at 400°C, 500°C, or 600°C, with biomass-to-activated carbon ratio set at 70:30, 80:20, or 90:10. The largest yield of bio-oil was found for CNS at 600°C, and for CFP at 500°C, both with 90:10 ratio, achieving, respectively, 20.0% and 15.8% yields. When the bio-oil yields from CNS and CFP at 90:10 ratio and 400–600°C were analyzed with gas chromatograph-mass spectrometer, the components found included acids, esters, ketones, furans, pyrans, guaiacol, syringol and phenols, and phenolic derivatives were the dominant type of compounds. There were 23.56% and 13.23% phenolic derivatives, respectively, in the bio-oils from CNS (at 500°C) and from CFP (at 400°C). An analysis with Folin–Ciocalteu reagent of the phenolic contents in bio-oils gave the respective ranges 146.83–164.83 mg·GAE·g·DW−1 and 39.34–45.91 mg·GAE·g DW−1 for CNS and CFP (both run with 90:10 ratio).","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45508235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this study, a simple green method was employed to produce strontium (Sr)-doped-tin-dioxide (SnO2) nanoparticles (SrSnO2 NPs) using the Mahonia bealei leaf extract. The synthesized NPs were characterized with XRD, FE-SEM, FTIR, and PL spectroscopy measurements. SrSnO2 NPs were analysed for antimicrobial and anticancer activities. The XRD analysis revealed that the synthesized samples exhibited a tetragonal rutile crystal structure type of tin oxide. The EDX spectrum conforms to the chemical composition and elemental mapping of SrSnO2 NP synthesis. At 632 cm−1, the O–Sn–O band was observed and chemical bonding was confirmed using an FTIR spectrum. The PL spectrum identified surface defects and oxygen vacancies. The SrSnO2 NPs were tested against both Gram-positive and Gram-negative human pathogens. The synthesized nanoparticles exhibited effective antibacterial properties. The anticancer effects of SrSnO2 nanoparticles were also assessed against MCF-7 cells, and growth was decreased with increasing concentrations of the nanoparticles. Dual staining revealed high apoptosis in SrSnO2 NP-treated MCF-7 cells, proving its apoptotic potential. To conclude, we synthesized and characterized potential SrSnO2 nanoparticles using a green approach from the Mahonia bealei leaf extract. Further, green SrSnO2 nanoparticles showed significant antibacterial and anticancer properties against breast cancer cells (MCF-7) through apoptosis, which suggests a healthcare application for these nanoparticles. Graphical abstract An overview of the study presented in a schematic form.
{"title":"Green synthesis of strontium-doped tin dioxide (SrSnO2) nanoparticles using the Mahonia bealei leaf extract and evaluation of their anticancer and antimicrobial activities","authors":"A. Aloufi","doi":"10.1515/gps-2022-8116","DOIUrl":"https://doi.org/10.1515/gps-2022-8116","url":null,"abstract":"Abstract In this study, a simple green method was employed to produce strontium (Sr)-doped-tin-dioxide (SnO2) nanoparticles (SrSnO2 NPs) using the Mahonia bealei leaf extract. The synthesized NPs were characterized with XRD, FE-SEM, FTIR, and PL spectroscopy measurements. SrSnO2 NPs were analysed for antimicrobial and anticancer activities. The XRD analysis revealed that the synthesized samples exhibited a tetragonal rutile crystal structure type of tin oxide. The EDX spectrum conforms to the chemical composition and elemental mapping of SrSnO2 NP synthesis. At 632 cm−1, the O–Sn–O band was observed and chemical bonding was confirmed using an FTIR spectrum. The PL spectrum identified surface defects and oxygen vacancies. The SrSnO2 NPs were tested against both Gram-positive and Gram-negative human pathogens. The synthesized nanoparticles exhibited effective antibacterial properties. The anticancer effects of SrSnO2 nanoparticles were also assessed against MCF-7 cells, and growth was decreased with increasing concentrations of the nanoparticles. Dual staining revealed high apoptosis in SrSnO2 NP-treated MCF-7 cells, proving its apoptotic potential. To conclude, we synthesized and characterized potential SrSnO2 nanoparticles using a green approach from the Mahonia bealei leaf extract. Further, green SrSnO2 nanoparticles showed significant antibacterial and anticancer properties against breast cancer cells (MCF-7) through apoptosis, which suggests a healthcare application for these nanoparticles. Graphical abstract An overview of the study presented in a schematic form.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42371306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naireen Ahmed, Kiran Tanveer, Zohaib Younas, Tayyaba Yousaf, Muhammad Ikram, N. Raja, Z. Mashwani, Saad Alghamdi, Issa Saad Al-Moraya, N. Shesha
Abstract Nanotechnology investigates different promising methodologies in the space of material sciences on a sub-atomic level. Novel methodologies are expected for the accomplishment of protected and successful helpful medicines past the traditional ones, and society needs new prerequisites for innovations, moving towards perfect and green innovation improvement. This review study deals with topics related to green nanotechnology for the investigation of different assays such as anticancer, antidiabetic, anti-larval, and microbial. The confirmation of nanocomposite will be conformed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction to determine the size, shape, and supporting material to stabilize and cap the agent. However, the biomedical application of the ZnO/TiO2 nanocomposite is also discussed. Furthermore, to their remarkable biocompatibility, ZnO/TiO2 has shown significant potential in bio-imaging, tissue engineering, and drug delivery. The biological activities of the green-produced nanoparticles are strong and they are employed in several biological applications across various assays. The current review covers the creation and most recent developments of bio-nanocomposite materials from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds), as well as their anti-cancer, diabetes-related, and anti-larval activities. This is followed by a thorough discussion of their mechanisms of action.
{"title":"Green-processed nano-biocomposite (ZnO–TiO2): Potential candidates for biomedical applications","authors":"Naireen Ahmed, Kiran Tanveer, Zohaib Younas, Tayyaba Yousaf, Muhammad Ikram, N. Raja, Z. Mashwani, Saad Alghamdi, Issa Saad Al-Moraya, N. Shesha","doi":"10.1515/gps-2023-0076","DOIUrl":"https://doi.org/10.1515/gps-2023-0076","url":null,"abstract":"Abstract Nanotechnology investigates different promising methodologies in the space of material sciences on a sub-atomic level. Novel methodologies are expected for the accomplishment of protected and successful helpful medicines past the traditional ones, and society needs new prerequisites for innovations, moving towards perfect and green innovation improvement. This review study deals with topics related to green nanotechnology for the investigation of different assays such as anticancer, antidiabetic, anti-larval, and microbial. The confirmation of nanocomposite will be conformed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction to determine the size, shape, and supporting material to stabilize and cap the agent. However, the biomedical application of the ZnO/TiO2 nanocomposite is also discussed. Furthermore, to their remarkable biocompatibility, ZnO/TiO2 has shown significant potential in bio-imaging, tissue engineering, and drug delivery. The biological activities of the green-produced nanoparticles are strong and they are employed in several biological applications across various assays. The current review covers the creation and most recent developments of bio-nanocomposite materials from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds), as well as their anti-cancer, diabetes-related, and anti-larval activities. This is followed by a thorough discussion of their mechanisms of action.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42416369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nneka Joyce Odimba, R. Khalidy, Reza Bakhshoodeh, R. Santos
Abstract Rare earth elements (REEs) are typically found in low concentrations within natural rocks that make up mine tailings, such as carbonates in association with silicates within carbonatite igneous rocks, so it is of interest to develop (bio)hydrometallurgical ways to liberate them from the silicate matrix. This work investigated, through geochemical modeling, the extraction of europium and ytterbium carbonates from rocks containing one of four silicates (chrysotile, forsterite, montmorillonite, and phlogopite) via chemical (mineral acid) or biological (organic acid) leaching. The results indicated conditions that led to either congruent or incongruent dissolution of the mineral phases and the formation of transient mineral phases. Chemical leaching models suggest that REE carbonates are recoverable in one-step leaching from forsterite and chrysotile rocks, while they are recoverable in a secondary leaching step from montmorillonite and phlogopite rocks. Gibbsite as a transient phase is shown to complicate REE recovery, potentially requiring reactive extraction. REEs have the potential to be recovered from silicate rocks via chemoorganotrophic bioleaching, but the process configuration would differ depending on the predominant minerals that make up the rock, and the type of REE present in it.
{"title":"Recovery of critical metals from carbonatite-type mineral wastes: Geochemical modeling investigation of (bio)hydrometallurgical leaching of REEs","authors":"Nneka Joyce Odimba, R. Khalidy, Reza Bakhshoodeh, R. Santos","doi":"10.1515/gps-2022-8086","DOIUrl":"https://doi.org/10.1515/gps-2022-8086","url":null,"abstract":"Abstract Rare earth elements (REEs) are typically found in low concentrations within natural rocks that make up mine tailings, such as carbonates in association with silicates within carbonatite igneous rocks, so it is of interest to develop (bio)hydrometallurgical ways to liberate them from the silicate matrix. This work investigated, through geochemical modeling, the extraction of europium and ytterbium carbonates from rocks containing one of four silicates (chrysotile, forsterite, montmorillonite, and phlogopite) via chemical (mineral acid) or biological (organic acid) leaching. The results indicated conditions that led to either congruent or incongruent dissolution of the mineral phases and the formation of transient mineral phases. Chemical leaching models suggest that REE carbonates are recoverable in one-step leaching from forsterite and chrysotile rocks, while they are recoverable in a secondary leaching step from montmorillonite and phlogopite rocks. Gibbsite as a transient phase is shown to complicate REE recovery, potentially requiring reactive extraction. REEs have the potential to be recovered from silicate rocks via chemoorganotrophic bioleaching, but the process configuration would differ depending on the predominant minerals that make up the rock, and the type of REE present in it.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46753808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Globally, nanotechnology is generating significant interest because of its promise in a wide range of industries. The most commonly used nanoparticles are titanium dioxide nanoparticles (PF-127 coated TiO 2 NPs), which can be formulated with physical, chemical, and environmental factors. The establishment of an economical and environmentally beneficial method for its fabrication is due to increasing concerns about human health impacts. In this exploration, green Pluronic F-127 (PF-127) coated TiO 2 NPs using leaf extracts of Atractylodes macrocephala have been formulated and studied through various methods. PF-127 coated TiO 2 NPs were 60 nm large and a polygonal rutile-type crystalline structure was observed. Moreover, the NPs’ antimicrobial capacity against several pathogens was investigated. The cytotoxicity of the NPs against HEp-2, KB, and Vero cell lines was assessed using the MTT test. Increased antimicrobial potential of PF-127 coated TiO 2 NPs against several pathogens was noted. Furthermore, NPs displayed remarkable antioxidant activity, which increased with concentration. The NPs exhibited significant cytotoxic effects against HEp-2 and KB cell lines but failed to demonstrate toxicity against Vero cells. This is indicative of their cytotoxic potential against cancer cell lines and non-toxic nature towards healthy cells. This indicates that PF-127 coated TiO 2 NPs possess beneficial antimicrobial and antitumor properties.
{"title":"Synthesis and characterization of Pluronic F-127-coated titanium dioxide nanoparticles synthesized from extracts of <i>Atractylodes macrocephala</i> leaf for antioxidant, antimicrobial, and anticancer properties","authors":"Riyad A. Almaimani","doi":"10.1515/gps-2023-0100","DOIUrl":"https://doi.org/10.1515/gps-2023-0100","url":null,"abstract":"Abstract Globally, nanotechnology is generating significant interest because of its promise in a wide range of industries. The most commonly used nanoparticles are titanium dioxide nanoparticles (PF-127 coated TiO 2 NPs), which can be formulated with physical, chemical, and environmental factors. The establishment of an economical and environmentally beneficial method for its fabrication is due to increasing concerns about human health impacts. In this exploration, green Pluronic F-127 (PF-127) coated TiO 2 NPs using leaf extracts of Atractylodes macrocephala have been formulated and studied through various methods. PF-127 coated TiO 2 NPs were 60 nm large and a polygonal rutile-type crystalline structure was observed. Moreover, the NPs’ antimicrobial capacity against several pathogens was investigated. The cytotoxicity of the NPs against HEp-2, KB, and Vero cell lines was assessed using the MTT test. Increased antimicrobial potential of PF-127 coated TiO 2 NPs against several pathogens was noted. Furthermore, NPs displayed remarkable antioxidant activity, which increased with concentration. The NPs exhibited significant cytotoxic effects against HEp-2 and KB cell lines but failed to demonstrate toxicity against Vero cells. This is indicative of their cytotoxic potential against cancer cell lines and non-toxic nature towards healthy cells. This indicates that PF-127 coated TiO 2 NPs possess beneficial antimicrobial and antitumor properties.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135007957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The effect of microwave pretreatment and moisture levels of Camelina sativa seeds on the quality of extracted oil by cold press was investigated. The seed moistures were adjusted to 2.5%, 5.0%, 7.5%, and 10.0% and pretreated with microwaves for 0, 1, 2, and 3 min. Microwave pretreatment (3 min) of the seeds with 2.5% moisture increased the oil extraction yield by ∼11% compared to the control sample. The highest amount of acidity (0.564 g FFA·g −1 oil), peroxide value (2.4 meq O 2 ·kg −1 oil), carotenoid (5.26 mg·kg −1 oil), and browning index (0.710) were found in the oil extracted from seeds with 10% moisture and 3 min microwave pretreatment. The total phenolic compound was increased by microwave pretreatment but was mitigated by the seed moisture content, and the highest amount (208.24 mg caffeic acid·100 g −1 oil) was observed at 3 min microwave pretreatment of the seeds with 2.5% moisture. Chlorophyll content decreased by both microwave pretreatment and seed moisture content in camelina oil. Generally, the fatty acid composition of the extracted oils was not affected by the seed pretreatments. In conclusion, pretreatment of the camelina seeds before oil extraction is suggested to obtain a high oil extraction yield with a good quality oil.
摘要研究了微波预处理和水分水平对冷榨油品质的影响。将种子水分调整为2.5%、5.0%、7.5%和10.0%,微波预处理0、1、2和3分钟。与对照样品相比,2.5%水分的种子微波预处理(3分钟)使出油率提高了约11%。水分为10%,微波预处理3 min的种子油酸度最高(0.564 g FFA·g−1油),过氧化值最高(2.4 meq O 2·kg−1油),类胡萝卜素最高(5.26 mg·kg−1油),褐变指数最高(0.710)。微波预处理使总酚含量增加,但受种子含水量的影响,在2.5%水分条件下微波预处理3 min时,总酚含量最高,为208.24 mg咖啡酸·100 g−1油。微波预处理降低了亚麻荠籽油叶绿素含量和籽粒水分含量。总的来说,种子预处理对提取油的脂肪酸组成没有影响。综上所述,建议在提取油分前进行预处理,以获得高提取率和优质油分。
{"title":"Microwave-accelerated pretreatment technique in green extraction of oil and bioactive compounds from camelina seeds: Effectiveness and characterization","authors":"Pardis Mortazavi, Sodeif Azadmard-Damirchi, Zahra Piravi-Vanak, Omid Ahmadi, Navideh Anarjan, Fleming Martinez, Hoda Jafarizadeh-Malmiri","doi":"10.1515/gps-2023-0101","DOIUrl":"https://doi.org/10.1515/gps-2023-0101","url":null,"abstract":"Abstract The effect of microwave pretreatment and moisture levels of Camelina sativa seeds on the quality of extracted oil by cold press was investigated. The seed moistures were adjusted to 2.5%, 5.0%, 7.5%, and 10.0% and pretreated with microwaves for 0, 1, 2, and 3 min. Microwave pretreatment (3 min) of the seeds with 2.5% moisture increased the oil extraction yield by ∼11% compared to the control sample. The highest amount of acidity (0.564 g FFA·g −1 oil), peroxide value (2.4 meq O 2 ·kg −1 oil), carotenoid (5.26 mg·kg −1 oil), and browning index (0.710) were found in the oil extracted from seeds with 10% moisture and 3 min microwave pretreatment. The total phenolic compound was increased by microwave pretreatment but was mitigated by the seed moisture content, and the highest amount (208.24 mg caffeic acid·100 g −1 oil) was observed at 3 min microwave pretreatment of the seeds with 2.5% moisture. Chlorophyll content decreased by both microwave pretreatment and seed moisture content in camelina oil. Generally, the fatty acid composition of the extracted oils was not affected by the seed pretreatments. In conclusion, pretreatment of the camelina seeds before oil extraction is suggested to obtain a high oil extraction yield with a good quality oil.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135262243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}