Pub Date : 2022-11-01Epub Date: 2022-08-31DOI: 10.1139/gen-2022-0018
C A Matzenbacher, J Da Silva, A L H Garcia, R Kretschmer, M Cappetta, E H C de Oliveira, T R O de Freitas
The genus Ctenomys has been widely used in karyotype evolution studies due to the variation in their diploid numbers. Ctenomys minutus is characterized by intraspecific variation in diploid number (2n = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in C. minutus. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2n = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.
{"title":"Using telomeric length measurements and methylation to understand the karyotype diversification of <i>Ctenomys minutus</i> (a small fossorial mammal).","authors":"C A Matzenbacher, J Da Silva, A L H Garcia, R Kretschmer, M Cappetta, E H C de Oliveira, T R O de Freitas","doi":"10.1139/gen-2022-0018","DOIUrl":"https://doi.org/10.1139/gen-2022-0018","url":null,"abstract":"<p><p>The genus <i>Ctenomys</i> has been widely used in karyotype evolution studies due to the variation in their diploid numbers. <i>Ctenomys minutus</i> is characterized by intraspecific variation in diploid number (2<i>n</i> = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in <i>C. minutus</i>. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2<i>n</i> = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"563-572"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40334923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01Epub Date: 2022-08-09DOI: 10.1139/gen-2022-0037
Wen-Feng Nie, Yue Chen, Junjie Tao, Yu Li, Jianping Liu, Yong Zhou, Youxin Yang
The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.
{"title":"Identification of the 12-oxophytoeienoic acid reductase (<i>OPR</i>) gene family in pepper (<i>Capsicum annuum</i> L.) and functional characterization of <i>CaOPR6</i> in pepper fruit development and stress response.","authors":"Wen-Feng Nie, Yue Chen, Junjie Tao, Yu Li, Jianping Liu, Yong Zhou, Youxin Yang","doi":"10.1139/gen-2022-0037","DOIUrl":"https://doi.org/10.1139/gen-2022-0037","url":null,"abstract":"<p><p>The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in <i>Capsicum annuum</i> plants. In this study, seven OPR family genes (<i>CaOPR1-7</i>) were identified from the <i>C. annuum</i> genome. The physical and chemical properties of <i>CaOPR1-7</i> were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in <i>Arabidopsis</i>. The expression of <i>CaOPR6</i> was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that <i>CaOPR6</i> plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of <i>CaOPR6</i> in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in <i>Solanaceae</i> vegetables.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"537-545"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40693140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-08-29DOI: 10.1139/gen-2022-0019
Iris A L Silva, Débora Varela, M Leonor Cancela, Natércia Conceição
Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the OPTN gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.
OPTN参与多种机制,如自噬、囊泡运输和核因子κ b (NF-κB)信号传导。OPTN基因的突变与不同的病理有关,包括青光眼、肌萎缩性侧索硬化症和骨佩吉特病。由于鱼类和哺乳动物OPTN之间的关系尚不清楚,本研究的目的是表征斑马鱼的OPTN基因和蛋白结构,并研究其转录调控。通过对比分析,我们观察到斑马鱼的optn具有与人类相似的基因组特征,包括其邻近基因和结构。不同物种的OPTN蛋白在功能域和三维结构上具有高度的保守性。此外,我们的体外瞬时报告分析在斑马鱼optn基因的上游区域发现了一个功能性启动子,以及一个对其转录调控重要的区域。定点突变显示NF-κB基序负责该区域的激活。总之,通过本研究,我们对斑马鱼的optn进行了表征,我们的结果表明斑马鱼可以被视为研究optn在骨相关疾病中的生物学作用的替代模型。
{"title":"Zebrafish optineurin: genomic organization and transcription regulation.","authors":"Iris A L Silva, Débora Varela, M Leonor Cancela, Natércia Conceição","doi":"10.1139/gen-2022-0019","DOIUrl":"https://doi.org/10.1139/gen-2022-0019","url":null,"abstract":"<p><p>Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the <i>OPTN</i> gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish <i>optn</i> gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish <i>optn</i> presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish <i>optn</i> gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish <i>optn</i> and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 10","pages":"513-523"},"PeriodicalIF":3.1,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33445757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Epub Date: 2022-08-05DOI: 10.1139/gen-2022-0039
Sakura Hayashi, Yusuke Honda, Etsuko Kanesaki, Akihiko Koga
Long terminal repeat (LTR) retroelements, including endogenous retroviruses, are one of the origins of satellite DNAs. However, the vast majority of satellite DNAs originating from LTR retroelements consists of parts of the element. In addition, they frequently contain sequences unrelated to that element. Here we report a novel marsupial satellite DNA (named walbRep) that contains, and consists solely of, the entire sequence of an LTR retroelement (the walb element). As is common with LTR retroelements, walb copies exhibit length variation. We focused on the abundance of copies of a specific length (2.7 kb) in the genome of the red-necked wallaby. Cloning and analyses of long genomic DNA fragments revealed a satellite DNA in which the LTR sequence (0.4 kb) and the sequence of the internal region of a nonautonomous walb copy (2.3 kb) were repeated alternately. The junctions between these two components exhibited the same end-to-end arrangements as those in the walb element. This satellite organization could be accounted for by a simple formation model that includes slippage during chromosome pairing followed by homologous recombination but does not invoke any other types of rearrangements. We discuss the possible reasons why satellite DNAs having such structures are rarely found in mammals.
{"title":"Marsupial satellite DNA as faithful reflections of long-terminal repeat retroelement structure.","authors":"Sakura Hayashi, Yusuke Honda, Etsuko Kanesaki, Akihiko Koga","doi":"10.1139/gen-2022-0039","DOIUrl":"https://doi.org/10.1139/gen-2022-0039","url":null,"abstract":"<p><p>Long terminal repeat (LTR) retroelements, including endogenous retroviruses, are one of the origins of satellite DNAs. However, the vast majority of satellite DNAs originating from LTR retroelements consists of parts of the element. In addition, they frequently contain sequences unrelated to that element. Here we report a novel marsupial satellite DNA (named walbRep) that contains, and consists solely of, the entire sequence of an LTR retroelement (the <i>walb</i> element). As is common with LTR retroelements, <i>walb</i> copies exhibit length variation. We focused on the abundance of copies of a specific length (2.7 kb) in the genome of the red-necked wallaby. Cloning and analyses of long genomic DNA fragments revealed a satellite DNA in which the LTR sequence (0.4 kb) and the sequence of the internal region of a nonautonomous <i>walb</i> copy (2.3 kb) were repeated alternately. The junctions between these two components exhibited the same end-to-end arrangements as those in the <i>walb</i> element. This satellite organization could be accounted for by a simple formation model that includes slippage during chromosome pairing followed by homologous recombination but does not invoke any other types of rearrangements. We discuss the possible reasons why satellite DNAs having such structures are rarely found in mammals.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"469-478"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40584689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) were clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposons, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in R. latirostris rather than working as a double-strand breakpoint site.
{"title":"Enriched tandem repeats in chromosomal fusion points of <i>Rineloricaria latirostris</i> (Boulenger, 1900) (Siluriformes: Loricariidae).","authors":"Larissa Glugoski, Viviane Nogaroto, Geize Aparecida Deon, Matheus Azambuja, Orlando Moreira-Filho, Marcelo Ricardo Vicari","doi":"10.1139/gen-2022-0043","DOIUrl":"https://doi.org/10.1139/gen-2022-0043","url":null,"abstract":"<p><p>Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in <i>Rineloricaria latirostris</i> to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in <i>R. latirostris</i> are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon <i>hAT</i>, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in <i>R. latirostris</i>) were clusterized with some microsatellites, especially (CA)<i><sub>n</sub></i>, (GA)<i><sub>n</sub></i>, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, <i>hAT</i> transposons, and microsatellite units flank probable evolutionary breakpoint regions in <i>R. latirostris</i>. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in <i>R. latirostris</i> rather than working as a double-strand breakpoint site.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"479-489"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Epub Date: 2022-09-06DOI: 10.1139/gen-2021-0120
Jin Liu, Xiaokai Wang, Hailiang Xie, Qinghua Zhong, Yan Xia
Our study was to analyze and evaluate the impact of different shotgun metagenomic sequencing depths from 5 to 20 million in metagenome-wide association studies (MWASs), and to determine the optimal minimum sequencing depth. We included a set of 200 previously published gut microbial shotgun metagenomic sequencing data on obesity (100 obese vs. 100 non-obese). The reads with original sequencing depths >20 million were downsized into seven experimental groups with depths from 5 to 20 million (interval 2.5 million). Using both integrated gene cluster (IGC) and metagenomic phylogenetic analysis 2 (MetaPhlAn2), we obtained and analyzed the read matching rates, gene count, species richness and abundance, diversity, and clinical biomarkers of the experimental groups with the original depth as the control group. An additional set of 100 published data from a colorectal cancer (CRC) study was included for validation (50 CRC vs. 50 CRC-free). Our results showed that more genes and species were identified following the increase in sequencing depths. When it reached 15 million or higher, the species richness became more stable with changing rate of 5% or lower, and the species composition more stable with ICC intraclass correlation coefficient (ICC) higher than 0.75. In terms of species abundance, 81% and 97% of species showed significant differences in IGC and MetaPhlAn2 among all groups with p < 0.05. Diversity showed significant differences across all groups, with decreasing differences of diversity between the experimental and the control groups following the increase in sequencing depth. The area under a receiver operating characteristic curve, AUC, of the obesity classifier for running the obesity testing samples showed an increasing trend following the increase in sequencing depth (τ = 0.29). The validation results were consistent with the above results. Our study found that the higher the sequencing depth is, the more the microbial information in structure and composition it provides. We also found that when sequencing depth was 15 million or higher, we obtained more stable species compositions and disease classifiers with good performance. Therefore, we recommend 15 million as the optimal minimum sequencing depth for an MWAS.
{"title":"Analysis and evaluation of different sequencing depths from 5 to 20 million reads in shotgun metagenomic sequencing, with optimal minimum depth being recommended.","authors":"Jin Liu, Xiaokai Wang, Hailiang Xie, Qinghua Zhong, Yan Xia","doi":"10.1139/gen-2021-0120","DOIUrl":"https://doi.org/10.1139/gen-2021-0120","url":null,"abstract":"<p><p>Our study was to analyze and evaluate the impact of different shotgun metagenomic sequencing depths from 5 to 20 million in metagenome-wide association studies (MWASs), and to determine the optimal minimum sequencing depth. We included a set of 200 previously published gut microbial shotgun metagenomic sequencing data on obesity (100 obese vs. 100 non-obese). The reads with original sequencing depths >20 million were downsized into seven experimental groups with depths from 5 to 20 million (interval 2.5 million). Using both integrated gene cluster (IGC) and metagenomic phylogenetic analysis 2 (MetaPhlAn2), we obtained and analyzed the read matching rates, gene count, species richness and abundance, diversity, and clinical biomarkers of the experimental groups with the original depth as the control group. An additional set of 100 published data from a colorectal cancer (CRC) study was included for validation (50 CRC vs. 50 CRC-free). Our results showed that more genes and species were identified following the increase in sequencing depths. When it reached 15 million or higher, the species richness became more stable with changing rate of 5% or lower, and the species composition more stable with ICC intraclass correlation coefficient (ICC) higher than 0.75. In terms of species abundance, 81% and 97% of species showed significant differences in IGC and MetaPhlAn2 among all groups with <i>p</i> < 0.05. Diversity showed significant differences across all groups, with decreasing differences of diversity between the experimental and the control groups following the increase in sequencing depth. The area under a receiver operating characteristic curve, AUC, of the obesity classifier for running the obesity testing samples showed an increasing trend following the increase in sequencing depth (<i>τ</i> = 0.29). The validation results were consistent with the above results. Our study found that the higher the sequencing depth is, the more the microbial information in structure and composition it provides. We also found that when sequencing depth was 15 million or higher, we obtained more stable species compositions and disease classifiers with good performance. Therefore, we recommend 15 million as the optimal minimum sequencing depth for an MWAS.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"491-504"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Wang, Shujie Wang, Xiang‐Fen Ji, Dong Chen, Qi Shen, Yang Yu, Wei-hang Xiao, Pingxian Wu, G. Tang
Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs are of utmost economic importance. Hence, the objective of this study is to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FE related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study (GWAS) was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P<1×10^(-6)) were detected for FCR and RFI, respectively. However, none of the SNPs achieved the genome-wide significance threshold (P<5×10^(-8)). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.
{"title":"Genome-wide association studies identified loci associated with both feed conversion ratio and residual feed intake in Yorkshire pigs.","authors":"Kai Wang, Shujie Wang, Xiang‐Fen Ji, Dong Chen, Qi Shen, Yang Yu, Wei-hang Xiao, Pingxian Wu, G. Tang","doi":"10.1139/gen-2021-0105","DOIUrl":"https://doi.org/10.1139/gen-2021-0105","url":null,"abstract":"Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs are of utmost economic importance. Hence, the objective of this study is to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FE related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study (GWAS) was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P<1×10^(-6)) were detected for FCR and RFI, respectively. However, none of the SNPs achieved the genome-wide significance threshold (P<5×10^(-8)). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46111269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziting Huo, Wenbo Xu, Huijun Guo, Peng-Feil Yang, Qianwen Zhang, Xu Lu, Long Wang
Polygonaceae is a large family of medicinal herbs that includes many species used as traditional Chinese medicine, such as Persicaria perfoliate. Here, we sequenced the complete cp genome of P. perfoliata using Illumina sequencing technology with the purpose to provide a method to facilitate accurate identification. After being annotated, the cp genome of P. perfoliata was compared with Fagopyrum tataricum, Persicaria chinensis, Fagopyrum dibotrys and Fallopia multiflora. The complete cp genome of P. perfoliata is 160,730 bp in length, containing a small single copy (SSC) region of 12,927 bp, a large single copy (LSC) region of 85,433 bp and a pair of inverted repeats (IR) regions of 62,370 bp. A total of 131 genes were annotated, including eight rRNA genes, 34 tRNA genes and 84 protein-coding genes. Forty-two simple sequence repeats and fifty-five repeat sequences were identified. Mutational hot spots analyses indicated that five genes (matK, ndhF, ccsA, cemA, rpl20) could be selected as candidates for molecular markers. Moreover, phylogenetic analysis showed that all the Polygonaceae species formed a monophyletic clade, and P. perfoliata showed the closest relationship with P. chinense. The study provides valuable molecular information to accurately identify P. perfoliata and assist in its development and application.
{"title":"The complete chloroplast genome of Persicaria perfoliata and comparative analysis with Four Medicinal Plants of Polygonaceae.","authors":"Ziting Huo, Wenbo Xu, Huijun Guo, Peng-Feil Yang, Qianwen Zhang, Xu Lu, Long Wang","doi":"10.1139/gen-2021-0085","DOIUrl":"https://doi.org/10.1139/gen-2021-0085","url":null,"abstract":"Polygonaceae is a large family of medicinal herbs that includes many species used as traditional Chinese medicine, such as Persicaria perfoliate. Here, we sequenced the complete cp genome of P. perfoliata using Illumina sequencing technology with the purpose to provide a method to facilitate accurate identification. After being annotated, the cp genome of P. perfoliata was compared with Fagopyrum tataricum, Persicaria chinensis, Fagopyrum dibotrys and Fallopia multiflora. The complete cp genome of P. perfoliata is 160,730 bp in length, containing a small single copy (SSC) region of 12,927 bp, a large single copy (LSC) region of 85,433 bp and a pair of inverted repeats (IR) regions of 62,370 bp. A total of 131 genes were annotated, including eight rRNA genes, 34 tRNA genes and 84 protein-coding genes. Forty-two simple sequence repeats and fifty-five repeat sequences were identified. Mutational hot spots analyses indicated that five genes (matK, ndhF, ccsA, cemA, rpl20) could be selected as candidates for molecular markers. Moreover, phylogenetic analysis showed that all the Polygonaceae species formed a monophyletic clade, and P. perfoliata showed the closest relationship with P. chinense. The study provides valuable molecular information to accurately identify P. perfoliata and assist in its development and application.","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47024058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhan Feng, Yan Zheng, Yuan Jiang, Yu-jing Miao, G. Luo, Linfang Huang
Gentianopsis barbata is an essential medicinal plant in China with high ornamental and medicinal values. Unfortunately, the study of the chloroplast genome of this plant still has a gap. This study sequenced and characterized the complete chloroplast genome of G. barbata. The complete chloroplast genome of G. barbata is a typical circular structure with 151,123 bp. It consists of a large single-copy region (82,690 bp) and a small single-copy region (17,887 bp) separated by a pair of inverted repeats (25,273 bp), which covers 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Repeat analysis showed the highest frequency of palindrome. Thirty-seven simple sequence repeats were identified, most of which were single nucleotides. The bayesian inference tree, maximum likelihood tree, and neighbor joining tree suggested that G. barbata is grouped with Gentianopsis grandis and Gentianopsis paludosa. The divergence time analysis showed that G. barbata diverged at 1.243 Mya. Comparative chloroplast analysis can reveal interspecific diversity, and regions with high variation can be used to develop molecular markers applicable to various research areas. Our results provide new insight into plastome evolution and valuable resource for further studies on G. barbata.
{"title":"Complete chloroplast genome of Gentianopsis barbata and comparative analysis with related species from Gentianaceae.","authors":"Zhan Feng, Yan Zheng, Yuan Jiang, Yu-jing Miao, G. Luo, Linfang Huang","doi":"10.1139/gen-2021-0080","DOIUrl":"https://doi.org/10.1139/gen-2021-0080","url":null,"abstract":"Gentianopsis barbata is an essential medicinal plant in China with high ornamental and medicinal values. Unfortunately, the study of the chloroplast genome of this plant still has a gap. This study sequenced and characterized the complete chloroplast genome of G. barbata. The complete chloroplast genome of G. barbata is a typical circular structure with 151,123 bp. It consists of a large single-copy region (82,690 bp) and a small single-copy region (17,887 bp) separated by a pair of inverted repeats (25,273 bp), which covers 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Repeat analysis showed the highest frequency of palindrome. Thirty-seven simple sequence repeats were identified, most of which were single nucleotides. The bayesian inference tree, maximum likelihood tree, and neighbor joining tree suggested that G. barbata is grouped with Gentianopsis grandis and Gentianopsis paludosa. The divergence time analysis showed that G. barbata diverged at 1.243 Mya. Comparative chloroplast analysis can reveal interspecific diversity, and regions with high variation can be used to develop molecular markers applicable to various research areas. Our results provide new insight into plastome evolution and valuable resource for further studies on G. barbata.","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46179387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina C Brunetti, Michelle K. M. Arseneault, Patrick J. Gulick
Pirins are nuclear bicupin proteins, encoded by genes that are one of several gene families that comprise the Cupin superfamily in plants. Pirin genes have been implicated in stress response pathways studied in Arabidopsis and At-Pirin1 has been shown to interact with the heterotrimeric G-protein alpha subunit (GPA1). The aim of this study was to identify the members of the Pirin gene family in Triticum aestivum, to correct their annotations in the whole genome and gain an insight into their tissue-specific expression as well as their response to abiotic and biotic stresses. The Pirin gene family in T. aestivum is comprised of 18 genes that represent six paralogous gene copies, each having an A, B and D homeolog. Expression analysis of the Pirin genes in T. aestivum Illumina RNA-seq libraries, which included sampling from differing tissue types as well as abiotic and biotic stresses, indicates that the members of the Pirin gene family have specialized expression and play a role in stress responses. Pirin gene families are also identified in other monocots including Aegilops tauschii, Hordeum vulgare, Brachypodium distachyon, Oryza sativa, Zea mays, Sorghum bicolor and the dicot Arabidopsis thaliana.
{"title":"Characterization and Expression of the Pirin Gene Family in Triticum aestivum.","authors":"Sabrina C Brunetti, Michelle K. M. Arseneault, Patrick J. Gulick","doi":"10.1139/gen-2021-0094","DOIUrl":"https://doi.org/10.1139/gen-2021-0094","url":null,"abstract":"Pirins are nuclear bicupin proteins, encoded by genes that are one of several gene families that comprise the Cupin superfamily in plants. Pirin genes have been implicated in stress response pathways studied in Arabidopsis and At-Pirin1 has been shown to interact with the heterotrimeric G-protein alpha subunit (GPA1). The aim of this study was to identify the members of the Pirin gene family in Triticum aestivum, to correct their annotations in the whole genome and gain an insight into their tissue-specific expression as well as their response to abiotic and biotic stresses. The Pirin gene family in T. aestivum is comprised of 18 genes that represent six paralogous gene copies, each having an A, B and D homeolog. Expression analysis of the Pirin genes in T. aestivum Illumina RNA-seq libraries, which included sampling from differing tissue types as well as abiotic and biotic stresses, indicates that the members of the Pirin gene family have specialized expression and play a role in stress responses. Pirin gene families are also identified in other monocots including Aegilops tauschii, Hordeum vulgare, Brachypodium distachyon, Oryza sativa, Zea mays, Sorghum bicolor and the dicot Arabidopsis thaliana.","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42898246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}