During the formation and evolution of the South China Sea, a series of multiscale submarine geomorphologies have been produced in the continental margin. The obvious submarine canyons and channels are widely distributed in the continental shelf and slope of the South China Sea. In the Taixinan Basin, several submarine canyons and channels termed as the Taixinan canyon-channel system (TCCS) are distributed between the active and passive continental margins. Based on acquired ship-borne multi-beam bathymetry data in this study and the global GEBCO 2023 bathymetric dataset, we identify and define nine submarine canyons and seven submarine channels in the Taixinan Basin. The TCCS consists of the Dongsha, Taiwan, Jiulong, West Penghu, Penghu, Kaoping, Shoushan, Kaohsiung and the Fangliao canyons and submarine channels. The detailed geomorphological features of different submarine canyons and channels within the TCCS are analysed and summarized using multi-beam bathymetry data and seismic reflection profiles across canyons. Based on the slope variations of the continental margin and the effects of turbidity currents and bottom currents on canyon, we propose a three-stage evolutionary model of the TCCS. In the initial formation stage of canyon, the initial erosional grooves were created by tectonic activity on the continental slope and it represents the foundation of submarine canyons. During the growth and development stage, the submarine canyons are further evolved and the canyons began to deepen and widen from the continental slope to the deep-water areas. It shows the weak erosion and sediment infilling within the canyons in this stage. On the northern continental slope of the South China Sea, continuous transportation and erosion of sediments led to the initial formation of grooves and it becomes the embryonic stage of submarine channels. The present stage of the TCCS was formed when the initial grooves on the continental slope have further developed and rebuilt under the erosion by the turbidity current and the scouring by the bottom current. In the last stage, the intense erosion by the turbidity current is supported by sediment waves around the submarine canyons and the migration of canyons is suggested by the cyclic steps formed within some canyons.
{"title":"Geomorphological features and formation mechanism of the Taixinan canyon-channel system in the north-eastern South China Sea","authors":"Xingquan Chen, Junjiang Zhu, Yuhan Jiao, Xiaoxiao Ding, Qinglong Zhu, Zhengyuan Liu, Sanzhong Li, Yonggang Jia, Yongjiang Liu","doi":"10.1002/gj.5035","DOIUrl":"10.1002/gj.5035","url":null,"abstract":"<p>During the formation and evolution of the South China Sea, a series of multiscale submarine geomorphologies have been produced in the continental margin. The obvious submarine canyons and channels are widely distributed in the continental shelf and slope of the South China Sea. In the Taixinan Basin, several submarine canyons and channels termed as the Taixinan canyon-channel system (TCCS) are distributed between the active and passive continental margins. Based on acquired ship-borne multi-beam bathymetry data in this study and the global GEBCO 2023 bathymetric dataset, we identify and define nine submarine canyons and seven submarine channels in the Taixinan Basin. The TCCS consists of the Dongsha, Taiwan, Jiulong, West Penghu, Penghu, Kaoping, Shoushan, Kaohsiung and the Fangliao canyons and submarine channels. The detailed geomorphological features of different submarine canyons and channels within the TCCS are analysed and summarized using multi-beam bathymetry data and seismic reflection profiles across canyons. Based on the slope variations of the continental margin and the effects of turbidity currents and bottom currents on canyon, we propose a three-stage evolutionary model of the TCCS. In the initial formation stage of canyon, the initial erosional grooves were created by tectonic activity on the continental slope and it represents the foundation of submarine canyons. During the growth and development stage, the submarine canyons are further evolved and the canyons began to deepen and widen from the continental slope to the deep-water areas. It shows the weak erosion and sediment infilling within the canyons in this stage. On the northern continental slope of the South China Sea, continuous transportation and erosion of sediments led to the initial formation of grooves and it becomes the embryonic stage of submarine channels. The present stage of the TCCS was formed when the initial grooves on the continental slope have further developed and rebuilt under the erosion by the turbidity current and the scouring by the bottom current. In the last stage, the intense erosion by the turbidity current is supported by sediment waves around the submarine canyons and the migration of canyons is suggested by the cyclic steps formed within some canyons.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 2","pages":"290-310"},"PeriodicalIF":1.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Policymakers are increasingly recognizing the need to prioritize sustainability in their economic growth agendas due to escalating environmental deterioration. Green financing and the utilization of clean energy are advanced solutions to this problem. However, there is a significant need to investigate the green finance-emission nexus in the presence of renewable energy. This study investigates the impact of green financing and renewable energy on environmental sustainability in BICST economies from 2000 to 2021. The analysis considers GDP, urbanization and access to electricity as controlling factors in the model. A Method of Moments Quantile Regression was executed and indicated that green financing and renewable energy play a crucial role in managing and reducing ongoing CO2 emissions in BICST countries. The scientific evidence indicates that increasing levels of CO2 emissions can be attributed to both urbanization and economic development. On the other hand, having access to power has a positive impact on the environment. Additionally, numerous other tests confirm the validity, strength and reliability of the major findings. In the BICST countries, major policy recommendations to enhance environmental sustainability include private sector investment, promoting incentive-based policies and ensuring the financial sector's autonomy to stimulate the integration of renewable energy sources into economic operations.
{"title":"Modelling the effects of green finance and renewable energy on environmental sustainability: Fresh insights for BICST economies","authors":"Jiaojiao Han, Nida Shah, Muhammad Awais Baloch","doi":"10.1002/gj.5032","DOIUrl":"10.1002/gj.5032","url":null,"abstract":"<p>Policymakers are increasingly recognizing the need to prioritize sustainability in their economic growth agendas due to escalating environmental deterioration. Green financing and the utilization of clean energy are advanced solutions to this problem. However, there is a significant need to investigate the green finance-emission nexus in the presence of renewable energy. This study investigates the impact of green financing and renewable energy on environmental sustainability in BICST economies from 2000 to 2021. The analysis considers GDP, urbanization and access to electricity as controlling factors in the model. A Method of Moments Quantile Regression was executed and indicated that green financing and renewable energy play a crucial role in managing and reducing ongoing CO<sub>2</sub> emissions in BICST countries. The scientific evidence indicates that increasing levels of CO<sub>2</sub> emissions can be attributed to both urbanization and economic development. On the other hand, having access to power has a positive impact on the environment. Additionally, numerous other tests confirm the validity, strength and reliability of the major findings. In the BICST countries, major policy recommendations to enhance environmental sustainability include private sector investment, promoting incentive-based policies and ensuring the financial sector's autonomy to stimulate the integration of renewable energy sources into economic operations.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2847-2859"},"PeriodicalIF":1.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ductile shear deformation of Precambrian basement rocks in Wuyishan provides a crucial perspective on intraplate orogeny in the South China Block (SCB). This study focuses on the Longquan-Badu ductile shear zone in southeastern Zhejiang, employing field observations, thin section analysis, quartz electron backscatter diffraction (EBSD), zircon U–Pb dating and 40Ar/39Ar geochronology. Two distinct phases of deformation, referred to as D1 and D2, have been identified. D1 is primarily characterized by a WNW–ESE striking foliation within a NE-plunging lineation, indicating top-to-SSW shearing. The paragneiss within the Badu complex that experienced D1 deformation has been dated to 247–239 Ma through zircon U–Pb analysis, corresponding to the prevalent high-pressure metamorphic age in the region. This correlation suggests that the D1 deformation event coincided with crustal thickening during the Early Triassic. D2 deformation exhibits folds, foliation, S-C fabrics and mylonitic microstructures and is mainly characterized by striking NNE–SSW with steeply dip, demonstrating a dominant dextral strike–slip component. Quartz c-axis orientations in mylonitic rocks indicate deformation temperatures between 350°C and 550°C with asymmetric girdle patterns suggesting simultaneous basal and prism slip. The plateau ages of muscovite from mylonitic rocks obtained through 40Ar/39Ar dating are approximately ~228 Ma implying that the D2 deformation occurred under retrograde amphibolite to greenschist facies metamorphic conditions during Middle Triassic. Collectively these data along with regional geological evidence signify two distinct intracontinental orogenic processes occurring in eastern SCB. Considering Early Mesozoic tectonothermal events in Cathaysia Block, it can be inferred that intraplate orogeny in Wuyishan resulted from plate-margin collisions between SCB and peripheral plates following scissors closure of Palaeo-Tethys from east to west.
{"title":"Structural and chronological constraints for Longquan-Badu ductile shear zone: Implication for Triassic intraplate orogeny in South China Block","authors":"Wanli Gao, Zongxiu Wang","doi":"10.1002/gj.5036","DOIUrl":"10.1002/gj.5036","url":null,"abstract":"<p>The ductile shear deformation of Precambrian basement rocks in Wuyishan provides a crucial perspective on intraplate orogeny in the South China Block (SCB). This study focuses on the Longquan-Badu ductile shear zone in southeastern Zhejiang, employing field observations, thin section analysis, quartz electron backscatter diffraction (EBSD), zircon U–Pb dating and <sup>40</sup>Ar/<sup>39</sup>Ar geochronology. Two distinct phases of deformation, referred to as D1 and D2, have been identified. D1 is primarily characterized by a WNW–ESE striking foliation within a NE-plunging lineation, indicating top-to-SSW shearing. The paragneiss within the Badu complex that experienced D1 deformation has been dated to 247–239 Ma through zircon U–Pb analysis, corresponding to the prevalent high-pressure metamorphic age in the region. This correlation suggests that the D1 deformation event coincided with crustal thickening during the Early Triassic. D2 deformation exhibits folds, foliation, S-C fabrics and mylonitic microstructures and is mainly characterized by striking NNE–SSW with steeply dip, demonstrating a dominant dextral strike–slip component. Quartz c-axis orientations in mylonitic rocks indicate deformation temperatures between 350°C and 550°C with asymmetric girdle patterns suggesting simultaneous basal and prism slip. The plateau ages of muscovite from mylonitic rocks obtained through <sup>40</sup>Ar/<sup>39</sup>Ar dating are approximately ~228 Ma implying that the D2 deformation occurred under retrograde amphibolite to greenschist facies metamorphic conditions during Middle Triassic. Collectively these data along with regional geological evidence signify two distinct intracontinental orogenic processes occurring in eastern SCB. Considering Early Mesozoic tectonothermal events in Cathaysia Block, it can be inferred that intraplate orogeny in Wuyishan resulted from plate-margin collisions between SCB and peripheral plates following scissors closure of Palaeo-Tethys from east to west.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2883-2896"},"PeriodicalIF":1.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present investigation breaks new ground by examining the Raniganj sediments in the Kendudihi section of the Ib-River Coalfield, Odisha, India. The study identifies a megaflora consisting of 25 species of Glossopteris, Vertebraria indica, stem casts and equisetaceous stems. The microflora is predominantly composed of Striatopodocarpites spp., with a secondary presence of Densipollenites spp. The lithological signatures, including off-white fine-grained sandstone with thin bands of silty shale and grey shale, indicate that these sediments belong to the Late Permian succession of the Lower Gondwana sequence, specifically the Raniganj Formation. The macrofloral assemblage found in the lowermost grey shale can be attributed to the Wordian–Capitanian age, while the microfloral assemblage in the upper silty shale resembles that of the Wuchiapingian-Changhsingian age. Well-preserved palynomorphs and megafossils, along with the abundant occurrence of lath-shaped translucent phytoclasts in the grey and silty shale of the Raniganj sediments exposed in the Kendudihi section, explicitly suggest that the sediments were deposited in proximal, low-energy swampy settings. Additionally, the moderate occurrence of charcoal (20%), along with the existence of degraded organic matter (DOM: 7.6%) and amorphous organic matter (AOM: 16.4%), indicates that the sediments might have been deposited in oxic–dysoxic conditions. The palynological and megafloral studies reveal a warm-temperate climate with low humidity and intermittent spells of hot and cold seasons, associated with abundant rainfall. The occurrence of phosphorite in the form of nodules and thin lenses, as well as biogenic structures at the juncture of the Raniganj and Barren Measures formations, suggests a marine incursion in the area during the deposition of the late Barren Measures and early Raniganj sediments. X-ray diffraction (XRD) analysis identified fluorapatite (Ca5(PO4)3F) as the predominant phosphatic mineral phase in the phosphatic nodule, siltstone and claystone. The Post-Archean Australian Shale composition, normalized rare earth element (REE) patterns of samples from this area, reveals slight positive La (average La anomaly: 1.02) and Gd (average Gd anomaly: 1.05) anomalies and heavy REE enrichment compared to light REE, explicitly indicating a marine environment.
{"title":"Lower Gondwana palaeobotany and geochemistry of phosphorite occurrence in the north-western part of Ib-River Coalfield, Odisha, India, and their implications","authors":"Shreerup Goswami, Ramani Ranjan Swain, Neha Aggarwal, Sanghamitra Pradhan, Maya Tripathi, Sangitsarita Nanda, Manoranjan Mishra","doi":"10.1002/gj.5029","DOIUrl":"10.1002/gj.5029","url":null,"abstract":"<p>The present investigation breaks new ground by examining the Raniganj sediments in the Kendudihi section of the Ib-River Coalfield, Odisha, India. The study identifies a megaflora consisting of 25 species of <i>Glossopteris</i>, <i>Vertebraria indica</i>, stem casts and equisetaceous stems. The microflora is predominantly composed of <i>Striatopodocarpites</i> spp., with a secondary presence of <i>Densipollenites</i> spp. The lithological signatures, including off-white fine-grained sandstone with thin bands of silty shale and grey shale, indicate that these sediments belong to the Late Permian succession of the Lower Gondwana sequence, specifically the Raniganj Formation. The macrofloral assemblage found in the lowermost grey shale can be attributed to the Wordian–Capitanian age, while the microfloral assemblage in the upper silty shale resembles that of the Wuchiapingian-Changhsingian age. Well-preserved palynomorphs and megafossils, along with the abundant occurrence of lath-shaped translucent phytoclasts in the grey and silty shale of the Raniganj sediments exposed in the Kendudihi section, explicitly suggest that the sediments were deposited in proximal, low-energy swampy settings. Additionally, the moderate occurrence of charcoal (20%), along with the existence of degraded organic matter (DOM: 7.6%) and amorphous organic matter (AOM: 16.4%), indicates that the sediments might have been deposited in oxic–dysoxic conditions. The palynological and megafloral studies reveal a warm-temperate climate with low humidity and intermittent spells of hot and cold seasons, associated with abundant rainfall. The occurrence of phosphorite in the form of nodules and thin lenses, as well as biogenic structures at the juncture of the Raniganj and Barren Measures formations, suggests a marine incursion in the area during the deposition of the late Barren Measures and early Raniganj sediments. X-ray diffraction (XRD) analysis identified fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) as the predominant phosphatic mineral phase in the phosphatic nodule, siltstone and claystone. The Post-Archean Australian Shale composition, normalized rare earth element (REE) patterns of samples from this area, reveals slight positive La (average La anomaly: 1.02) and Gd (average Gd anomaly: 1.05) anomalies and heavy REE enrichment compared to light REE, explicitly indicating a marine environment.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2819-2846"},"PeriodicalIF":1.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Qin, Ju-Quan Zhang, Masroor Alam, Yu-Ying Tang, Ming Bai, Li-Shuai Dong, Fang-Yue Wang, Xian Liang, Jing Lu
Cobalt is a critical and strategic metal mainly found as associated element in several types of deposits, of which skarn-type deposits are the major sources. Han-Xing type skarn iron deposit, having high grade iron ore and associated cobalt, is a typical skarn-type iron ore in China. But the complete recovery and exploitation of cobalt are restricted because of the lower grade of related cobalt and the dearth of prior research on its occurrence condition and enrichment mechanism. In this paper, pyrite from five typical ore deposits in the Han-Xing area was studied by using electron probe microanalysis (EPMA) and laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) techniques to decipher the occurrence state and enrichment mechanism of associated cobalt in skarn-type iron deposits. The results show that Co2+ replaces Fe2+ in pyrite through isomorphism. The distribution of cobalt in pyrite from different deposits varies greatly, that is, in the Xishimen iron deposit, the cobalt content is comparatively enriched in the pyrite's core. In contrast, in other deposits, the cobalt content is concentrated in the pyrite's rims, where it can be up to 1000 times higher than in the core. The cobalt mineralization in Han-Xing area can be divided into several stages. The sulphur element of sulphide is mainly derived from evaporite, while cobalt mineralization occurred in the early stage with pyrite formation or in the late stage by metasomatism/cementation of Co-rich ore-forming fluid. The magma assimilated with the Ordovician evaporite not only promoted iron mineralization, but also became the main controlling factor for cobalt enrichment.
{"title":"Occurrence characteristics and enrichment mechanism of cobalt in pyrite from the Han-Xing type skarn iron deposit using laser-ablation inductively-coupled-plasma mass-spectrometry elemental mapping, Taihang Mountain, China","authors":"Chao Qin, Ju-Quan Zhang, Masroor Alam, Yu-Ying Tang, Ming Bai, Li-Shuai Dong, Fang-Yue Wang, Xian Liang, Jing Lu","doi":"10.1002/gj.5034","DOIUrl":"10.1002/gj.5034","url":null,"abstract":"<p>Cobalt is a critical and strategic metal mainly found as associated element in several types of deposits, of which skarn-type deposits are the major sources. Han-Xing type skarn iron deposit, having high grade iron ore and associated cobalt, is a typical skarn-type iron ore in China. But the complete recovery and exploitation of cobalt are restricted because of the lower grade of related cobalt and the dearth of prior research on its occurrence condition and enrichment mechanism. In this paper, pyrite from five typical ore deposits in the Han-Xing area was studied by using electron probe microanalysis (EPMA) and laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) techniques to decipher the occurrence state and enrichment mechanism of associated cobalt in skarn-type iron deposits. The results show that Co<sup>2+</sup> replaces Fe<sup>2+</sup> in pyrite through isomorphism. The distribution of cobalt in pyrite from different deposits varies greatly, that is, in the Xishimen iron deposit, the cobalt content is comparatively enriched in the pyrite's core. In contrast, in other deposits, the cobalt content is concentrated in the pyrite's rims, where it can be up to 1000 times higher than in the core. The cobalt mineralization in Han-Xing area can be divided into several stages. The sulphur element of sulphide is mainly derived from evaporite, while cobalt mineralization occurred in the early stage with pyrite formation or in the late stage by metasomatism/cementation of Co-rich ore-forming fluid. The magma assimilated with the Ordovician evaporite not only promoted iron mineralization, but also became the main controlling factor for cobalt enrichment.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2860-2882"},"PeriodicalIF":1.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mayla A. Ramos-Vázquez, John S. Armstrong-Altrin, Sanjeet K. Verma, J. Madhavaraju, Rathinam Arthur James
The Salina Cruz and Puerto Ángel beach areas in the Gulf of Tehuantepec, Mexican Pacific coast represent an important economic sector of the region. In this study, the mineralogy and geochemistry of bulk sediments, and geochronology of 400 detrital zircons recovered from the beach sediments were analysed to investigate their origin. The sediments are abundant in quartz, feldspar, ilmenite, cordierite, aragonite and anorthite. The chemical index of weathering revealed a moderate to intense weathering in the source area. The chondrite normalized REE patterns of bulk sediments are similar to the found in the Upper Continental Crust, suggesting the derivation of sediments from felsic igneous rocks. The REE patterns of zircons and the trace elemental ratios reveal a continental crust origin. Zircon U–Pb ages in the Salina Cruz beach were represented by Proterozoic (~545.1–1314.1 Ma; n = 170) and Cenozoic (~0.01–66 Ma; n = 20). The Puerto Ángel beach was abundant in Proterozoic zircon grains (~600.9–1171.4 Ma; n = 109) and followed by Mesozoic grains (~73.78–246.9 Ma; n = 40). The comparison of zircon U–Pb ages of this study with probable source rocks reveals that the Oaxaquia Terrane and Chiapas Massif Complex were the major contributors of Proterozoic zircons to the coastal areas. Similarly, the results indicate that the Cenozoic zircons were contributed by the Chiapas Massif Complex, coastal batholith and Cuicateco Terrane. The Mesozoic zircons are very few, derived from the nearby Xolapa Complex and the Chuacús Terrane.
{"title":"Sediment composition and U–Pb ages of detrital zircons in the Salina Cruz and Puerto Ángel beaches along the Gulf of Tehuantepec, Mexican Pacific","authors":"Mayla A. Ramos-Vázquez, John S. Armstrong-Altrin, Sanjeet K. Verma, J. Madhavaraju, Rathinam Arthur James","doi":"10.1002/gj.5038","DOIUrl":"10.1002/gj.5038","url":null,"abstract":"<p>The Salina Cruz and Puerto Ángel beach areas in the Gulf of Tehuantepec, Mexican Pacific coast represent an important economic sector of the region. In this study, the mineralogy and geochemistry of bulk sediments, and geochronology of 400 detrital zircons recovered from the beach sediments were analysed to investigate their origin. The sediments are abundant in quartz, feldspar, ilmenite, cordierite, aragonite and anorthite. The chemical index of weathering revealed a moderate to intense weathering in the source area. The chondrite normalized REE patterns of bulk sediments are similar to the found in the Upper Continental Crust, suggesting the derivation of sediments from felsic igneous rocks. The REE patterns of zircons and the trace elemental ratios reveal a continental crust origin. Zircon U–Pb ages in the Salina Cruz beach were represented by Proterozoic (~545.1–1314.1 Ma; <i>n</i> = 170) and Cenozoic (~0.01–66 Ma; <i>n</i> = 20). The Puerto Ángel beach was abundant in Proterozoic zircon grains (~600.9–1171.4 Ma; <i>n</i> = 109) and followed by Mesozoic grains (~73.78–246.9 Ma; <i>n</i> = 40). The comparison of zircon U–Pb ages of this study with probable source rocks reveals that the Oaxaquia Terrane and Chiapas Massif Complex were the major contributors of Proterozoic zircons to the coastal areas. Similarly, the results indicate that the Cenozoic zircons were contributed by the Chiapas Massif Complex, coastal batholith and Cuicateco Terrane. The Mesozoic zircons are very few, derived from the nearby Xolapa Complex and the Chuacús Terrane.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2897-2917"},"PeriodicalIF":1.4,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gj.5038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandeep Singh, Anand Joshi, Saurabh Singhal, Mohit Pandey, Aman Kushwaha
We present significant findings of the Kausani Granite Gneiss within the Inner Lesser Himalayan Sedimentary Zone (iLHSZ) just north of the North Almora Thrust (NAT). The Kausani Granite Gneiss body lies within the quartzite of the Someshwar Formation and has a tectonized contact and a discordant relationship on the north side. Detailed seismic profiling across the body also confirms a similar result. Cathodoluminescence images of zircon from the Kausani body show no inheritance of older cores. The U–Pb ages from the zircon populations separated from the Kausani body give a crystallization age of 1866 ± 3 Ma. Along with the Upalda granite gneiss and Toneta granite gneiss near the Alakhnanda Thrust in the Garhwal Himalaya and the Dungeshwari granite gneiss near the Dailekh Thrust in Nepal, the Kausani Granite Gneiss north of NAT Kumaun Himalaya forms a major terrain boundary. These gneissic bodies mark the southernmost extent of felsic magmatism at NAT, rather than the Main Central Thrust. An about 1.8 billion years-old magmatic event in the LHSZ suggests that it is a currently active continental margin inside the ‘Greater India’ region, now situated in the Himalayan domain. However, the Pb-loss modelling of the U–Pb zircon data reveals thermal events during the Himalayan Orogeny (~45 Ma).
{"title":"Southernmost limit of felsic magmatism along North Almora Thrust in the Himalayan domain","authors":"Sandeep Singh, Anand Joshi, Saurabh Singhal, Mohit Pandey, Aman Kushwaha","doi":"10.1002/gj.5028","DOIUrl":"10.1002/gj.5028","url":null,"abstract":"<p>We present significant findings of the Kausani Granite Gneiss within the Inner Lesser Himalayan Sedimentary Zone (iLHSZ) just north of the North Almora Thrust (NAT). The Kausani Granite Gneiss body lies within the quartzite of the Someshwar Formation and has a tectonized contact and a discordant relationship on the north side. Detailed seismic profiling across the body also confirms a similar result. Cathodoluminescence images of zircon from the Kausani body show no inheritance of older cores. The U–Pb ages from the zircon populations separated from the Kausani body give a crystallization age of 1866 ± 3 Ma. Along with the Upalda granite gneiss and Toneta granite gneiss near the Alakhnanda Thrust in the Garhwal Himalaya and the Dungeshwari granite gneiss near the Dailekh Thrust in Nepal, the Kausani Granite Gneiss north of NAT Kumaun Himalaya forms a major terrain boundary. These gneissic bodies mark the southernmost extent of felsic magmatism at NAT, rather than the Main Central Thrust. An about 1.8 billion years-old magmatic event in the LHSZ suggests that it is a currently active continental margin inside the ‘Greater India’ region, now situated in the Himalayan domain. However, the Pb-loss modelling of the U–Pb zircon data reveals thermal events during the Himalayan Orogeny (~45 Ma).</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2803-2818"},"PeriodicalIF":1.4,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hydrocarbon activity in Pengyang area, situated in the southwestern Ordos Basin, is notably prominent. Investigation on the migration laws of hydrocarbons is imperative for comprehending the involvement in uranium mineralization. Based on the analysis of spatial distribution of hydrocarbon containing fluid and hydrocarbon generation conditions of sandstone in the Luohe Formation, the organic geochemical characteristics including hydrocarbon components, carbon isotopes and biomarker compounds were analysed. The research results indicate that: (1) hydrocarbon fluid activities in the Luohe Formation are predominantly observed in layers exhibiting higher uranium mineralization. The mudstone of the Luohe Formation had low organic matter content and low thermal maturity, which was not conducive to hydrocarbon generation. (2) Hydrocarbon-containing fluid in the sandstone of Luohe Formation not only contained reducing gases such as methane and hydrogen but also chloroform asphalt components. The carbon isotopes of hydrocarbon in sandstone inform Luohe Formation resemble oil and gas in the Mesozoic. The biomarker parameter inferred that the parent rock of hydrocarbons in the Luohe Formation was formed under reducing and freshwater conditions, and hydrocarbon generation occurred at the mature stage. As above mentioned, a comparison was carried out between the affinity of hydrocarbon-containing fluid in the Luohe Formation and different layers of hydrocarbon source rocks. The migration behaviour of hydrocarbon-containing fluid in the Pengyang area has been summarized, and the involvement of hydrocarbon-containing fluid in uranium mineralization has been discussed. The main concepts are as follows: the sedimentary environment and thermal evolution conditions of hydrocarbons in the sandstone of Luohe Formation resemble those of the primary hydrocarbon source rocks in the Yanchang Formation. The main hydrocarbon charging events in the Luohe Formation occurred before the Late Cretaceous period, which is primarily related to two hydrocarbon generation events from 130 to 100 Ma in the Yanchang Formation and fault conduits connecting the Triassic to the Cretaceous Strata. The hydrocarbon-containing fluid released from Yanchang Formation migrating to the Luohe Formation provides reducing conditions for the precipitation of uranium in oxygen-bearing water bodies.
位于鄂尔多斯盆地西南部的彭阳地区油气活动十分突出。研究碳氢化合物的迁移规律对于理解铀矿化的参与至关重要。在分析漯河地层含烃流体空间分布和砂岩生烃条件的基础上,分析了烃组分、碳同位素和生物标志化合物等有机地球化学特征。研究结果表明(1) 漯河地层中的烃类流体活动主要出现在铀矿化程度较高的地层中。漯河地层的泥岩有机质含量低,热成熟度低,不利于碳氢化合物的生成。(2)漯河地层砂岩中的含烃流体不仅含有甲烷、氢气等还原性气体,还含有氯仿沥青成分。漯河地层砂岩中碳氢化合物的碳同位素与中生代油气相似。根据生物标志物参数推断,漯河地层中碳氢化合物的母岩是在还原性淡水条件下形成的,碳氢化合物的生成发生在成熟阶段。如上所述,对漯河地层含烃流体与不同层位烃源岩的亲和性进行了比较。总结了彭阳地区含烃流体的迁移行为,讨论了含烃流体参与铀矿化的问题。主要观点如下:漯河地层砂岩中碳氢化合物的沉积环境和热演化条件与延长地层原生烃源岩相似。漯河地层的主要烃充注事件发生在晚白垩世之前,主要与延长地层 130~100 Ma 的两次烃生成事件和连接三叠系与白垩系地层的断层导管有关。延长地层释放的含烃流体迁移到漯河地层,为含氧水体中铀的沉淀提供了还原条件。
{"title":"The origin and migration laws of hydrocarbons in uranium-bearing Luohe Formation, Pengyang area, SW Ordos Basin","authors":"Qinghong Si, Xueming Teng, Qiang Zhu, Jianguo Li, Hualei Zhao, Guoming Wang, Haikui Tong, Hongliang Dang","doi":"10.1002/gj.5017","DOIUrl":"10.1002/gj.5017","url":null,"abstract":"<p>The hydrocarbon activity in Pengyang area, situated in the southwestern Ordos Basin, is notably prominent. Investigation on the migration laws of hydrocarbons is imperative for comprehending the involvement in uranium mineralization. Based on the analysis of spatial distribution of hydrocarbon containing fluid and hydrocarbon generation conditions of sandstone in the Luohe Formation, the organic geochemical characteristics including hydrocarbon components, carbon isotopes and biomarker compounds were analysed. The research results indicate that: (1) hydrocarbon fluid activities in the Luohe Formation are predominantly observed in layers exhibiting higher uranium mineralization. The mudstone of the Luohe Formation had low organic matter content and low thermal maturity, which was not conducive to hydrocarbon generation. (2) Hydrocarbon-containing fluid in the sandstone of Luohe Formation not only contained reducing gases such as methane and hydrogen but also chloroform asphalt components. The carbon isotopes of hydrocarbon in sandstone inform Luohe Formation resemble oil and gas in the Mesozoic. The biomarker parameter inferred that the parent rock of hydrocarbons in the Luohe Formation was formed under reducing and freshwater conditions, and hydrocarbon generation occurred at the mature stage. As above mentioned, a comparison was carried out between the affinity of hydrocarbon-containing fluid in the Luohe Formation and different layers of hydrocarbon source rocks. The migration behaviour of hydrocarbon-containing fluid in the Pengyang area has been summarized, and the involvement of hydrocarbon-containing fluid in uranium mineralization has been discussed. The main concepts are as follows: the sedimentary environment and thermal evolution conditions of hydrocarbons in the sandstone of Luohe Formation resemble those of the primary hydrocarbon source rocks in the Yanchang Formation. The main hydrocarbon charging events in the Luohe Formation occurred before the Late Cretaceous period, which is primarily related to two hydrocarbon generation events from 130 to 100 Ma in the Yanchang Formation and fault conduits connecting the Triassic to the Cretaceous Strata. The hydrocarbon-containing fluid released from Yanchang Formation migrating to the Luohe Formation provides reducing conditions for the precipitation of uranium in oxygen-bearing water bodies.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2703-2719"},"PeriodicalIF":1.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deniro Felipe Gonçalves Costa, Ana Fonseca, Johan de Grave, Tiago Novo
The Colatina Fracture Zone (CFZ) defines a distinct NNW–SSE-oriented linear zone of fractures and brittle faults that represents an inherited weak zone in the current crustal structure of the (Pre)Cambrian Araçuaí Orogen. In the Early Cretaceous, the CFZ was reactivated during rifting of West Gondwana and subsequent opening of the South Atlantic Ocean, as evidenced by the emplacement of dykes along its structural network and the development of major depocentres of the Campos Basin in the offshore segments of the CFZ. Previous thermochronological studies have demonstrated that the CFZ was also rejuvenated during the drift phase of the South Atlantic. However, a number of questions regarding differential surface uplift and basement exhumation between the CFZ and its surrounding areas, such as the Doce River Valley (DRV), are still unresolved. In this study, we aim to investigate the CFZ as a distinctive structure in the tectonic rejuvenation of the passive margin of south-east Brazil. Samples from the CFZ and the DRV were collected for apatite fission-track (AFT) analyses. In the DRV, samples yield AFT central ages from 87 to 97 Ma with mean track lengths (MTL) from 12.6 to 13.3 μm. In contrast, in the CFZ, AFT central ages from 70 to 83 Ma with MTL values from 13.2 and 13.4 μm are obtained. The correlation between AFT age and elevation suggests that the tectonic development of these regions was markedly different and uncoupled. The thermal history models from the AFT data further constrain this differential evolution. On the one hand, thermal history modelling for the DRV indicates a slower and protracted cooling since the incipient Atlantic rifting in the Early Cretaceous. On the other hand, the models for CFZ reveal a rapid cooling phase between the Late Cretaceous to the Palaeocene. In the DRV, the observed basement cooling was most probably triggered by erosion of the uplifted rift shoulder generated by Gondwana break-up. The more recent, Late Cretaceous–Palaeocene rock cooling, localized in the CFZ, was synchronous with a major phase of the Andean orogeny. This suggests that reactivations and erosional exhumation of the CFZ basement could be a consequence of far-field propagation of intraplate compressional stress. The higher susceptibility of the CFZ to reactivating over its surroundings shows that structural inheritance is a key factor in the differential tectonic evolution of passive margins. Further research on the Late Cretaceous–Palaeocene reactivation in the CFZ's offshore extension may be crucial for the exploitation of hydrocarbons in the Campos and Espírito Santos basins.
{"title":"Relating differential crustal architecture to passive margin evolution: A case study from the Colatina Fracture Zone (SE Brazil) using apatite fission-track thermochronology","authors":"Deniro Felipe Gonçalves Costa, Ana Fonseca, Johan de Grave, Tiago Novo","doi":"10.1002/gj.5027","DOIUrl":"10.1002/gj.5027","url":null,"abstract":"<p>The Colatina Fracture Zone (CFZ) defines a distinct NNW–SSE-oriented linear zone of fractures and brittle faults that represents an inherited weak zone in the current crustal structure of the (Pre)Cambrian Araçuaí Orogen. In the Early Cretaceous, the CFZ was reactivated during rifting of West Gondwana and subsequent opening of the South Atlantic Ocean, as evidenced by the emplacement of dykes along its structural network and the development of major depocentres of the Campos Basin in the offshore segments of the CFZ. Previous thermochronological studies have demonstrated that the CFZ was also rejuvenated during the drift phase of the South Atlantic. However, a number of questions regarding differential surface uplift and basement exhumation between the CFZ and its surrounding areas, such as the Doce River Valley (DRV), are still unresolved. In this study, we aim to investigate the CFZ as a distinctive structure in the tectonic rejuvenation of the passive margin of south-east Brazil. Samples from the CFZ and the DRV were collected for apatite fission-track (AFT) analyses. In the DRV, samples yield AFT central ages from 87 to 97 Ma with mean track lengths (MTL) from 12.6 to 13.3 μm. In contrast, in the CFZ, AFT central ages from 70 to 83 Ma with MTL values from 13.2 and 13.4 μm are obtained. The correlation between AFT age and elevation suggests that the tectonic development of these regions was markedly different and uncoupled. The thermal history models from the AFT data further constrain this differential evolution. On the one hand, thermal history modelling for the DRV indicates a slower and protracted cooling since the incipient Atlantic rifting in the Early Cretaceous. On the other hand, the models for CFZ reveal a rapid cooling phase between the Late Cretaceous to the Palaeocene. In the DRV, the observed basement cooling was most probably triggered by erosion of the uplifted rift shoulder generated by Gondwana break-up. The more recent, Late Cretaceous–Palaeocene rock cooling, localized in the CFZ, was synchronous with a major phase of the Andean orogeny. This suggests that reactivations and erosional exhumation of the CFZ basement could be a consequence of far-field propagation of intraplate compressional stress. The higher susceptibility of the CFZ to reactivating over its surroundings shows that structural inheritance is a key factor in the differential tectonic evolution of passive margins. Further research on the Late Cretaceous–Palaeocene reactivation in the CFZ's offshore extension may be crucial for the exploitation of hydrocarbons in the Campos and Espírito Santos basins.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2789-2802"},"PeriodicalIF":1.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high-velocity layer in the lower crust is widely distributed in the northern continental margin of the South China Sea. A detailed anatomy of the high-velocity layer is crucial for understanding the continental rifting and crustal thinning. Based on three seismic reflection profiles across the Pearl River Mouth Basin (PRMB) and the global free-air gravity anomaly data in this study, by the gravity modelling we construct the crustal structure along three seismic reflection profiles across the depression and uplift zones. The free-air gravity anomaly data within the uplift and depression zones indicates the distinct zonation, and the high and low values of free-air gravity anomalies in the basin show the northeastward trend. Based on the gravity modelling along the three seismic profiles, the crustal thickness is of 12–23 km beneath the basin and thickness of the crust is gradually thinning from the continental shelf to the continental slope. The high-velocity layer extends eastward to the Dongsha Uplift and terminates westward beneath the Baiyun Sag. The average thickness of the high-velocity layer is 4–6 km and the maximum thickness is about 8 km at the Dongsha Uplift. The thickness variation of the high-velocity layer suggests the continuous distribution of mantle underplating and intense magma activity. According to the isolated distribution and the continuous distribution of the high-velocity layer found by previous studies in the northern South China Sea, we use gravity modelling to test which models of the high-velocity layer within the PRMB are reasonable. According to testing models and preferred models of the crustal structure by gravity modelling, we propose that the continuous distribution pattern of the high-velocity layer is the best model to interpret the crustal thinning characteristics and the gravity anomaly responses of the high-velocity layer in the basin. We propose that the high-velocity layer in the Pearl River Mouth Basin was formed by the long-term underplating of the high-temperature melted mantle.
{"title":"Continuous distribution pattern and the origin of the high-velocity layer in the Pearl River Mouth Basin in the northern South China Sea: Constraints by gravity modelling","authors":"Qinglong Zhu, Junjiang Zhu, Xingquan Chen, Yuhan Jiao, Xiaoxiao Ding, Zhengyuan Liu, Sanzhong Li, Yongjiang Liu, Xuelin Qiu","doi":"10.1002/gj.5021","DOIUrl":"10.1002/gj.5021","url":null,"abstract":"<p>The high-velocity layer in the lower crust is widely distributed in the northern continental margin of the South China Sea. A detailed anatomy of the high-velocity layer is crucial for understanding the continental rifting and crustal thinning. Based on three seismic reflection profiles across the Pearl River Mouth Basin (PRMB) and the global free-air gravity anomaly data in this study, by the gravity modelling we construct the crustal structure along three seismic reflection profiles across the depression and uplift zones. The free-air gravity anomaly data within the uplift and depression zones indicates the distinct zonation, and the high and low values of free-air gravity anomalies in the basin show the northeastward trend. Based on the gravity modelling along the three seismic profiles, the crustal thickness is of 12–23 km beneath the basin and thickness of the crust is gradually thinning from the continental shelf to the continental slope. The high-velocity layer extends eastward to the Dongsha Uplift and terminates westward beneath the Baiyun Sag. The average thickness of the high-velocity layer is 4–6 km and the maximum thickness is about 8 km at the Dongsha Uplift. The thickness variation of the high-velocity layer suggests the continuous distribution of mantle underplating and intense magma activity. According to the isolated distribution and the continuous distribution of the high-velocity layer found by previous studies in the northern South China Sea, we use gravity modelling to test which models of the high-velocity layer within the PRMB are reasonable. According to testing models and preferred models of the crustal structure by gravity modelling, we propose that the continuous distribution pattern of the high-velocity layer is the best model to interpret the crustal thinning characteristics and the gravity anomaly responses of the high-velocity layer in the basin. We propose that the high-velocity layer in the Pearl River Mouth Basin was formed by the long-term underplating of the high-temperature melted mantle.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 2","pages":"253-271"},"PeriodicalIF":1.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}