Simon Orozco-Arias, Mathilde Dupeyron, David Gutierrez-Duque, Reinel Tabares-Soto, Romain Guyot
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
{"title":"High nucleotide similarity of three <i>Copia</i> lineage LTR retrotransposons among plant genomes.","authors":"Simon Orozco-Arias, Mathilde Dupeyron, David Gutierrez-Duque, Reinel Tabares-Soto, Romain Guyot","doi":"10.1139/gen-2022-0026","DOIUrl":"https://doi.org/10.1139/gen-2022-0026","url":null,"abstract":"<p><p>Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (<i>Gypsy</i>, <i>Copia</i>) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three <i>Copia</i> lineages (<i>Oryco</i>/<i>Ivana</i>, <i>Retrofit</i>/<i>Ale</i>, and <i>Tork</i>/<i>Tar</i>/<i>Ikeros</i>). A detailed analysis of three cases of high similarities involving <i>Tork</i>/<i>Tar</i>/<i>Ikeros</i> group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT <i>Copia</i> lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 3","pages":"51-61"},"PeriodicalIF":3.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cytogenetic studies have enabled the characterization of the chromosomal macrostructure and microstructure and have contributed to the understanding of the evolution of wasp karyotypes. However, studies on Eumeninae solitary wasps are scarce. In this study, we characterized the karyotype of Ancistrocerus flavomarginatus (Brèthes, 1906) and compared it with previous data from other Ancistrocerus (Wesmael, 1836) species to shed light on the chromosomal diversity of the genus. A chromosome number of 2n = 24 in females and n = 12 in males was observed. Comparing the A. flavomarginatus karyotype with that of another Ancistrocerus species showed variations in the morphology of some chromosomal pairs. The presence of two larger chromosome pairs, almost entirely heterochromatic, and the predominance of subtelocentric chromosomes with heterochromatic short arms in A. flavomarginatus support the occurrence of fissions in Ancistrocerus. A single site of ribosomal genes was observed in A. flavomarginatus, in addition to a size polymorphism of these rDNA clusters between the homologues of some analyzed females. This polymorphism may originate from duplications/deletions due to unequal crossing-over or amplification via transposable elements. The (GA)15 microsatellite is located exclusively in euchromatic regions. Our data show that different rearrangements seem to shape chromosomal evolution in Ancistrocerus species.
{"title":"Cytogenetic characterization of solitary wasp <i>Ancistrocerus flavomarginatus</i> (Brèthes, 1906) (Hymenoptera, Vespidae) with insights into the chromosomal evolution in the genus.","authors":"Mara Garcia Tavares, Gisele Amaro Teixeira","doi":"10.1139/gen-2022-0095","DOIUrl":"https://doi.org/10.1139/gen-2022-0095","url":null,"abstract":"<p><p>Cytogenetic studies have enabled the characterization of the chromosomal macrostructure and microstructure and have contributed to the understanding of the evolution of wasp karyotypes. However, studies on Eumeninae solitary wasps are scarce. In this study, we characterized the karyotype of <i>Ancistrocerus flavomarginatus</i> (Brèthes<i>,</i> 1906) and compared it with previous data from other <i>Ancistrocerus</i> (Wesmael, 1836) species to shed light on the chromosomal diversity of the genus. A chromosome number of 2<i>n</i> = 24 in females and <i>n</i> = 12 in males was observed. Comparing the <i>A. flavomarginatus</i> karyotype with that of another <i>Ancistrocerus</i> species showed variations in the morphology of some chromosomal pairs. The presence of two larger chromosome pairs, almost entirely heterochromatic, and the predominance of subtelocentric chromosomes with heterochromatic short arms in <i>A. flavomarginatus</i> support the occurrence of fissions in <i>Ancistrocerus</i>. A single site of ribosomal genes was observed in <i>A. flavomarginatus</i>, in addition to a size polymorphism of these rDNA clusters between the homologues of some analyzed females. This polymorphism may originate from duplications/deletions due to unequal crossing-over or amplification via transposable elements. The (GA)<sub>15</sub> microsatellite is located exclusively in euchromatic regions. Our data show that different rearrangements seem to shape chromosomal evolution in <i>Ancistrocerus</i> species.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 3","pages":"62-67"},"PeriodicalIF":3.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9377555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianze Wu, Gang Deng, Qinggang Yin, Shilin Chen, Yongping Zhang, Bo Wang, Li Xiang, Xia Liu
Periploca forrestii, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of P. forrestii based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on P. forrestii. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the psaI and ycf2 genes, which might reflect specific adaptions to the P. forrestii particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important P. forrestii genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.
{"title":"Characterization and molecular evolution analysis of <i>Periploca forrestii</i> inferred from its complete chloroplast genome sequence.","authors":"Tianze Wu, Gang Deng, Qinggang Yin, Shilin Chen, Yongping Zhang, Bo Wang, Li Xiang, Xia Liu","doi":"10.1139/gen-2022-0050","DOIUrl":"https://doi.org/10.1139/gen-2022-0050","url":null,"abstract":"<p><p><i>Periploca forrestii</i>, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of <i>P. forrestii</i> based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on <i>P. forrestii</i>. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the <i>psaI</i> and <i>ycf2</i> genes, which might reflect specific adaptions to the <i>P. forrestii</i> particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important <i>P. forrestii</i> genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 2","pages":"34-50"},"PeriodicalIF":3.1,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiu-Lam Ngai, Bobby Lim-Ho Kong, David Tai-Wai Lau, P C Shaw
Lingxiaohua (Campsis Flos, Campsis grandiflora (Thunb.) K. Schum) is a medicinal herb used for promoting diuresis and treating blood-related disorders by the promotion of blood circulation. It also possesses anti-inflammatory and antioxidative properties. This non-poisonous plant is frequently confused with poisonous Yangjinhua (Daturae Metelis Flos, Datura metel Linnaeus) in the market, resulting in serious anticholinergic poisoning. The confusion of these two herbs is due to the similarity in their appearances. In our study, we compared the complete chloroplast genomes of the two plants and found that they are very different in terms of their gene content and gene arrangement. There were also significant differences in the number and repeating motifs of microsatellites and complex repeats. We used universal primers for the amplification of rbcL, matK, psbA-trnH, and ITS2 regions and successfully differentiated the two plants. Furthermore, we designed two pairs of primers based on the nucleotide differences in chloroplast genomes at the rps14 and rpoC1 regions to provide additional authentication markers. The universal primers and specific primers when used together can accurately discriminate Lingxiaohua and Yangjinhua.
{"title":"Differentiation of Lingxiaohua and Yangjinhua by chloroplast genome sequencing and DNA barcoding markers.","authors":"Hiu-Lam Ngai, Bobby Lim-Ho Kong, David Tai-Wai Lau, P C Shaw","doi":"10.1139/gen-2022-0063","DOIUrl":"https://doi.org/10.1139/gen-2022-0063","url":null,"abstract":"<p><p>Lingxiaohua (Campsis Flos, <i>Campsis grandiflora</i> (Thunb.) K. Schum) is a medicinal herb used for promoting diuresis and treating blood-related disorders by the promotion of blood circulation. It also possesses anti-inflammatory and antioxidative properties. This non-poisonous plant is frequently confused with poisonous Yangjinhua (Daturae Metelis Flos, <i>Datura metel</i> Linnaeus) in the market, resulting in serious anticholinergic poisoning. The confusion of these two herbs is due to the similarity in their appearances. In our study, we compared the complete chloroplast genomes of the two plants and found that they are very different in terms of their gene content and gene arrangement. There were also significant differences in the number and repeating motifs of microsatellites and complex repeats. We used universal primers for the amplification of <i>rbcL, matK, psbA-trnH</i>, and <i>ITS2</i> regions and successfully differentiated the two plants. Furthermore, we designed two pairs of primers based on the nucleotide differences in chloroplast genomes at the <i>rps14</i> and <i>rpoC1</i> regions to provide additional authentication markers. The universal primers and specific primers when used together can accurately discriminate Lingxiaohua and Yangjinhua.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 2","pages":"21-33"},"PeriodicalIF":3.1,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Note of appreciation.","authors":"","doi":"10.1139/gen-2022-0104","DOIUrl":"https://doi.org/10.1139/gen-2022-0104","url":null,"abstract":"","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 1","pages":"iii"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.
{"title":"Complete genome analysis of <i>Pseudomonas furukawaii</i> ZS1 isolated from grass carp (<i>Ctenopharyngodon idellus</i>) culture water.","authors":"Shuhui Niu, Wangbao Gong, Zhifei Li, Kai Zhang, Guangjun Wang, Ermeng Yu, Yun Xia, Jingjing Tian, Hongyan Li, Jiajia Ni, Jun Xie","doi":"10.1139/gen-2022-0055","DOIUrl":"https://doi.org/10.1139/gen-2022-0055","url":null,"abstract":"<p><p><i>Pseudomonas furukawaii</i> ZS1, isolated from grass carp (<i>Ctenopharyngodon idellus</i>) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of <i>P. furukawaii</i> ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that <i>P. furukawaii</i> ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in <i>Pseudomonas</i> species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further <i>Pseudomonas</i> species modification and development.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 1","pages":"11-20"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanocytes play a major role in the formation of mammalian fur color and are regulated by several genes. Despite playing the pivotal role in the study of melanoma, the mechanistic role of NRAS (neuroblastoma RAS viral oncogene homolog) in the formation of mammalian epidermal color is still elusive. First of all, the expression levels of NRAS mRNA and protein in the dorsal skin of different colored Rex rabbits were detected by qRT-PCR and Western blot. Then, the subcellular localization of NRAS was identified in melanocytes by indirect immunofluorescence. Next, the expression of NRAS was overexpressed and knocked down in melanocytes, and its efficiency was verified by qRT-PCR and Western blot. Subsequently, NaOH, CCK-8, and Annexin V-FITC were used to verify the changes in melanin content, proliferation, and apoptosis in melanocytes. Finally, we analyzed the regulation of NRAS on other genes (MITF, TYR, DCT, PMEL, and CREB) that affect melanin production. In silico studies showed NRAS as a stable and hydrophilic protein, and it is localized in the cytoplasm and nucleus of melanocytes. The mRNA and protein expression levels of NRAS were significantly different in skin of different colored Rex rabbits, and the highest level was found in black skin (P < 0.01). Moreover, the NRAS demonstrated impact on the proliferation, apoptosis, and melanin production of melanocytes (P < 0.05), and the strong correlation of NRAS with melanin-related genes was evidently observed (P < 0.05). Our results suggested that NRAS can be used as a gene that regulates melanin production and controls melanocyte proliferation and apoptosis, providing a new theoretical basis for studying the mechanism of mammalian fur color formation.
{"title":"<i>NRAS</i> promotes the proliferation of melanocytes to increase melanin deposition in Rex rabbits.","authors":"Shaocheng Bai, Shuaishuai Hu, Yingying Dai, Rongshuai Jin, Chen Zhang, Fan Yao, Qiaoqin Weng, Pin Zhai, Bohao Zhao, Xinsheng Wu, Yang Chen","doi":"10.1139/gen-2021-0111","DOIUrl":"https://doi.org/10.1139/gen-2021-0111","url":null,"abstract":"<p><p>Melanocytes play a major role in the formation of mammalian fur color and are regulated by several genes. Despite playing the pivotal role in the study of melanoma, the mechanistic role of <i>NRAS</i> (neuroblastoma RAS viral oncogene homolog) in the formation of mammalian epidermal color is still elusive. First of all, the expression levels of <i>NRAS</i> mRNA and protein in the dorsal skin of different colored Rex rabbits were detected by qRT-PCR and Western blot. Then, the subcellular localization of <i>NRAS</i> was identified in melanocytes by indirect immunofluorescence. Next, the expression of <i>NRAS</i> was overexpressed and knocked down in melanocytes, and its efficiency was verified by qRT-PCR and Western blot. Subsequently, NaOH, CCK-8, and Annexin V-FITC were used to verify the changes in melanin content, proliferation, and apoptosis in melanocytes. Finally, we analyzed the regulation of <i>NRAS</i> on other genes (<i>MITF, TYR, DCT, PMEL</i>, and <i>CREB</i>) that affect melanin production. In silico studies showed <i>NRAS</i> as a stable and hydrophilic protein, and it is localized in the cytoplasm and nucleus of melanocytes. The mRNA and protein expression levels of <i>NRAS</i> were significantly different in skin of different colored Rex rabbits, and the highest level was found in black skin (<i>P</i> < 0.01). Moreover, the <i>NRAS</i> demonstrated impact on the proliferation, apoptosis, and melanin production of melanocytes (<i>P</i> < 0.05), and the strong correlation of <i>NRAS</i> with melanin-related genes was evidently observed (<i>P</i> < 0.05). Our results suggested that <i>NRAS</i> can be used as a gene that regulates melanin production and controls melanocyte proliferation and apoptosis, providing a new theoretical basis for studying the mechanism of mammalian fur color formation.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"66 1","pages":"1-10"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10547991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-12DOI: 10.1139/gen-2022-0053
James P Bogart, Abeda Dawood, François S Becker, Alan Channing
Speciation by polyploidization has been documented to have independently occurred in 12 families of anuran amphibians. Tomopterna tandyi was described as a South African allotetraploid species of sand frogs in the family Pyxicephalidae. Recent taxonomic revisions and new species descriptions in the genus present problems with respect to the evolution of this tetraploid species. Chromosomes, mitochondrial and nuclear gene sequences, isozymes, and male mating calls were examined for T. tandyi and for diploid species of Tomopterna. Mitochondrial sequences confirmed the diploid species, T. adiastola, to be the maternal ancestor that gave rise to the tetraploid about 5 mya. Nuclear sequences and isozymes reveal a complex reticulation of paternal ancestry that may be explained by occasional hybridization of T. tandyi with diploid species of Tompoterna at various times in sympatric populations. Interspecific diploid to tetraploid gene introgression is suspected to have also occurred in Australian and North American tetraploid species of frogs. Diploid to tetraploid introgression is facilitated through triploid hybrids that are more viable than diploid hybrids and produce unreduced triploid eggs.
{"title":"Chromosomes in the African frog genus <i>Tomopterna</i> (Pyxicephalidae) and probing the origin of tetraploid <i>Tomopterna tandyi</i>.","authors":"James P Bogart, Abeda Dawood, François S Becker, Alan Channing","doi":"10.1139/gen-2022-0053","DOIUrl":"https://doi.org/10.1139/gen-2022-0053","url":null,"abstract":"<p><p>Speciation by polyploidization has been documented to have independently occurred in 12 families of anuran amphibians. <i>Tomopterna tandyi</i> was described as a South African allotetraploid species of sand frogs in the family Pyxicephalidae. Recent taxonomic revisions and new species descriptions in the genus present problems with respect to the evolution of this tetraploid species. Chromosomes, mitochondrial and nuclear gene sequences, isozymes, and male mating calls were examined for <i>T. tandyi</i> and for diploid species of <i>Tomopterna.</i> Mitochondrial sequences confirmed the diploid species, <i>T. adiastola,</i> to be the maternal ancestor that gave rise to the tetraploid about 5 mya. Nuclear sequences and isozymes reveal a complex reticulation of paternal ancestry that may be explained by occasional hybridization of <i>T. tandyi</i> with diploid species of <i>Tompoterna</i> at various times in sympatric populations. Interspecific diploid to tetraploid gene introgression is suspected to have also occurred in Australian and North American tetraploid species of frogs. Diploid to tetraploid introgression is facilitated through triploid hybrids that are more viable than diploid hybrids and produce unreduced triploid eggs.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 12","pages":"585-604"},"PeriodicalIF":3.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33501701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-14DOI: 10.1139/gen-2022-0069
Camille Lacarrière-Keïta, Sonya Nassari, Steve Jean
Autophagy is an important process that maintains adult tissue homeostasis and functions by protecting cells in autonomous and non-cell-autonomous ways. By degrading toxic components or proteins involved in cell signaling pathways, autophagy preserves the balance among stem cells, progenitors, and differentiated cells in various tissues. In this minireview, we discuss recent studies performed in Drosophila that highlight new roles of autophagy in adult cell fate decisions, including quiescence, proliferation, differentiation, and death.
{"title":"Autophagy in cell fate decisions: knowledge gained from <i>Drosophila</i>.","authors":"Camille Lacarrière-Keïta, Sonya Nassari, Steve Jean","doi":"10.1139/gen-2022-0069","DOIUrl":"https://doi.org/10.1139/gen-2022-0069","url":null,"abstract":"<p><p>Autophagy is an important process that maintains adult tissue homeostasis and functions by protecting cells in autonomous and non-cell-autonomous ways. By degrading toxic components or proteins involved in cell signaling pathways, autophagy preserves the balance among stem cells, progenitors, and differentiated cells in various tissues. In this minireview, we discuss recent studies performed in <i>Drosophila</i> that highlight new roles of autophagy in adult cell fate decisions, including quiescence, proliferation, differentiation, and death.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 12","pages":"573-584"},"PeriodicalIF":3.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33511157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal degeneration. Abnormal expression of microRNAs (miRNAs) plays an important role in MS pathology. In this cohort study, differential expression of the four miRNAs (hsa-miR-155-5p, hsa-miR-9-5p, hsa-miR-181a-5p, and hsa-miR-125b-5p) was investigated in 69 individuals, including 39 MS patients (relapsing-remitting MS (RRMS), n = 27; secondary progressive MS (SPMS), n = 12) and 30 healthy controls. In silico analyses revealed possible genes and pathways specific to miRNAs. Peripheral blood miRNA expressions were detected by quantitative real-time PCR (qPCR). hsa-miR-181a-5p was downregulated and associated with increased MS risk (P = 0.012). The other three miRNAs were upregulated and not associated with MS (P < 0.05). The area under the curve (AUC) is 0.779. In silico analyses showed that hsa-miR-181a-5p may participate in MS pathology by targeting MAP2K1, CREB1, ATXN1, and ATXN3 genes in inflammation and neurodegeneration pathways. The circulatory hsa-miR-181a-5p can regulate target genes, reversing the mechanisms involved in MS pathologies such as protein uptake and processing, cell proliferation and survival, inflammation, and neurodegeneration. Thus, this miRNA could be used as an epigenomic-guided diagnostic tool and for therapeutic purpose.
多发性硬化(MS)是一种以脱髓鞘和轴突变性为特征的中枢神经系统(CNS)慢性炎症性疾病。microRNAs (miRNAs)的异常表达在MS病理中起着重要作用。在这项队列研究中,研究人员在69名个体中研究了四种mirna (hsa-miR-155-5p、hsa-miR-9-5p、hsa-miR-181a-5p和hsa-miR-125b-5p)的差异表达,其中包括39名MS患者(复发-缓解型MS (RRMS), n = 27;继发性进展性MS (SPMS, n = 12)和30名健康对照。计算机分析揭示了可能的mirna特异性基因和途径。采用实时荧光定量PCR (qPCR)检测外周血miRNA的表达。hsa-miR-181a-5p下调并与MS风险增加相关(P = 0.012)。其他三种mirna上调,与MS无关(P hsa-miR-181a-5p可能通过靶向炎症和神经退行性通路中的MAP2K1、CREB1、ATXN1和ATXN3基因参与MS病理。循环hsa-miR-181a-5p可以调节靶基因,逆转MS病理如蛋白质摄取和加工、细胞增殖和存活、炎症和神经变性等机制。因此,该miRNA可作为表观基因组指导的诊断工具和治疗目的。
{"title":"miR-181a-5p is a potential candidate epigenetic biomarker in multiple sclerosis.","authors":"Tuba Gökdoğan Edgünlü, Şenay Görücü Yılmaz, Ufuk Emre, Bahar Taşdelen, Oktay Kuru, Gülnihal Kutlu, Mehmet Emin Erdal","doi":"10.1139/gen-2022-0040","DOIUrl":"https://doi.org/10.1139/gen-2022-0040","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal degeneration. Abnormal expression of microRNAs (miRNAs) plays an important role in MS pathology. In this cohort study, differential expression of the four miRNAs (<i>hsa-miR-155-5p</i>, <i>hsa-miR-9-5p</i>, <i>hsa-miR-181a-5p</i>, and <i>hsa-miR-125b-5p)</i> was investigated in 69 individuals, including 39 MS patients (relapsing-remitting MS (RRMS), <i>n</i> = 27; secondary progressive MS (SPMS), <i>n</i> = 12) and 30 healthy controls. In silico analyses revealed possible genes and pathways specific to miRNAs. Peripheral blood miRNA expressions were detected by quantitative real-time PCR (qPCR). <i>hsa-miR-181a-5p</i> was downregulated and associated with increased MS risk (<i>P</i> = 0.012). The other three miRNAs were upregulated and not associated with MS (<i>P</i> < 0.05). The area under the curve (AUC) is 0.779. In silico analyses showed that <i>hsa-miR-181a-5p</i> may participate in MS pathology by targeting <i>MAP2K1</i>, <i>CREB1</i>, <i>ATXN1</i>, and <i>ATXN3</i> genes in inflammation and neurodegeneration pathways. The circulatory <i>hsa-miR-181a-5p</i> can regulate target genes, reversing the mechanisms involved in MS pathologies such as protein uptake and processing, cell proliferation and survival, inflammation, and neurodegeneration. Thus, this miRNA could be used as an epigenomic-guided diagnostic tool and for therapeutic purpose.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"547-561"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40356582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}